Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 178: 117237, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39096616

RESUMEN

The Lysosomal Protein Transmembrane 5 (LAPTM5) is a lysosomal transmembrane protein preferentially expressed in hematopoietic cells. The human LAPTM5 gene is located at position 1p34 and extends approximately 25 kb. Its protein includes five transmembrane domains, three PY motifs, and one UIM. The PY and UIM motifs can interact with various substrates, mediating sorting of proteins from Golgi to lysosome and subsequently participating in intracellular substrate transport and lysosomal stability regulation. Overexpression of LAPTM5 can induce lysosomal cell death (LCD), although the integrity of LAPTM5 protein is necessary for maintaining lysosome stability. Furthermore, LAPTM5 plays a role in autophagy activation during disease processes and has been confirmed to be closely associated with the regulation of immunity and inflammation. Therefore, LAPTM5 regulates a wide range of physiological processes and is involved in various diseases. This article summarizes the characteristics of the LAPTM5 gene and protein structure and provides a comprehensive review of the mechanisms involved in cell death, autophagy, immunity, and inflammation regulation. It emphasizes the significance of LAPTM5 in the clinical prevention and treatment of cardiovascular diseases, immune system disorders, viral infections, cancer, and other diseases, which could provide new therapeutic ideas and targets for human diseases.

2.
Ren Fail ; 46(2): 2359638, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38832484

RESUMEN

Emerging data have revealed that damage to tubular epithelial cell is a driving force in the progression of diabetic kidney disease (DKD). However, the specific mechanisms by which lipotoxicity contributes to the injury of these cells, thereby influencing the development of DKD, are yet to be fully understood. Here, we analyzed the GSE 30529 microarray datasets of human tubulointerstitial tissue samples from the Gene Expression Omnibus database (GEO). Concurrently, we conducted RNA-sequencing on palmitic acid (PA)-treated human renal proximal tubule epithelial cells (HK2 cells). After normalization, the differentially expressed genes (DEGs) were screened by R software and gene ontology (GO) enrichment analysis was conducted, and lysosomal-associated protein transmembrane 5 (LAPTM5) was finally selected. Our findings indicate that the expression of LAPTM5 was obviously increased in DKD patients, and the correlation between LAPTM5, and other clinical parameters of DKD was analyzed using the Spearman correlation analysis. The potential of LAPTM5 as a prognostic biomarker for DKD was further consolidated through receiver operating characteristic (ROC) analysis. To further verify the function of LAPTM5, we established mouse or in vitro systems mimicking DKD. The results showed that a consistent upregulation of LAPTM5, which was also found to be linked with inflammatory mediators within the context of DKD. Additionally, LAPTM5 silencing significantly downregulated mRNA expression of inflammatory factors in PA-treated HK2 cells. These results indicate that LAPTM5 is a potential biomarker and therapeutic treatment target for DKD. This discovery paves the way for future research and development of targeted interventions aimed at mitigating the progression of this prevalent condition.


Asunto(s)
Biología Computacional , Nefropatías Diabéticas , Proteínas de la Membrana , Animales , Humanos , Masculino , Ratones , Biomarcadores/metabolismo , Línea Celular , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ácido Palmítico/metabolismo , Regulación hacia Arriba
3.
Ann Hematol ; 102(12): 3499-3513, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37713124

RESUMEN

Myc is a pivotal protooncogenic transcription factor that contributes to the development of almost all Burkitt's lymphomas and about one-third of diffuse large B-cell lymphomas. How B-cells sustain their uncontrolled proliferation due to high Myc is not yet well defined. Here, we found that Myc trans-represses the expression of murine LAPTM5, a gene coding a lysosome-associated protein, by binding to two E-boxes in the LAPTM5 promoter. While the product of intact mRNA (CDS+3'UTR) of LAPTM5 failed to suppress the growth of B-lymphomas, either the protein coded by coding sequence (CDS) itself or the non-coding 3'-untranslated region (3'UTR) mRNA was able to inhibit the growth of B-lymphomas. Moreover, Myc trans-activated miR-17-3p, which promoted tumor growth. Strikingly, LAPTM5 3'UTR contains 11 miR-17-3p-binding sites through which the LAPTM5 protein synthesis was inhibited. The functional interplay between low LAPTM5 mRNA and high miR-17-3p due to high Myc in B-lymphomas leads to further dampening of tumor-suppressive LAPTM5 protein, which promotes tumor progression. Our results indicate that Myc inhibits LAPTM5 expression in B-lymphoma cells by transcriptional and post-transcriptional modifications.


Asunto(s)
Linfoma de Burkitt , Linfoma de Células B Grandes Difuso , MicroARNs , Humanos , Animales , Ratones , Regiones no Traducidas 3'/genética , Linfoma de Burkitt/metabolismo , Factores de Transcripción/genética , Linfoma de Células B Grandes Difuso/genética , MicroARNs/genética , Proteínas de la Membrana/genética
4.
Mol Neurobiol ; 60(12): 7060-7079, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37525083

RESUMEN

Intracerebral hemorrhage (ICH) is a lethal stroke with high mortality or disability. However, effective therapy for ICH damage is generally lacking. Previous investigations have suggested that lysosomal protein transmembrane 5 (LAPTM5) is involved in various pathological processes, including autophagy, apoptosis, and inflammation. In this study, we aimed to identify the expression and functions of LAPTM5 in collagenase-induced ICH mouse models and hemoglobin-induced cell models. We found that LAPTM5 was highly expressed in brain tissues around the hematoma, and double immunostaining studies showed that LAPTM5 was co-expressed with microglia cells, neurons, and astrocytes. Following ICH, the mice presented increased brain edema, blood-brain barrier permeability, and neurological deficits, while pathological symptoms were alleviated after the LAPTM5 knockdown. Adeno-associated virus 9-mediated downregulation of LAPTM5 also improves ICH-induced secondary cerebral damage, including neuronal degeneration, the polarization of M1-like microglia, and inflammatory cascades. Furthermore, LAPTM5 promoted activation of the nuclear factor kappa-B (NF-κB) pathway in response to neuroinflammation. Further investigations indicated that brain injury improved by LAPTM5 knockdown was further exacerbated after the overexpression of receptor-interacting protein kinase 1 (RIP1), which is revealed to trigger the NF-κB pathway. In vitro experiments demonstrated that LAPTM5 silencing inhibited hemoglobin-induced cell function and confirmed regulation between RIP1 and LAPTM5. In conclusion, the present study indicates that LAPTM5 may act as a positive regulator in the context of ICH by modulating the RIP1/NF-κB pathway. Thus, it may be a candidate gene for further study of molecular or therapeutic targets.


Asunto(s)
Lesiones Encefálicas , Animales , Ratones , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/genética , Lesiones Encefálicas/patología , Hemorragia Cerebral/patología , Hemoglobinas , Lisosomas/metabolismo , FN-kappa B/metabolismo
5.
Autophagy ; 19(4): 1184-1198, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36037300

RESUMEN

ABBREVIATIONS: cld-CASP3: cleaved caspase 3; cld-PARP: cleaved PARP; DTP: drug tolerant persister; GO: Gene Ontology; GTEx: The Genotype-Tissue Expression; HCC: hepatocellular carcinoma; HCQ: hydroxychloroquine; IC50: half maximal inhibitory concentration value; KEGG: Kyoto Encyclopedia of Genes and Genomes; LAPTM5: lysosomal protein transmembrane 5; NT: non-targeting; PDC: patient-derived primary cell lines; PDO: patient-derived primary organoid; TCGA: The Cancer Genome Atlas.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Autofagia , Proteínas de la Membrana/genética
6.
Tissue Eng Regen Med ; 19(6): 1223-1235, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36121636

RESUMEN

BACKGROUND: The study aims to correlate osteogenesis with autophagy during the mineralization induction of MC3T3-e1 through exploring the expression of runt-related transcription factor 2 (RUNX2)/lysosomal-associated transmembrane protein 5 (LAMPT5). METHODS: The induction of mineralization in MC3T3-e1 was followed by detecting the expressions of osteogenesis-related indexes such as RUNX2, alkaline phosphatase (ALP), osteocalcin (OCN), and LAPTM5 using RT-qPCR and Western blot from 0 to 14 days. Transmission electron microscope was utilised in visualizing the alterations of autophagosomes, which was followed by immunofluorescence detecting the subcellular localization of autophagy-related index sequestosome 1 (P62) and microtubule-associated protein 1 light 3 (LC3) protein and scrutinising the expression of P62 mRNA and P62 and LC3 proteins. RESULTS: Induction of MC3T3-e1 mineralization demonstrated an increased expression of osteogenesis-related indicators such as RUNX2, ALP, OCN, and LAPTM5 (p < 0.05), as evident from the results of RT-qPCR and Western blot. Meanwhile, the expression of autophagosomes increased one day after mineralization induction and then experienced a gradual decline, and enhanced expression of LC3 protein was noted on days 1-2 of mineralization induction but was then followed by a corresponding reduce. In contrast, a continuous increase was reported in the expression of P62 mRNA and protein, respectively (p < 0.05). Up- and down-regulating RUNX2/LAPTM5 expression alone confirmed the aforementioned results. CONCLUSION: It was therefore proposed that RUNX2 may be responsible for an early increase and then a gradual decrease in LAPTM5-mediated autophagy through the regulation of its high expression. Meanwhile, increased LAPTM5 expression in osteogenic mineralization presumed that RUNX2/LAPTM5 promoted autophagy and osteogenic expression, which may play a bridging role in the regulation of autophagy and osteogenesis.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteoblastos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/metabolismo , Osteogénesis/genética , Osteocalcina/genética , Fosfatasa Alcalina/metabolismo , Autofagia , ARN Mensajero/metabolismo
7.
Front Mol Neurosci ; 15: 971361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046710

RESUMEN

Lysosomal-associated transmembrane protein 5 (LAPTM5) has been demonstrated to be involved in regulating immunity, inflammation, cell death, and autophagy in the pathophysiological processes of many diseases. However, the function of LAPTM5 in cerebral ischemia-reperfusion (I/R) injury has not yet been reported. In this study, we found that LAPTM5 expression was dramatically decreased during cerebral I/R injury both in vivo and in vitro. LAPTM5 knockout (KO) mice were compared with a control, and they showed a larger infarct size and more serious neurological dysfunction after transient middle cerebral artery occlusion (tMCAO) treatment. In addition, inflammatory response and apoptosis were exacerbated in these processes. Furthermore, gain- and loss-of-function investigations in an in vitro model revealed that neuronal inflammation and apoptosis were aggravated by LAPTM5 knockdown but mitigated by its overexpression. Mechanistically, combined RNA sequencing and experimental verification showed that the apoptosis signal-regulating kinase 1 (ASK1)-c-Jun N-terminal kinase (JNK)/p38 pathway was mainly involved in the detrimental effects of LAPTM5 deficiency following I/R injury. Specifically, LAPTM5 directly interacts with ASK1, leading to decreased ASK1 N-terminal dimerization and the subsequent reduced activation of downstream JNK/p38 signaling. In conclusion, LAPTM5 was demonstrated to be a novel modulator in the pathophysiology of brain I/R injury, and targeting LAPTM5 may be feasible as a stroke treatment.

8.
Exp Anim ; 71(4): 415-425, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35491099

RESUMEN

Myocardial infarction (MI) as the remarkable presentation of coronary artery disease is still a reason for morbidity and mortality in worldwide. Lysosomal-associated protein transmembrane 5 (LAPTM5) is a lysosomal-related protein found in hematopoietic tissues and has been confirmed as a positive regulator of pro-inflammatory pathways in macrophages. However, the role of LAPTM5 in MI remains unknown. In this study, we found that both mRNA and protein expression levels of LAPTM5 were significantly elevated in MI mice. Suppression of LAPTM5 in myocardial tissues decreased cardiac fibrosis and improved cardiac function after MI. At the molecular level, downregulated LAPTM5 dramatically suppressed the macrophage activation and inflammatory response via inhibiting the activation of the nuclear factor-kappa B (NF-κB) pathway. Collectively, suppression of LAPTM5 in myocardial tissues inhibits the pro-inflammatory response and the cardiac dysfunction caused by MI. This study indicated that LAPTM5 as a pro-inflammatory factor plays a crucial role in MI disease.


Asunto(s)
Proteínas Inmediatas-Precoces , Infarto del Miocardio , Ratones , Animales , FN-kappa B/metabolismo , Transducción de Señal/genética , Miocardio/metabolismo , Lisosomas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Inmediatas-Precoces/metabolismo
9.
Int J Oncol ; 60(4)2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35294039

RESUMEN

Estrogen receptor­positive (ER+) breast cancer (BC) is a malignancy that is prone to metastasis to the spine, which is difficult to treat and often results in poor prognosis. However, the mechanism underlying the tumorigenesis and spinal metastasis of ER+ BC remains unclear. Lysosomal protein transmembrane 5 (LAPTM5) has been reported as a tumor suppressor in several types of cancer, but its role in ER+ BC has not been described. Here, by analyzing a gene sequencing dataset and ER+ BC tissues, tumor­adjacent normal tissues and spinal metastatic tissues from patients and mouse models, we found that LAPTM5 expression is negatively related to the progression and spinal metastasis of ER+ BC. Subsequently, in vitro experiments demonstrated that downregulation of LAPTM5 expression promoted the proliferation, migration, and chemoresistance of ER+ BC cells by activating glutamine­dependent mTOR signaling. A high level of CX3CL1 could inhibit LAPTM5 expression, explaining how ER+ BC metastasized to the spine. Thus, we found that LAPTM5 functions as a tumor suppressor in ER+ BC and that the CX3CL/CX3CR1/LAPTM5/glutamine axis mediates the spinal metastasis of ER+ BC. This axis may be a promising therapeutic target for ER+ BC.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de la Membrana/genética , Neoplasias de la Mama/patología , Regulación hacia Abajo/genética , Femenino , Genes Supresores de Tumor , Humanos , Transducción de Señal
10.
Aging (Albany NY) ; 14(3): 1508-1528, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-35157609

RESUMEN

Left ventricular hypertrophy (LVH) is a pivotal manifestation of hypertensive organ damage associated with an increased cardiovascular risk. However, early diagnostic biomarkers for assessing LVH in patients with hypertension (HT) remain indefinite. Here, multiple bioinformatics tools combined with an experimental verification strategy were used to identify blood biomarkers for hypertensive LVH. GSE74144 mRNA expression profiles were downloaded from the Gene Expression Omnibus (GEO) database to screen candidate biomarkers, which were used to perform weighted gene co-expression network analysis (WGCNA) and establish the least absolute shrinkage and selection operator (LASSO) regression model, combined with support vector machine-recursive feature elimination (SVM-RFE) algorithms. Finally, the potential blood biomarkers were verified in an animal model. A total of 142 hub genes in peripheral blood leukocytes were identified between HT with LVH and HT without LVH, which were mainly involved in the ATP metabolic process, oxidative phosphorylation, and mitochondrial structure and function. Notably, lysosomal associated transmembrane protein 5 (LAPTM5) was identified as the potential diagnostic marker of hypertensive LVH, which showed strong correlations with diverse marker sets of reactive oxygen species (ROS) and autophagy. RT-PCR validation of blood samples and cardiac magnetic resonance imaging (CMRI) showed that the expression of LAPTM5 was significantly higher in the HT with LVH model than in normal controls, LAPTM5 demonstrated a positive association with the left ventricle wall thickness as well as electrocardiogram (ECG) parameters widths of the QRS complex and QTc interval. In conclusion, LAPTM5 may be a potential biomarker for the diagnosis of LVH in patients with HT, and it can provide new insights for future studies on the occurrence and the molecular mechanisms of hypertensive LVH.


Asunto(s)
Hipertensión , Hipertrofia Ventricular Izquierda , Proteínas de la Membrana , Biomarcadores/metabolismo , Biología Computacional , Ventrículos Cardíacos , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/patología , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
12.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091468

RESUMEN

Lysosome plays important roles in cellular homeostasis, and its dysregulation contributes to tumor growth and survival. However, the understanding of regulation and the underlying mechanism of lysosome in cancer survival is incomplete. Here, we reveal a role for a histone acetylation-regulated long noncoding RNA termed lysosome cell death regulator (LCDR) in lung cancer cell survival, in which its knockdown promotes apoptosis. Mechanistically, LCDR binds to heterogenous nuclear ribonucleoprotein K (hnRNP K) to regulate the stability of the lysosomal-associated protein transmembrane 5 (LAPTM5) transcript that maintains the integrity of the lysosomal membrane. Knockdown of LCDR, hnRNP K, or LAPTM5 promotes lysosomal membrane permeabilization and lysosomal cell death, thus consequently resulting in apoptosis. LAPTM5 overexpression or cathepsin B inhibitor partially restores the effects of this axis on lysosomal cell death in vitro and in vivo. Similarly, targeting LCDR significantly decreased tumor growth of patient-derived xenografts of lung adenocarcinoma (LUAD) and had significant cell death using nanoparticles (NPs)-mediated systematic short interfering RNA delivery. Moreover, LCDR/hnRNP K/LAPTM5 are up-regulated in LUAD tissues, and coexpression of this axis shows the increased diagnostic value for LUAD. Collectively, we identified a long noncoding RNA that regulates lysosome function at the posttranscriptional level. These findings shed light on LCDR/hnRNP K/LAPTM5 as potential therapeutic targets, and targeting lysosome is a promising strategy in cancer treatment.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Proteínas de la Membrana/metabolismo , ARN Largo no Codificante/genética , Apoptosis/genética , Muerte Celular , Línea Celular Tumoral , Supervivencia Celular , China , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Humanos , Membranas Intracelulares/metabolismo , Lisosomas/metabolismo , Neoplasias/genética
13.
Front Cardiovasc Med ; 8: 740526, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34692792

RESUMEN

Lysosomal-associated protein transmembrane 5 (LAPTM5) is mainly expressed in immune cells and has been reported to regulate inflammation, apoptosis and autophagy. Although LAPTM5 is expressed in the heart, whether LAPTM5 plays a role in regulating cardiac function remains unknown. Here, we show that the expression of LAPTM5 is dramatically decreased in murine hypertrophic hearts and isolated hypertrophic cardiomyocytes. In this study, we investigated the role of LAPTM5 in pathological cardiac hypertrophy and its possible mechanism. Our results show that LAPTM5 gene deletion significantly exacerbates cardiac remodeling, which can be demonstrated by reduced myocardial hypertrophy, fibrosis, ventricular dilation and preserved ejection function, whereas the opposite phenotype was observed in LAPTM5 overexpression mice. In line with the in vivo results, knockdown of LAPTM5 exaggerated angiotensin II-induced cardiomyocyte hypertrophy in neonatal rat ventricular myocytes, whereas overexpression of LAPTM5 protected against angiotensin II-induced cardiomyocyte hypertrophy in vitro. Mechanistically, LAPTM5 directly bound to Rac1 and further inhibited MEK-ERK1/2 signaling, which ultimately regulated the development of cardiac hypertrophy. In addition, the antihypertrophic effect of LAPTM5 was largely blocked by constitutively active mutant Rac1 (G12V). In conclusion, our results suggest that LAPTM5 is involved in pathological cardiac hypertrophy and that targeting LAPTM5 has great therapeutic potential in the treatment of pathological cardiac hypertrophy.

14.
Nan Fang Yi Ke Da Xue Xue Bao ; 41(9): 1394-1399, 2021 Aug 31.
Artículo en Chino | MEDLINE | ID: mdl-34658355

RESUMEN

OBJECTIVE: To investigate the association of the expressions of RUNX2/LAPTM5 with osteogenesis and lysosomes in osteoblastic cells during mineralization induction. METHODS: MC3T3- E1 cells cultured in osteogenic induction medium was examined for mineralization and osteogenic differentiation using Alizarin red staining and alkaline phosphatase (ALP) staining, respectively. RT-qPCR and Western blotting were used to detect the mRNA and protein expressions of Runx2 and LAPTM5 in the cells during osteogenic induction for 5 days. The effects of overexpression and interference of RUNX2/ LAPTM5 on the expressions of ALP and osteocalcin (OCN) in the cells were examined with Western blotting. RESULTS: MC3T3- E1 cells cultured in osteogenic induction medium showed an increased number of mineralized nodules over time, and the size of the mineralized nodules increased as the culture time extended; the number of purple-blue granules stained by ALP also increased gradually with time. RT-qPCR and Western blotting showed that the expressions of RUNX2 and LAPTM5 in the cells increased progressively during osteogenic mineralization (P < 0.001). Overexpression and interference of RUNX2 obviously affected LAPTM5 expression in the cells (P < 0.05); modulation of LAPTM5 expression did not significantly affect RUNX2 expression but caused significant changes in ALP and OCN expressions (P < 0.01). CONCLUSION: RUNX2 /LAPTM5 may participate in the regulation of osteoblast differentiation, and RUNX2 may be involved in the regulation of LAPTM5 expression. RUNX2 /LAPTM5 may play a mediating role in the process of osteogenic mineralization involving lysosomes.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Proteínas Inmediatas-Precoces/genética , Proteínas de la Membrana/genética , Osteoblastos , Osteogénesis , Células 3T3 , Animales , Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones , Osteoblastos/metabolismo , Osteocalcina/genética
15.
Front Oncol ; 10: 747, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32582531

RESUMEN

Background: Glioma therapy is challenged by the diffuse and invasive growth of glioma. Lysosomal protein transmembrane 5 (LAPTM5) was identified as an invasion inhibitor by an in vivo screen for invasion-associated genes. The aim of this study was to decipher the function of LAPTM5 in glioblastoma and its interaction with the CD40 receptor which is intensively evaluated as a target in the therapy of diverse cancers including glioma. Methods: Knockdown of LAPTM5 was performed in different glioma cell lines to analyze the impact on clonogenicity, invasiveness, sensitivity to temozolomide chemotherapy, and tumorigenicity in vitro and in vivo. An expression array was used to elucidate the underlying pathways. CD40 knockdown and overexpression were induced to investigate a potential crosstalk of LAPTM5 and CD40. LAPTM5 and CD40 were correlated with the clinical outcome of glioma patients. Results: Knockdown of LAPTM5 unleashed CD40-mediated NFκB activation, resulting in enhanced invasiveness, clonogenicity, and temozolomide resistance that was overcome by NFκB inhibition. LAPTM5 expression correlated with better overall survival in glioblastoma patients depending on CD40 expression status. Conclusion: We conclude that LAPTM5 conveyed tumor suppression and temozolomide sensitation in CD40-positive glioblastoma through the inhibition of CD40-mediated NFκB activation. Hence, LAPTM5 may provide a potential biomarker for sensitivity to temozolomide in CD40-positive glioblastoma.

16.
Mol Oncol ; 14(1): 159-179, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31701625

RESUMEN

The p90 ribosomal S6 kinase (RSK) family, a downstream target of Ras/extracellular signal-regulated kinase signaling, can mediate cross-talk with the mammalian target of rapamycin complex 1 pathway. As RSK connects two oncogenic pathways in gliomas, we investigated the protein levels of the RSK isoforms RSK1-4 in nontumoral brain (NB) and grade I-IV gliomas. When compared to NB or low-grade gliomas (LGG), a group of glioblastomas (GBMs) that excluded long-survivor cases expressed higher levels of RSK1 (RSK1hi ). No difference was observed in RSK2 median-expression levels among NB and gliomas; however, high levels of RSK2 in GBM (RSK2hi ) were associated with worse survival. RSK4 expression was not detected in any brain tissues, whereas RSK3 expression was very low, with GBM demonstrating the lowest RSK3 protein levels. RSK1hi and, to a lesser extent, RSK2hi GBMs showed higher levels of phosphorylated RSK, which reveals RSK activation. Transcriptome analysis indicated that most RSK1hi GBMs belonged to the mesenchymal subtype, and RSK1 expression strongly correlated with gene expression signature of immune infiltrates, in particular of activated natural killer cells and M2 macrophages. In an independent cohort, we confirmed that RSK1hi GBMs exclude long survivors, and RSK1 expression was associated with high protein levels of the mesenchymal subtype marker lysosomal protein transmembrane 5, as well as with high expression of CD68, which indicated the presence of infiltrating immune cells. An RSK1 signature was obtained based on differentially expressed mRNAs and validated in public glioma datasets. Enrichment of RSK1 signature followed glioma progression, recapitulating RSK1 protein expression, and was associated with worse survival not only in GBM but also in LGG. In conclusion, both RSK1 and RSK2 associate with glioma malignity, but displaying isoform-specific peculiarities. The progression-dependent expression and association with immune infiltration suggest RSK1 as a potential progression marker and therapeutic target for gliomas.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Proteínas de la Membrana/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transcriptoma/inmunología , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/mortalidad , Bases de Datos Genéticas , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/inmunología , Glioblastoma/genética , Glioblastoma/metabolismo , Glioma/genética , Glioma/inmunología , Glioma/secundario , Humanos , Inmunohistoquímica , Células Asesinas Naturales/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/genética , Clasificación del Tumor , Fosforilación , Isoformas de Proteínas , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Transducción de Señal/genética , Transducción de Señal/inmunología , Transcriptoma/genética
17.
Oncotarget ; 7(19): 28320-8, 2016 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-27058622

RESUMEN

Lysosomal-associated protein multispanning transmembrane 5 (LAPTM5) is a membrane protein that localizes to intracellular vesicles. It has been previously demonstrated that LAPTM5 expression level is decreased in neuroblastoma (NB) cells, and excessive accumulation of LAPTM5 was shown to induce lysosomal cell death in these cells. However, the pathological expression and role of LAPTM5 in other types of human cancers are largely unknown. Here, we found that LAPTM5 mRNA level is frequently decreased in various cancer cell lines, and its low expression in patients with esophageal squamous cell carcinoma (ESCC) and non-small cell lung cancer (NSCLC) was significantly correlated with poor prognosis. Furthermore, we showed that overexpression of LAPTM5 in several cancer cells induces lysosomal cell death due to lysosomal destabilization, indicated by leakage of lysosomal cathepsin D into the cytosol as well as impairment of autophagy. These findings suggest that the inactivation of LAPTM5 may contribute to tumorigenesis in a subset of human cancers.


Asunto(s)
Carcinogénesis/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Regulación hacia Abajo , Humanos , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA