Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Adh Migr ; 18(1): 4-17, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39076043

RESUMEN

Lim Domain and Actin Binding protein1 (lima1) influence cancer cell function. Thus far, functional role of lima1 in cholangiocarcinoma remains unknown. We used public databases, in vitro experiments, and multi-omics analysis to investigate the Lima1 in cholangiocarcinoma. Our results showed that lima1 expression is significantly upregulated and high levels of lima1 are significantly associated with vascular invasion in cholangiocarcinoma. Furthermore, lima1 knocking out inhibits the RBE cell invasion. Multi-omics data suggest that lima1 affect a broad spectrum of cancer related pathways, promoting tumor progression and metastatic ability in cholangiocarcinoma. This study provides insights into molecular associations of lima1 with tumorigenesist and establishes a preliminary picture of the correlation network in cholangiocarcinoma.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Regulación Neoplásica de la Expresión Génica , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colangiocarcinoma/genética , Humanos , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Línea Celular Tumoral , Proteínas de Microfilamentos/metabolismo , Proteínas de Microfilamentos/genética , Movimiento Celular/genética , Proteínas con Dominio LIM/metabolismo , Proteínas con Dominio LIM/genética , Proliferación Celular , Invasividad Neoplásica , Masculino , Femenino
2.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732188

RESUMEN

The cytoskeleton plays a pivotal role in maintaining the epithelial phenotype and is vital to several hallmark processes of cancer. Over the past decades, researchers have identified the epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) as a key regulator of cytoskeletal dynamics, cytoskeletal organization, motility, as well as cell growth and metabolism. Dysregulation of EPLIN is implicated in various aspects of cancer progression, such as tumor growth, invasion, metastasis, and therapeutic resistance. Its altered expression levels or activity can disrupt cytoskeletal dynamics, leading to aberrant cell motility and invasiveness characteristic of malignant cells. Moreover, the involvement of EPLIN in cell growth and metabolism underscores its significance in orchestrating key processes essential for cancer cell survival and proliferation. This review provides a comprehensive exploration of the intricate roles of EPLIN across diverse cellular processes in both normal physiology and cancer pathogenesis. Additionally, this review discusses the possibility of EPLIN as a potential target for anticancer therapy in future studies.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Animales , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Movimiento Celular , Proliferación Celular
3.
Cell Mol Biol Lett ; 29(1): 82, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822260

RESUMEN

BACKGROUND: Hepatic stellate cells (HSCs) play a crucial role in the development of fibrosis in non-alcoholic fatty liver disease (NAFLD). Small extracellular vesicles (sEV) act as mediators for intercellular information transfer, delivering various fibrotic factors that impact the function of HSCs in liver fibrosis. In this study, we investigated the role of lipotoxic hepatocyte derived sEV (LTH-sEV) in HSCs activation and its intrinsic mechanisms. METHODS: High-fat diet (HFD) mice model was constructed to confirm the expression of LIMA1. The relationship between LIMA1-enriched LTH-sEV and LX2 activation was evaluated by measurement of fibrotic markers and related genes. Levels of mitophagy were detected using mt-keima lentivirus. The interaction between LIMA1 and PINK1 was discovered through database prediction and molecular docking. Finally, sEV was injected to investigate whether LIMA1 can accelerate HFD induced liver fibrosis in mice. RESULTS: LIMA1 expression was upregulated in lipotoxic hepatocytes and was found to be positively associated with the expression of the HSCs activation marker α-SMA. Lipotoxicity induced by OPA led to an increase in both the level of LIMA1 protein in LTH-sEV and the release of LTH-sEV. When HSCs were treated with LTH-sEV, LIMA1 was observed to hinder LX2 mitophagy while facilitating LX2 activation. Further investigation revealed that LIMA1 derived from LTH-sEV may inhibit PINK1-Parkin-mediated mitophagy, consequently promoting HSCs activation. Knocking down LIMA1 significantly attenuates the inhibitory effects of LTH-sEV on mitophagy and the promotion of HSCs activation. CONCLUSIONS: Lipotoxic hepatocyte-derived LIMA1-enriched sEVs play a crucial role in promoting HSCs activation in NAFLD-related liver fibrosis by negatively regulating PINK1 mediated mitophagy. These findings provide new insights into the pathological mechanisms involved in the development of fibrosis in NAFLD.


Asunto(s)
Dieta Alta en Grasa , Vesículas Extracelulares , Células Estrelladas Hepáticas , Hepatocitos , Cirrosis Hepática , Ratones Endogámicos C57BL , Mitofagia , Animales , Humanos , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Células Estrelladas Hepáticas/metabolismo , Hepatocitos/metabolismo , Hepatocitos/patología , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/genética , Mitofagia/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética
4.
Front Oncol ; 13: 1115943, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274282

RESUMEN

Actin is the most abundant and highly conserved cytoskeletal protein present in all eukaryotic cells. Remodeling of the actin cytoskeleton is controlled by a variety of actin-binding proteins that are extensively involved in biological processes such as cell motility and maintenance of cell shape. LIM domain and actin-binding protein 1 (LIMA1), as an important actin cytoskeletal regulator, was initially thought to be a tumor suppressor frequently downregulated in epithelial tumors. Importantly, the deficiency of LIMA1 may be responsible for dysregulated cytoskeletal dynamics, altered cell motility and disrupted cell-cell adhesion, which promote tumor proliferation, invasion and migration. As research progresses, the roles of LIMA1 extend from cytoskeletal dynamics and cell motility to cell division, gene regulation, apical extrusion, angiogenesis, cellular metabolism and lipid metabolism. However, the expression of LIMA1 in malignant tumors and its mechanism of action have not yet been elucidated, and many problems and challenges remain to be addressed. Therefore, this review systematically describes the structure and biological functions of LIMA1 and explores its expression and regulatory mechanism in malignant tumors, and further discusses its clinical value and therapeutic prospects.

5.
Cells ; 11(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36497115

RESUMEN

Currently, exosomes derived from Cancer-associated fibroblast (CAF) have reportedly been involved in regulating hepatocellular carcinoma (HCC) tumour microenvironment (TME). LIM domain and actin binding 1 (LIMA1) is an actin-binding protein that is involved in controlling the biological behaviour and progression of specific solid tumours. We aimed to determine the effect of LIMA1 and exosome-associated miR-20a-5p in HCC development. LIMA1 and miR-20a-5p expression levels were examined by real-time quantitative PCR (qRT-PCR), western blotting or immunohistochemistry (IHC). Functional experiments, including Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) assays, colony formation assays, wound healing assays, and Transwell invasion assays, were performed to investigate the effect of LIMA1 and miR-20a-5p. A dual-luciferase reporter gene assay was performed to confirm the interaction of miR-20a-5p and LIMA1. Exosomes were characterised by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting. We noted that LIMA1 was downregulated in human HCC tissues and cells and remarkably correlated with overall survival (OS) and recurrence-free survival (RFS). LIMA1 overexpression suppressed HCC cell proliferation and metastasis in vitro and in vivo, while LIMA1 knockdown had the opposite effects. A mechanistic investigation showed that LIMA1 inhibited the Wnt/ß-catenin signalling pathway by binding to BMI1 and inducing its destabilisation. Additionally, we found that LIMA1 expression in HCC cells could be suppressed by transferring CAF-derived exosomes harbouring oncogenic miR-20a-5p. In summary, LIMA1 is a tumour suppressor that inhibits the Wnt/ß-catenin signalling pathway and is downregulated by CAF-derived exosomes carrying oncogenic miR-20a-5p in HCC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/patología , beta Catenina/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias Hepáticas/patología , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular/genética , Línea Celular Tumoral , Microambiente Tumoral , Proteínas del Citoesqueleto/metabolismo
6.
Cancers (Basel) ; 14(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291816

RESUMEN

BACKGROUND: As microRNA-142 (miR-142) is the only human microRNA gene where mutations have consistently been found in about 20% of all cases of diffuse large B-cell lymphoma (DLBCL), we wanted to determine the impact of miR-142 inactivation on protein expression of DLBCL cell lines. METHODS: miR-142 was deleted by CRISPR/Cas9 knockout in cell lines from DLBCL. RESULTS: By proteome analyses, miR-142 knockout resulted in a consistent up-regulation of 52 but also down-regulation of 41 proteins in GC-DLBCL lines BJAB and SUDHL4. Various mitochondrial ribosomal proteins were up-regulated in line with their pro-tumorigenic properties, while proteins necessary for MHC-I presentation were down-regulated in accordance with the finding that miR-142 knockout mice have a defective immune response. CFL2, CLIC4, STAU1, and TWF1 are known targets of miR-142, and we could additionally confirm AKT1S1, CCNB1, LIMA1, and TFRC as new targets of miR-142-3p or -5p. CONCLUSIONS: Seed-sequence mutants of miR-142 confirmed potential targets and novel targets of miRNAs can be identified in miRNA knockout cell lines. Due to the complex contribution of miRNAs within cellular regulatory networks, in particular when miRNAs highly present in RISC complexes are replaced by other miRNAs, primary effects on gene expression may be covered by secondary layers of regulation.

7.
Clin Med Insights Oncol ; 16: 11795549221109493, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837368

RESUMEN

Background: LIMA1 encodes LIM domain and actin binding 1, a cytoskeleton-associated protein whose loss has been linked to migration and invasion behavior of cancer cells. However, the roles of LIMA1 underlying the malignant behavior of tumors in head and neck squamous cell carcinoma (HNSC) are not fully understood. Methods: We conducted a multi-omics study on the role of LIMA1 in HNSC based on The Cancer Genome Atlas data. Subsequent in vitro experiments were performed to validate the results of bioinformatic analysis. We first identified the correlation between LIMA1 and tumor cell functional states according to single-cell sequencing data in HNSC. The potential downstream effects of LIMA1 were explored for gene ontology and Kyoto Encyclopedia of Genes and Genomes pathways through functional enrichment analysis of the gene sets that correlated with LIMA1 in HNSC. The prognostic role of LIMA1 was assessed using the log rank test to compare difference in survival between LIMA1High and LIMA1Low patients. Univariate Cox regression and multivariate Cox regression were further carried out to identify the prognostic value of LIMA1 in HNSC. Results: LIMA1 was identified as a prognostic biomarker and is associated with epithelial-mesenchymal transition (EMT) progress in HNSC. In vitro silencing of LIMA1 suppressed EMT and related pathways in HNSC. Conclusions: LIMA1 promotes EMT and further leads to tumor invasion and metastasis. Increased expression of LIMA1 indicates poor survival, identifying it as a prognostic biomarker in HNSC.

8.
Acta Histochem Cytochem ; 55(3): 99-110, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35821749

RESUMEN

Epithelial protein lost in neoplasm (EPLIN) is an actin-associated cytoskeletal protein that plays an important role in epithelial cell adhesion. EPLIN has two isoforms: EPLINα and EPLINß. In this study, we investigated the role of EPLINß in osteoblasts using EPLINß-deficient (EPLINßGT/GT ) mice. The skeletal phenotype of EPLINßGT/GT mice is indistinguishable from the wildtype (WT), but bone properties and strength were significantly decreased compared with WT littermates. Histomorphological analysis revealed altered organization of bone spicules and osteoblast cell arrangement, and decreased alkaline phosphatase activity in EPLINßGT/GT mouse bones. Transmission electron microscopy revealed wider intercellular spaces between osteoblasts in EPLINßGT/GT mice, suggesting aberrant cell adhesion. In EPLINßGT/GT osteoblasts, α- and ß-catenins and F-actin were observed at the cell membrane, but OB-cadherin was localized at the perinuclear region, indicating that cadherin-catenin complexes were not formed. EPLINß knockdown in MC3T3-e1 osteoblast cells showed similar results as in calvaria cell cultures. Bone formation markers, such as RUNX2, Osterix, ALP, and Col1a1 mRNA were reduced in EPLINß knockdown cells, suggesting an important role for EPLINß in osteoblast formation. In conclusion, we propose that EPLINß is involved in the assembly of cadherin-catenin complexes in osteoblasts and affects bone formation.

9.
Cancer Lett ; 390: 58-66, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28093207

RESUMEN

The tumor suppressor gene p53 is frequently mutated in human cancer. p53 executes various functions, such as apoptosis induction and cell cycle arrest, by modulating transcriptional regulation. In this study, LIM domain and Actin-binding protein 1 (LIMA1) was identified as a target of the p53 family using a cDNA microarray. We also evaluated genome-wide occupancy of the p53 protein by performing chromatin immunoprecipitation-sequencing (ChIP-seq) and identified two p53 response elements in the LIMA1 gene. LIMA1 protein levels were increased by treatment with nutlin-3a, a small molecule that activates endogenous p53. In addition, LIMA1 expression was significantly downregulated in cancers compared with normal tissues. Knockdown of LIMA1 significantly enhanced cancer cell invasion and partially inhibited p53-induced suppression of cell invasion. Furthermore, low expression of LIMA1 in cancer patients correlated with decreased survival and poor prognosis. Thus, p53-induced LIMA1 inhibits cell invasion, and the downregulation of LIMA1 caused by p53 mutation results in decreased survival in cancer patients. Collectively, this study reveals the molecular mechanism of LIMA1 downregulation in various cancers and suggests that LIMA1 may be a novel prognostic predictor and a therapeutic target for cancer.


Asunto(s)
Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/fisiopatología , Proteína p53 Supresora de Tumor/metabolismo , Western Blotting , Línea Celular Tumoral , Humanos , Pronóstico , Reacción en Cadena en Tiempo Real de la Polimerasa
10.
Genesis ; 54(1): 19-28, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26572123

RESUMEN

Gene trapping has emerged as a valuable tool to create conditional alleles in various model organisms. Here we report the FLEx-based gene trap vector SAGFLEx that allows the generation of conditional mutations in zebrafish by gene-trap mutagenesis. The SAGFLEx gene-trap cassette comprises the rabbit ß-globin splice acceptor and the coding sequence of GFP, flanked by pairs of inversely oriented heterotypic target sites for the site-specific recombinases Cre and Flp. Insertion of the gene-trap cassette into endogenous genes can result in conditional mutations that are stably inverted by Cre and Flp, respectively. To test the functionality of this system we performed a pilot screen and analyzed the insertion of the gene-trap cassette into the lima1a gene locus. In this lima1a allele, GFP expression faithfully recapitulated the endogenous lima1a expression and resulted in a complete knockout of the gene in homozygosity. Application of either Cre or Flp was able to mediate the stable inversion of the gene trap cassette and showed the ability to conditionally rescue or reintroduce the gene inactivation. Combined with pharmacologically inducible site specific recombinases the SAGFLEx vector insertions will enable precise conditional knockout studies in a spatial- and temporal-controlled manner.


Asunto(s)
Alelos , Técnicas de Inactivación de Genes/métodos , Mutagénesis Insercional/métodos , Animales , Animales Modificados Genéticamente , Proteínas del Citoesqueleto/genética , ADN Nucleotidiltransferasas/química , ADN Nucleotidiltransferasas/metabolismo , Elementos Transponibles de ADN , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Mutación , Pez Cebra
11.
J Cell Sci ; 128(5): 1023-33, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25609703

RESUMEN

PINCH-1 is a LIM-only domain protein that forms a ternary complex with integrin-linked kinase (ILK) and parvin (to form the IPP complex) downstream of integrins. Here, we demonstrate that PINCH-1 (also known as Lims1) gene ablation in the epidermis of mice caused epidermal detachment from the basement membrane, epidermal hyperthickening and progressive hair loss. PINCH-1-deficient keratinocytes also displayed profound adhesion, spreading and migration defects in vitro that were substantially more severe than those of ILK-deficient keratinocytes indicating that PINCH-1 also exerts functions in an ILK-independent manner. By isolating the PINCH-1 interactome, the LIM-domain-containing and actin-binding protein epithelial protein lost in neoplasm (EPLIN, also known as LIMA1) was identified as a new PINCH-1-associated protein. EPLIN localized, in a PINCH-1-dependent manner, to integrin adhesion sites of keratinocytes in vivo and in vitro and its depletion severely attenuated keratinocyte spreading and migration on collagen and fibronectin without affecting PINCH-1 levels in focal adhesions. Given that the low PINCH-1 levels in ILK-deficient keratinocytes were sufficient to recruit EPLIN to integrin adhesions, our findings suggest that PINCH-1 regulates integrin-mediated adhesion of keratinocytes through the interactions with ILK as well as EPLIN.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Movimiento Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Integrinas/metabolismo , Queratinocitos/metabolismo , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células Cultivadas , Proteínas del Citoesqueleto/genética , Adhesiones Focales/genética , Integrinas/genética , Queratinocitos/citología , Proteínas con Dominio LIM/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA