Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39038779

RESUMEN

n-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFAs), including eicosapentaenoic acid (EPA), are essential multifunctional nutrients in animals. Microorganisms such as microalgae are known to be n-3 LC-PUFA producers in aquatic environments. Various aquatic invertebrates, including Harpacticoida copepods, and a few terrestrial invertebrates, such as the nematode Caenorhabditis elegans, possess n-3 LC-PUFA biosynthetic enzymes. However, the capacity for n-3 LC-PUFA biosynthesis and the underlying molecular mechanisms in terrestrial insects are largely unclear. In this study, we investigated the fatty acid biosynthetic pathway in the silkworm Bombyx mori and found that EPA was present in silkworms throughout their development. Stable isotope tracing revealed that dietary α-linolenic acid (ALA) was metabolized to EPA in silkworm larvae. These results indicated that silkworms synthesize EPA from ALA. Given that EPA is enriched in the central nervous system, we propose that EPA confers optimal neuronal functions, similar to docosahexaenoic acid, in the mammalian nervous system.


Asunto(s)
Bombyx , Ácido Eicosapentaenoico , Ácido alfa-Linolénico , Animales , Bombyx/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/biosíntesis , Ácido alfa-Linolénico/metabolismo , Larva/metabolismo , Dieta
2.
Open Biol ; 14(6): 240069, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38864244

RESUMEN

Elongation of very long-chain fatty acid (Elovl) proteins plays pivotal functions in the biosynthesis of the physiologically essential long-chain polyunsaturated fatty acids (LC-PUFA). Polychaetes have important roles in marine ecosystems, contributing not only to nutrient recycling but also exhibiting a distinctive capacity for biosynthesizing LC-PUFA. To expand our understanding of the LC-PUFA biosynthesis in polychaetes, this study conducted a thorough molecular and functional characterization of Elovl occurring in the model organism Platynereis dumerilii. We identify six Elovl in the genome of P. dumerilii. The sequence and phylogenetic analyses established that four Elovl, identified as Elovl2/5, Elovl4 (two genes) and Elovl1/7, have putative functions in LC-PUFA biosynthesis. Functional characterization confirmed the roles of these elongases in LC-PUFA biosynthesis, demonstrating that P. dumerilii possesses a varied and functionally diverse complement of Elovl that, along with the enzymatic specificities of previously characterized desaturases, enables P. dumerilii to perform all the reactions required for the biosynthesis of the LC-PUFA. Importantly, we uncovered that one of the two Elovl4-encoding genes is remarkably long in comparison with any other animals' Elovl, which contains a C terminal KH domain unique among Elovl. The distinctive expression pattern of this protein in photoreceptors strongly suggests a central role in vision.


Asunto(s)
Elongasas de Ácidos Grasos , Ácidos Grasos Insaturados , Filogenia , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Animales , Elongasas de Ácidos Grasos/metabolismo , Elongasas de Ácidos Grasos/genética , Poliquetos/metabolismo , Poliquetos/genética , Acetiltransferasas/metabolismo , Acetiltransferasas/genética , Anélidos/genética , Anélidos/metabolismo
3.
Fish Physiol Biochem ; 50(4): 1583-1603, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38739220

RESUMEN

To evaluate the fatty acid (FA) metabolism status and possibility as a DHA source of farmed Onychostoma macrolepis, a total of 168 fish (2.03 ± 0.23 g) were fed four diets supplemented with fish oil (FO), linseed oil (LO), soybean oil (SO), and a mixture of LO and SO oil (MO), respectively, for 70 days. Body FA compositions were modified reflecting dietary FAs. Comparing liver and intestine fatty acids with fish fed four diets, the content of ARA in fish fed SO was significantly higher than others (P < 0.05), but showed no difference in muscle. The tissue FA profile showed that the FO-fed group successfully deposited DHA, while the LO-fed group converted ALA to DHA effectively, as well as the liver and intestine EPA was notably highest in the FO group, whereas no difference between the FO and LO group in the muscle. The FA results showed that the DHA contents in the muscle of Onychostoma macrolepis are at a medium-high level compared with several other fish species with the highest aquaculture yield. Correspondingly, in the fish fed diet with LO, SO, and MO, the genes of most FA biosynthesis, transportation, and transcriptional regulation factors were increased in the liver and muscle, but no significant difference was observed in the gene expression of Elovl4b, FATP1, and FABP10 in the muscle. In addition, the enzyme activity involved in PUFA metabolism was higher in fish fed vegetable oil-based diets, corroborating the results of the gene expression. Increased in vivo elongase and desaturase (Δ5, Δ6, and Δ9) activities were recorded in fish fed fish oil-devoid diets, which resulted in the appearance of products associated with elongase and desaturase activities in fish. Besides, as the specific n-3 PUFA synthesis substrate, the dietary supplementation of ALA not only retains most of the nutrition value but also ensures the muscular texture, such as fiber diameter and density. It is concluded that farmed O. macrolepis owns strong n-3 LC-PUFA biosynthetic capacity and high DHA contents so it can be a good DHA source for the population.


Asunto(s)
Ácidos Grasos , Aceites de Pescado , Aceites de Plantas , Animales , Aceites de Pescado/administración & dosificación , Aceites de Pescado/farmacología , Ácidos Grasos/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Hígado/metabolismo , Suplementos Dietéticos , Regulación de la Expresión Génica/efectos de los fármacos , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Aceite de Linaza/farmacología , Aceite de Linaza/administración & dosificación
4.
Mar Environ Res ; 197: 106456, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522120

RESUMEN

This study evaluated how estuary of origin and ontogenetic stage influence the fatty acid (FA) composition in the tissues of wild European sea bass juvenile. We evidenced tissue-specific patterns, with the brain exhibiting a distinct FA composition from the liver and muscle. Ontogenetic stage and estuary influenced the general FA profile, and particularly the essential FA (EFA) like docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) in all tissues. The data also revealed the ability of wild sea bass to modulate, at the molecular level, FA biosynthesis pathways and suggest a potential dietary DHA limitation in the natural environment. The distribution of FA within tissues might reflect shifts in diet, metabolic demands, or adaptations to environmental conditions. This study provides insights about FA dynamics in euryhaline fish during juvenile life stage, improving our understanding of the metabolism need and EFA trophic availability in a changing environment.


Asunto(s)
Lubina , Ácidos Grasos , Animales , Ácidos Grasos/metabolismo , Lubina/metabolismo , Estuarios , Dieta , Ácido Araquidónico/metabolismo
5.
Genes (Basel) ; 15(3)2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540424

RESUMEN

Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated MulFadsA and MulFadsB, were identified from the genome of the dwarf surf clam Mulinia lateralis (Mollusca, Mactridae), and their spatiotemporal expression was examined. MulFadsA and MulFadsB contained the corresponding conserved functional domains and clustered closely with their respective orthologs from other mollusks. Both genes were expressed in the developmental stages and all tested adult tissues of M. lateralis, with MulFadsA exhibiting significantly higher expression levels in adult tissues than MulFadsB. Subsequently, the effects of dietary microalgae on Fads expressions in the dwarf surf clam were investigated by feeding clams with two types of unialgal diets varying in fatty acid content, i.e., Chlorella pyrenoidosa (Cp) and Platymonas helgolandica (Ph). The results show that the expressions of MulFads were significantly upregulated among adult tissues in the Cp group compared with those in the Ph group. In addition, we observed the desaturation activity of MulFadsA via heterologous expression in yeasts, revealing Δ5 desaturation activity toward PUFA substrates. Taken together, these results provide a novel perspective on M. lateralis LC-PUFA biosynthesis, expanding our understanding of fatty acid synthesis in marine mollusks.


Asunto(s)
Bivalvos , Chlorella , Animales , Ácido Graso Desaturasas/genética , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Chlorella/metabolismo , Bivalvos/genética , Bivalvos/metabolismo , Ácidos Grasos/metabolismo
6.
Curr Dev Nutr ; 7(10): 102010, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37877035

RESUMEN

Background: Low concentrations of docosahexaenoic acid (DHA) or high n-6 (ω-6):n-3 ratio in pregnant women is associated with poor fetal growth velocity and suboptimal neurodevelopment. However, there is a lack of data on levels of important n-6 and n-3 fatty acids (FAs) at different time points during pregnancy and lactation from India. Data on how much DHA is transferred during actual supplementation are also scarce. Objectives: We report the concentrations of n-6 and n-3 FAs in maternal and infant blood and in breast milk following maternal supplementation with DHA or placebo. Methods: A total of 957 pregnant women (≤20 wk) from Belagavi, Karnataka, were randomly assigned to receive either 400 mg/d of algal DHA or placebo through 6 mo postpartum. Blood samples were collected from the mother at recruitment/baseline, delivery, and 6 mo postpartum and from the infant at birth (cord) and 12 mo (venous). Breast milk samples were collected from a subsample at delivery, 1 mo and 6 mo postpartum. The FA profile was analyzed using gas chromatography. Results: The concentration of DHA appeared to be higher in erythrocyte and breast milk samples of the DHA-supplemented group at all subsequent time points. The n-6:n-3 ratio was lower among women in the DHA group at delivery [DHA: 4.08 (1.79); placebo: 5.84 (3.57); P < 0.001] and at 6 mo postpartum [DHA: 5.34 (2.64); placebo: 7.69 (2.9); P < 0.001]. Infants of DHA-supplemented mothers also had a lower n-6:n-3 ratio at delivery and 12 mo. The n-6:n-3 ratio of breast milk increased from delivery through 1 to 6 mo but remained lower in the DHA-supplemented group than in the placebo. Conclusions: Maternal DHA supplementation with 400 mg/d from early pregnancy through 6 mo postpartum significantly increased circulating DHA in breast milk and infant erythrocyte, whereas decreased erythrocyte and breast milk n-6:n-3 ratio. However, maternal supplementation did not get the ratio to the recommended levels.

7.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373236

RESUMEN

During pregnancy, maternal polyunsaturated fatty acids (PUFA) are transferred to the fetus through the placenta by specific FA transporters (FATP). A higher perinatal exposure to n-6 over n-3 PUFA could be linked to excess fat mass and obesity development later in life. In this context, we aimed to assess the associations between long chain PUFAs (LC-PUFAs) (n-6, n-3, and n-6/n-3 ratios) measured in the placenta at term birth with obesity-related parameters in the offspring at 6 years of age and assess whether these associations are dependent on the placental relative expression of fatty acid transporters. As results, the PUFAn-6/PUFAn-3 ratio was 4/1, which scaled up to 15/1 when considering only the arachidonic acid/eicosapentaenoic acid ratio (AA/EPA ratio). Positive associations between the AA/EPA ratio and offspring's obesity risk parameters were found with weight-SDS, BMI-SDS, percent fat mass-SDS, visceral fat, and HOMA-IR (r from 0.204 to 0.375; all p < 0.05). These associations were more noticeable in those subjects with higher expression of fatty acid transporters. Therefore, in conclusion, a higher placental AA/EPA ratio is positively associated with offspring's visceral adiposity and obesity risk parameters, which become more apparent in subjects with higher expressions of placental FATPs. Our results support the potential role of n-6 and n-3 LC-PUFA in the fetal programming of obesity risk in childhood. For the present study, 113 healthy pregnant women were recruited during the first trimester of pregnancy and their offspring were followed up at 6 years of age. The fatty acid profiles and the expression of fatty acid transporters (FATP1 and FATP4) were analyzed from placental samples at birth. Associations between LC-PUFA (n-6, n-3, and n-6/n-3 ratios) and obesity risk parameters (weight, body mass index (BMI), percent fat mass, visceral fat, and homeostatic model assessment of insulin resistance (HOMA-IR)) in the offspring at 6 years of age were examined.


Asunto(s)
Ácidos Grasos Omega-3 , Placenta , Recién Nacido , Humanos , Femenino , Embarazo , Placenta/metabolismo , Obesidad/etiología , Obesidad/complicaciones , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos/metabolismo , Parto
8.
Annu Rev Food Sci Technol ; 14: 247-269, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36972153

RESUMEN

In contrast to traditional breeding, which relies on the identification of mutants, metabolic engineering provides a new platform to modify the oil composition in oil crops for improved nutrition. By altering endogenous genes involved in the biosynthesis pathways, it is possible to modify edible plant oils to increase the content of desired components or reduce the content of undesirable components. However, introduction of novel nutritional components such as omega-3 long-chain polyunsaturated fatty acids needs transgenic expression of novel genes in crops. Despite formidable challenges, significant progress in engineering nutritionally improved edible plant oils has recently been achieved, with some commercial products now on the market.


Asunto(s)
Ácidos Grasos Omega-3 , Plantas Comestibles , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Comestibles/genética , Plantas Comestibles/metabolismo , Aceites de Plantas , Ácidos Grasos Omega-3/metabolismo , Ingeniería Metabólica , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Semillas/genética , Semillas/metabolismo
9.
Molecules ; 28(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677774

RESUMEN

Oxylipins derived from n-3 fatty acids are suggested as the link between these fatty acids and reduced inflammation. The aim of the present study was to explore the effect of a randomized controlled cross-over intervention on oxylipin patterns in erythrocytes. Twenty-three women with rheumatoid arthritis completed 2 × 11-weeks exchanging one cooked meal per day, 5 days a week, for a meal including 75 g blue mussels (source for n-3 fatty acids) or 75 g meat. Erythrocyte oxylipins were quantified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results were analyzed with multivariate data analysis. Orthogonal projections to latent structures (OPLS) with effect projections and with discriminant analysis were performed to compare the two diets' effects on oxylipins. Wilcoxon signed rank test was used to test pre and post values for each dietary period as well as post blue-mussel vs. post meat. The blue-mussel diet led to significant changes in a few oxylipins from the precursor fatty acids arachidonic acid and dihomo-É£-linolenic acid. Despite significant changes in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and free EPA in erythrocytes in the mussel group, no concurrent changes in their oxylipins were seen. Further research is needed to study the link between n-3 fatty-acid intake, blood oxylipins, and inflammation.


Asunto(s)
Artritis Reumatoide , Ácidos Grasos Omega-3 , Humanos , Femenino , Oxilipinas/análisis , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ácidos Grasos/análisis , Ácidos Grasos Omega-3/análisis , Ácido Eicosapentaenoico/análisis , Ácidos Docosahexaenoicos/análisis , Eritrocitos/química , Inflamación
10.
J Nutr Biochem ; 113: 109245, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473540

RESUMEN

Early balanced nutrition is vital in achieving optimal skeletal mass and its maintenance. Although a lower omega-6 (n-6): omega-3 (n-3) long-chain polyunsaturated fatty acid (LC-PUFA) ratio is strongly linked with bone health, its maternal effect in the programming of the offspring's skeleton remains to be elucidated. Plugged C57BL/6 mice were fed either n-3 LC-PUFA Enriched Diet (LED) or a control diet (C) throughout their gestation and lactation. Offspring born to both the groups were weaned onto C till 6, 12, and 24 weeks of their age. Offspring's skeleton metabolism and serum fatty acid composition was studied. In humans, seventy-five mother-female newborns pairs from term gestation were tested for their maternal LC-PUFA status relationships to venous cord blood bone biomarkers. Offspring of maternal LED supplemented mice exhibited a superior bone phenotype over C, more prominent in females than males. A lower serum n-6/n-3 LC-PUFA in the LED group offspring was strongly associated with blood biomarkers of bone metabolism. Sexual dimorphism evidenced had a strong correlation between offspring's LC-PUFA levels and bone turnover markers in serum. A higher potential for osteoblastic differentiation in both LED offspring genders and reduced osteoclastogenesis in females was cell-autonomous effect. The human cross-sectional study also showed a positive correlation between maternal n-3 PUFA and cord blood markers of bone formation in female newborns at birth. Maternal dietary n-6/ n-3 fat quality determines offspring's bone growth and development. Our data suggest that the skeleton of female offspring is likely to be more sensitive to this early exposure.


Asunto(s)
Densidad Ósea , Ácidos Grasos Omega-3 , Humanos , Femenino , Masculino , Ratones , Animales , Adulto , Estudios Transversales , Ratones Endogámicos C57BL , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Insaturados , Grasas de la Dieta , Suplementos Dietéticos
11.
Artículo en Inglés | MEDLINE | ID: mdl-36429569

RESUMEN

Fatty acid desaturases, the enzymes responsible for the production of unsaturated fatty acids (FA) in fetal tissues, are known to be influenced by maternal-placental supply of nutrients and hormones for their function. We hypothesize that there could be a gender-specific regulation of unsaturated FA metabolism at birth, dependent on the maternal fatty acid levels. In this study, 153 mother-newborn pairs of uncomplicated and 'full-term' pregnancies were selected and the FA composition of plasma glycerophospholipids (GP) was quantified by gas chromatography. The FA composition of mother blood plasma (MB) was compared with the respective cord blood plasma (CB) of male newborns or female newborns. Product to substrate ratios were estimated to calculate delta 5 desaturase (D5D), delta 6 desaturase (D6D) and delta 9 stearoyl-CoA-desaturase (D9D/SCD) indices. Pearson correlations and linear regression analyses were employed to determine the associations between MB and CB pairs. In the results, the male infant's MB-CB association was positively correlated with the SCD index of carbon-16 FA, while no correlation was seen for the SCD index of carbon-18 FA. Unlike for males, the CB-D5D index of female neonates presented a strong positive association with the maternal n-6 long chain-polyunsaturated FA (LC-PUFA), arachidonic acid. In addition, the lipogenic desaturation index of SCD18 in the CB of female new-borns was negatively correlated with their MB n-3 DHA. In conclusion, sex-related differences in new-borns' CB desaturation indices are associated with maternal LC-PUFA status at the time of the birth. This examined relationship appears to predict the origin of sex-specific unsaturated FA metabolism seen in later life.


Asunto(s)
Glicerofosfolípidos , Placenta , Lactante , Femenino , Humanos , Masculino , Recién Nacido , Embarazo , Placenta/metabolismo , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos , Plasma/metabolismo
12.
Alcohol Clin Exp Res ; 46(9): 1657-1664, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35904282

RESUMEN

BACKGROUND: Individual variation in the physiological response to alcohol is predictive of an individual's likelihood to develop alcohol use disorder (AUD). Evidence from diverse model organisms indicates that the levels of long-chain polyunsaturated omega-3 fatty acids (ω-3 LC-PUFAs) can modulate the behavioral response to ethanol and therefore may impact the propensity to develop AUD. While most ω-3 LC-PUFAs come from diet, humans can produce these fatty acids from shorter chain precursors through a series of enzymatic steps. Natural variation in the genes encoding these enzymes has been shown to affect ω-3 LC-PUFA levels. We hypothesized that variation in these genes could contribute to the susceptibility to develop AUD. METHODS: We identified nine genes (FADS1, FADS2, FADS3, ELOVL2, GCKR, ELOVL1, ACOX1, APOE, and PPARA) that are required to generate ω-3 LC-PUFAs and/or have been shown or predicted to affect ω-3 LC-PUFA levels. Using both set-based and gene-based analyses we examined their association with AUD and two AUD-related phenotypes, alcohol consumption, and an externalizing phenotype. RESULTS: We found that the set of nine genes is associated with all three phenotypes. When examined individually, GCKR, FADS2, and ACOX1 showed significant association signals with alcohol consumption. GCKR was significantly associated with AUD. ELOVL1 and APOE were associated with externalizing. CONCLUSIONS: Taken together with observations that dietary ω-3 LC-PUFAs can affect ethanol-related phenotypes, this work suggests that these fatty acids provide a link between the environmental and genetic influences on the risk of developing AUD.


Asunto(s)
Alcoholismo , Ácidos Grasos Omega-3 , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Apolipoproteínas E , Etanol , Ácidos Grasos , Ácidos Grasos Insaturados , Humanos
13.
Gene ; 840: 146755, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35905852

RESUMEN

The rabbitfish Siganus canaliculatus is the first marine teleost found to have the biosynthetic ability of long-chain polyunsaturated fatty acids (LC-PUFA) from C18 precursors catalyzed by fatty acyl desaturases (Δ6/Δ5 Fads, Δ4 Fads) and elongases of very long chain fatty acids (Elovls). Previously, we predicted the existence of insulin (INS) response elements (IREs) including nuclear factor Y (NF-Y) and sterol regulatory element (SRE) in the core promoter region of rabbitfish Δ6/Δ5 fads and Δ4 fads. To clarify the potential regulatory effect and mechanism of INS in LC-PUFA biosynthesis, INS responding region was identified at -456 bp to + 51 bp of Δ6/Δ5 fads core promoter, but not in Δ4 fads promoter. Moreover, a unique stimulatory protein 1 (Sp1) element was predicted in the INS responding region of Δ6/Δ5 fads. Subsequently, SRE, NF-Y and Sp1 elements were proved as IREs in Δ6/Δ5 fads promoter. The up-regulation of INS on gene expression of Srebp-1c, Sp1, Δ6/Δ5 fads and elovl5 as well as the LC-PUFA biosynthesis was further demonstrated in S. canaliculatus hepatocyte line (SCHL) cells, but no influence was detected on Δ4 fads. Besides, inhibitors of transcription factors Srebp-1c (Fatostatin, PF-429242) and Sp1 (Mithramycin) could inhibit the gene expression of Srebp-1c, Δ6/Δ5 fads and elovl5, and abolish the up-regulation of INS on these genes' expression and LC-PUFA biosynthesis. These results indicated that INS could up-regulate LC-PUFA biosynthesis with the involvement of Srebp-1c and Sp1 in rabbitfish S. canaliculatus, which is the first report in teleost.


Asunto(s)
Proteínas de Peces , Insulina , Animales , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Peces/genética , Insulina/metabolismo , Lipogénesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
14.
Molecules ; 27(13)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35807489

RESUMEN

Long-chain polyunsaturated fatty acids n-3 series (n-3 LC-PUFAs), especially eicosapentaenoic and docosahexaenoic acids, are known to exert preventive effects on obesity and metabolic syndrome. Mainly consumed in the form of fish oil, LC-PUFAs n-3 are also found in significant quantities in other sources such as certain microalgae. The aim of this study was to evaluate the effects of Diacronema lutheri (Dia), a microalga rich in n-3 LC-PUFAs, on metabolic disorders associated with obesity. Three groups of male Wistar rats (n = 6 per group) were submitted for eight weeks to a standard diet or high-fat and high-fructose diet (HF), supplemented or not with 12% of Dia (HF-Dia). Compared to HF rats, HF-Dia rats showed a 41% decrease in plasma triacylglycerol (TAG) and an increase in plasma cholesterol (+35%) as well as in high-density lipoprotein cholesterol (+51%) without change to low-density lipoprotein cholesterol levels. Although fasting glycemia did not change, glucose and insulin tolerance tests highlighted an improvement in glucose and insulin homeostasis. Dia supplementation restored body weight and fat mass, and decreased levels of liver TAG (-75%) and cholesterol (-84%). In HF-Dia rats, leptin was decreased (-30%) below the control level corresponding to a reduction of 68% compared to HF rats. Similarly, the anti-inflammatory cytokines interleukin-4 (IL-4) and IL-10 were restored up to control levels, corresponding to a 74% and 58% increase in HF rats, respectively. In contrast, the level of IL-6 remained similar in the HF and HF-Dia groups and about twice that of the control. In conclusion, these results indicated that the D. lutheri microalga may be beneficial for the prevention of weight gain and improvement in lipid and glucose homeostasis.


Asunto(s)
Ácidos Grasos Omega-3 , Síndrome Metabólico , Microalgas , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos , Ácidos Grasos Omega-3/farmacología , Fructosa , Glucosa , Insulina , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/prevención & control , Obesidad/metabolismo , Ratas , Ratas Wistar , Triglicéridos
15.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742881

RESUMEN

Long chain acyl-coA synthase (acsl) family genes activate the conversion of long chain fatty acids into acyl-coA to regulate fatty acid metabolism. However, the evolutionary characteristics, tissue expression and nutritional regulation of the acsl gene family are poorly understood in fish. The present study investigated the molecular characterization, tissue expression and nutritional regulation of the acsl gene family in golden pompano (Trachinotus ovatus). The results showed that the coding regions of acsl1, acsl3, acsl4, acsl5 and acsl6 cDNA were 2091 bp, 2142 bp, 2136 bp, 1977 bp and 2007 bp, encoding 697, 714, 712, 659 and 669 amino acids, respectively. Five acsl isoforms divided into two branches, namely, acsl1, acsl5 and acsl6, as well as acsl3 and acsl4. The tissue expression distribution of acsl genes showed that acsl1 and acsl3 are widely expressed in the detected tissues, while acsl4, acsl5 and acsl6 are mainly expressed in the brain. Compared to the fish fed with lard oil diets, the fish fed with soybean oil exhibited high muscular C18 PUFA contents and acsl1 and acsl3 mRNA levels, as well as low muscular SFA contents and acsl4 mRNA levels. High muscular n-3 LC-PUFA contents, and acsl3, acsl4 and acsl6 mRNA levels were observed in the fish fed with fish oil diets compared with those of fish fed with lard oil or soybean oil diets. High n-3 LC-PUFA levels and DHA contents, as well as the acsl3, acsl4 and acsl6 mRNA levels were exhibited in the muscle of fish fed diets with high dietary n-3 LC-PUFA levels. Additionally, the muscular acsl3, acsl4 and acsl6 mRNA expression levels, n-3 LC-PUFA and DHA levels were significantly up-regulated by the increase of dietary DHA proportions. Collectively, the positive relationship among dietary fatty acids, muscular fatty acids and acsl mRNA, indicated that T. ovatus Acsl1 and Acsl3 are beneficial for the C18 PUFA enrichment, and Acsl3, Acsl4 and Acsl6 are for n-3 LC-PUFA and DHA enrichment. The acquisition of fish Acsl potential function in the present study will play the foundation for ameliorating the fatty acids nutrition in farmed fish products.


Asunto(s)
Acilcoenzima A , Aceite de Soja , Acilcoenzima A/metabolismo , Animales , Ácidos Grasos/metabolismo , Peces/genética , Peces/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Tisular
16.
Artículo en Inglés | MEDLINE | ID: mdl-35500529

RESUMEN

BACKGROUND: Zinc is an essential trace mineral that serves as a cofactor for the delta-5 and delta-6 desaturases (D5D, D6D) that are critical for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis. While plasma zinc levels are generally reported to be associated with D5D and D6D indices in humans, it remains unclear if dietary zinc intake can be similarly associated with desaturase indices. Therefore, the present investigation examined if zinc intake determined by food frequency questionnaire (FFQ) is associated with desaturase indices in young Canadian adults. Additionally, we explored whether desaturase indices were modified by an interaction between dietary zinc intake and a common variant in the FADS1 gene. METHODS: Dietary zinc intake (FFQ), plasma fatty acids (gas chromatography) and the FADS1 rs174547 polymorphism were analyzed in young men and women (n = 803) from the cross-sectional Toronto Nutrigenomics and Health Study. Product-to-precursor fatty acid ratios were used to determine desaturase enzyme indices (D5D = 20:4n-6/20:3n-6; D6D = 18:3n-6/18:2n-6). Individuals were grouped according to dietary zinc intake, as well as by their rs174547 genotype (TT vs. TC+CC). Data were analyzed by 1-way and 2-way ANCOVA. RESULTS: Plasma fatty acids and D5D/D6D indices did not differ between individuals grouped according to dietary zinc intake. Further, the recently proposed biomarker of zinc intake, 20:3n-6/18:2n-6, was not associated with dietary zinc intake. Although the FADS1 rs174547 SNP was significantly associated with D5D and D6D indices in both men and women (p < 0.0001), we did not find evidence of a dietary zinc intake - FADS1 SNP interaction on D5D or D6D indices. CONCLUSION: Dietary zinc intake, as determined using FFQs, does not predict differences in desaturase indices, irrespective of FADS1 genotype.


Asunto(s)
Ácido Graso Desaturasas , Zinc , Canadá , Estudios Transversales , delta-5 Desaturasa de Ácido Graso , Dieta , Ácido Graso Desaturasas/genética , Ácidos Grasos , Femenino , Humanos , Linoleoil-CoA Desaturasa/genética , Masculino , Evaluación Nutricional , Adulto Joven
17.
Front Nutr ; 9: 855369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571938

RESUMEN

Salinity is an important environmental factor that can affect the metabolism of aquatic organisms, while cholesterol can influence cellular membrane fluidity which are vital in adaption to salinity changes. Hence, a 4-week feeding trial was conducted to evaluate the effects of water salinity (normal 23 psu and low 5 psu) and three dietary cholesterol levels (CH0.16, 0.16%, CH1.0, 1.0% and CH1.6, 1.6%) on osmoregulation, cholesterol metabolism, fatty acid composition, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis, oxidative stress (OS), and endoplasmic reticulum stress (ERS) of the euryhaline fish black seabream (Acanthopagrus schlegelii). The results indicated that in low salinity, fish fed with the CH1.0 diet improved ion reabsorption and osmoregulation by increased Na+ concentration in serum as well as expression levels of osmoregulation-related gene expression levels in gills. Both dietary cholesterol level and water salinity significantly affected most cholesterol metabolic parameters in the serum and tissues, and the results showed that low salinity promoted cholesterol synthesis but inhibited cholesterol catabolism. Besides, in low salinity, hepatic expression levels of LC-PUFA biosynthesis genes were upregulated by fed dietary cholesterol supplementation with contents of LC-PUFAs, including EPA and DHA being increased. Malondialdehyde (MDA) was significantly increased in low-salinity environment, whereas MDA content was decreased in fish fed with dietary CH1.0 by activating related antioxidant enzyme activity and gene expression levels. A similar pattern was recorded for ERS, which stimulated the expression of nuclear factor kappa B (nf-κb), triggering inflammation. Nevertheless, fish reared in low salinity and fed with dietary CH1.0 had markedly alleviated ERS and downregulated gene expression levels of pro-inflammatory cytokines. Overall, these findings demonstrate that cholesterol, as an important nutrient, plays vital roles in the process of adaptation to low salinity of A. schlegelii, and provides a new insight into underlying adaptive strategies of euryhaline marine fish reared in low salinity.

18.
Biomolecules ; 12(5)2022 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-35625587

RESUMEN

Δ6 fatty acyl desaturase (Δ6Fads2) is regarded as the first rate-limiting desaturase that catalyzes the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA) from 18-carbon fatty acid in vertebrates, but the underlying regulatory mechanism of fads2 has not been comprehensively understood. This study aimed to investigate the regulation role of fads2 subjected to fatty acid in large yellow croaker and rainbow trout. In vivo, large yellow croaker and rainbow trout were fed a fish oil (FO) diet, a soybean oil (SO) diet or a linseed oil (LO) diet for 10 weeks. The results show that LO and SO can significantly increase fads2 expression (p < 0.05). In vitro experiments were conducted in HEK293T cells or primary hepatocytes to determine the transcriptional regulation of fads2. The results show that CCAAT/enhancer-binding protein α (C/EBPα) can up-regulate fads2 expression. GATA binding protein 3 (GATA3) can up-regulate fads2 expression in rainbow trout but showed opposite effect in large yellow croaker. Furthermore, C/EBPα protein levels were significantly increased by LO and SO (p < 0.05), gata3 expression was increased in rainbow trout by LO but decreased in large yellow croaker by LO and SO. In conclusion, we revealed that FO replaced by LO and SO increased fads2 expression through a C/EBPα and GATA3 dependent mechanism in large yellow croaker and rainbow trout. This study might provide critical insights into the regulatory mechanisms of fads2 expression and LC-PUFA biosynthesis.


Asunto(s)
Oncorhynchus mykiss , Perciformes , Animales , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos/metabolismo , Células HEK293 , Humanos , Aceite de Linaza , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Perciformes/genética , Perciformes/metabolismo
19.
Foods ; 11(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35627032

RESUMEN

Worldwide, fish oil is an important and rich source of the health-beneficial omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA). It is, however, troubled by its high susceptibility towards lipid oxidation. This can be prevented by the addition of (preferably natural) antioxidants. The current research investigates the potential of Phaeodactylum carotenoids in this regard. The oxidative stability of fish oil and fish oil with Phaeodactylum addition is evaluated by analyzing both primary (PV) and secondary (volatiles) oxidation products in an accelerated storage experiment (37 °C). A first experimental set-up shows that the addition of 2.5% (w/w) Phaeodactylum biomass is not capable of inhibiting oxidation. Although carotenoids from the Phaeodactylum biomass are measured in the fish oil phase, their presence does not suffice. In a second, more elucidating experimental set-up, fish oil is mixed in different proportions with a Phaeodactylum total lipid extract, and oxidative stability is again evaluated. It was shown that the amount of carotenoids relative to the n-3 LC-PUFA content determined oxidative stability. Systems with a fucoxanthin/n-3 LC-PUFA ratio ≥ 0.101 shows extreme oxidative stability, while systems with a fucoxanthin/n-3 LC-PUFA ratio ≤ 0.0078 are extremely oxidatively unstable. This explains why the Phaeodactylum biomass addition did not induce oxidative stability.

20.
Mar Drugs ; 20(4)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35447922

RESUMEN

Salmon byproducts (Salmo salar) generated by the food chain represent a source of long-chain polyunsaturated fatty acids (eicosapentaenoic acid (EPA): 20:5n-3; docosahexaenoic acid (DHA): 22:6n-3) and peptides that can be used as supplements in food for nutraceutical or health applications, such as in the prevention of certain pathologies (e.g., Alzheimer's and cardiovascular diseases). The extraction of polar lipids naturally rich in PUFAs by enzymatic processes without organic solvent (controlled by pH-Stat method), coupled with the production of 1 kDa salmon peptides by membrane filtration, allowed the formulation of nanocarriers. The physicochemical properties of the nanoliposomes (size ranging from 120 to 140 nm, PDI of 0.27, zeta potential between -32 and -46 mV and encapsulation efficiency) were measured, and the bioactivity of salmon hydrolysate peptides was assessed (antioxidant and antiradical activity: ABTS, ORAC, DPPH; iron metal chelation). Salmon peptides exhibited good angiotensin-conversion-enzyme (ACE) inhibition activity, with an IC50 value of 413.43 ± 13.12 µg/mL. Cytotoxicity, metabolic activity and proliferation experiments demonstrated the harmlessness of the nanostructures in these experimental conditions.


Asunto(s)
Liposomas , Salmo salar , Animales , Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Ácidos Grasos , Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA