Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PeerJ ; 12: e17502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952971

RESUMEN

Background: Desserts with vegetable ingredients are a constantly expanding global market due to the search for alternatives to cow's milk. Fermentation of these matrices by lactic acid bacteria can add greater functionality to the product, improving its nutritional, sensory, and food safety characteristics, as well as creating bioactive components with beneficial effects on health. Concern for health and well-being has aroused interest in byproducts of the industry that have functional properties for the body, such as mature coconut water, a normally discarded residue that is rich in nutrients. This study aimed to develop a probiotic gelatin based on pulp and water from mature coconuts and evaluate the physicochemical characteristics, viability of the Lacticaseibacillus rhamnosus LR32 strain in the medium, as well as the texture properties of the product. Methods: After collection and cleaning, the physicochemical characterization, mineral analysis, analysis of the total phenolic content and antioxidant activity of mature coconut water were carried out, as well as the centesimal composition of its pulp. Afterwards, the gelling was developed with the addition of modified corn starch, gelatin, sucrose, and probiotic culture, being subjected to acidity analysis, texture profile and cell count, on the first day and every 7 days during 21 days of storage, under refrigeration at 5 °C. An analysis of the centesimal composition was also carried out. Results: The main minerals in coconut water were potassium (1,932.57 mg L-1), sodium (19.57 mg L-1), magnesium (85.13 mg L-1) calcium (279.93 mg L-1) and phosphorus (11.17 mg L- 1), while the pulp had potassium (35.96 g kg-1), sodium (0.97 g kg-1), magnesium (2.18 g kg-1), 37 calcium (1.64 g kg-1), and phosphorus (3.32 g kg-1). The phenolic content of the water and pulp was 5.72 and 9.77 mg gallic acid equivalent (GAE) 100 g-1, respectively, and the antioxidant capacity was 1.67 and 0.98 39 g of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) mg-1, respectively. The coconut pulp had 2.81 g 100 g-1of protein, 1.11 g 100 g-1 of 40 ash, 53% moisture, and 5.81 g 100 g-1 of carbohydrates. The gelatin produced during the storage period presented firmness parameters ranging from 145.82 to 206.81 grams-force (gf), adhesiveness from 692.85 to 1,028.63 gf sec, cohesiveness from 0.604 to 0.473, elasticity from 0.901 to 0.881, gumminess from 86.27 to 97.87 gf, and chewiness from 77.72 to 91.98 gf. Regarding the viability of the probiotic microorganism, the dessert had 7.49 log CFU g-1 that remained viable during the 21-day storage, reaching 8.51 CFU g-1. Acidity ranged from 0.15 to 0.64 g of lactic acid 100 g-1. The centesimal composition of the product showed 4.88 g 100 g-1 of protein, 0.54 g 100 g-1 of ash, 85.21% moisture, and 5.37g 100 g-1 of carbohydrates. The development of the gelatin made it possible to obtain a differentiated product, contributing to diversification in the food sector, providing a viable alternative for maintaining consumer health and reducing costs compared to desserts already available on the market.


Asunto(s)
Cocos , Gelatina , Lacticaseibacillus rhamnosus , Probióticos , Cocos/química , Cocos/microbiología , Gelatina/química , Antioxidantes/farmacología , Antioxidantes/química , Fermentación
2.
PeerJ ; 11: e16094, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818327

RESUMEN

Background: The demand for lactic acid bacteria products, especially probiotics, has increased. Bacteria that increase polyphenol bioavailability and act as bio preservatives are sought after. This study aims to identify autochthonous lactic acid cultures from EMBRAPA that demonstrate ß-glucosidase activity and inhibitory effect on microbial sanitary indicators. Methods: Cell-free extracts were obtained by sonicating every 5 s for 40 min. The extracts were mixed with cellobiose and incubated at 50 °C. The reaction was stopped by immersing the tubes in boiling water. The GOD-POD reagent was added for spectrophotometer readings. Antimicrobial activity was tested against reference strains using the agar well diffusion method. Lactic cultures in MRS broth were added to 0.9 cm wells and incubated. The diameter of the inhibition zones was measured to determine the extension of inhibition. Results: Only L. rhamnosus EM1107 displayed extracellular ß-glucosidase activity, while all autochthonous strains except L. plantarum CNPC020 demonstrated intracellular activity for this enzyme. L. plantarum CNPC003 had the highest values. On the other hand, L. plantarum CNPC020, similarly to L. mucosae CNPC007, exhibited notable inhibition against sanitary indicators. These two strains significantly differed from the other five autochthonous cultures regarding S. enterica serovar Typhimurium ATCC 14028 inhibition (P < 0.05). However, they did not differ from at least one positive control in terms of inhibition against S. aureus ATCC 25923 and E. coli ATCC 25922 (P > 0.05). Therefore, it is advisable to consider these cultures separately for different technological purposes, such as phenolics metabolism or bio preservative activity. This will facilitate appropriate selection based on each specific property required for the intended product development.


Asunto(s)
Antiinfecciosos , Celulasas , Probióticos , Escherichia coli , Staphylococcus aureus , Probióticos/farmacología
3.
Arch Microbiol ; 204(12): 718, 2022 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-36401687

RESUMEN

Bacterial and fungal communities in the honey of sympatric populations of the bee species Apis mellifera and Melipona beecheii were profiled by amplicon sequencing of the 16S gene and the ITS of the ribosomal DNA. Results showed that the structure of the honey microbiota of these two bee species was very different from each other. Both the bacterial and fungal species in A. mellifera honey were more similar to those of A. mellifera honey reported for other parts of the world than to those in M. beecheii honey. Nevertheless, in both, the most abundant bacterial species belonged to the family Lactobacillaeae.


Asunto(s)
Miel , Micobioma , Abejas , Animales , Miel/análisis , México , Bacterias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA