Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Plant Methods ; 18(1): 27, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-35246172

RESUMEN

BACKGROUND: The nanostructure of plant cell walls is of significant biological and technological interest, but methods suited to imaging cell walls at the nanoscale while maintaining the natural water-saturated state are limited. Light microscopy allows imaging of wet cell walls but with spatial resolution limited to the micro-scale. Most super-resolution techniques require expensive hardware and/or special stains so are less applicable to some applications such as autofluorescence imaging of plant tissues. RESULTS: A protocol was developed for super-resolution imaging of xylem cell walls using super-resolution radial fluctuations (SRRF) microscopy combined with confocal fluorescence imaging (CLSM). We compared lignin autofluorescence imaging with acriflavin or rhodamine B staining. The SRRF technique allows imaging of wet or dry tissue with moderate improvement in resolution for autofluorescence and acriflavin staining, and a large improvement for rhodamine B staining, achieving sub 100 nm resolution based on comparison with measurements from electron microscopy. Rhodamine B staining, which represents a convolution of lignin staining and cell wall accessibility, provided remarkable new details of cell wall structural features including both circumferential and radial lamellae demonstrating nanoscale variations in lignification and cell wall porosity within secondary cell walls. CONCLUSIONS: SRRF microscopy can be combined with confocal fluorescence microscopy to provide nanoscale imaging of plant cell walls using conventional stains or autofluorescence in either the wet or dry state.

2.
J Biomech ; 47(2): 367-72, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24332267

RESUMEN

The effect of hydration on the mechanical properties of osteonal bone, in directions parallel and perpendicular to the bone axis, was studied on three length scales: (i) the mineralized fibril level (~100 nm), (ii) the lamellar level (~6 µm); and (iii) the osteon level (up to ~30 µm).We used a number of techniques, namely atomic force microscopy (AFM), nanoindentation and microindentation. The mechanical properties (stiffness, modulus and/or hardness) have been studied under dry and wet conditions. On all three length scales the mechanical properties under dry conditions were found to be higher by 30-50% compared to wet conditions. Also the mechanical anisotropy, represented by the ratio between the properties in directions parallel and perpendicular to the osteon axis (anisotropy ratio, designated here by AnR), surprisingly decreased somewhat upon hydration. AFM imaging of osteonal lamellae revealed a disappearance of the distinctive lamellar structure under wet conditions. Altogether, these results suggest that a change in mineralized fibril orientation takes place upon hydration.


Asunto(s)
Osteón/fisiología , Agua/fisiología , Animales , Anisotropía , Calcificación Fisiológica , Colágenos Fibrilares/metabolismo , Dureza , Caballos , Humanos , Masculino , Microscopía de Fuerza Atómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA