Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.881
Filtrar
1.
Environ Sci Pollut Res Int ; 31(23): 34249-34257, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38700765

RESUMEN

In view of the importance of environmental protection and resource recovery, recycling of spent lithium ion batteries (LIBs) is quite necessary. In the present study, lithium and copper are recycled to lithium carbonate and copper oxide from anode electrode material of the spent LIBs. The anode electrode material is firstly treated with hydrochloric acid to leach lithium (96.6%) and then with nitric acid to leach copper (97.6%). Furthermore, lithium and copper are recovered as lithium carbonate and copper oxide from their respective solutions using precipitation and calcinations. These synthesized products are further characterized using XRD, FE-SEM, and EDX analysis. Finally, a simple process is proposed for the recovery of lithium and copper from anode electrode material of spent LIBs.


Asunto(s)
Cobre , Electrodos , Litio , Litio/química , Cobre/química , Reciclaje , Suministros de Energía Eléctrica
2.
Artículo en Inglés | MEDLINE | ID: mdl-38777972

RESUMEN

Phosphogypsum is a kind of acidic industrial byproducts with high content of soluble phosphorus and fluorine pollutants, which requires to be pretreated when used as cementitious material to (partial) replace traditional Portland cement. In this study, five different pretreatment methods were proposed for comparative analysis to examine the pretreatment effect on the mechanical and environmental behaviors of ternary phosphogypsum (PG), ground granulated blast-furnace slag (GGBS), and lime (LM) mixed stabilizer. Series laboratory tests, including unconfined compressive strength (UCS), pH, phosphorus (P)/fluorine (F) leaching, scanning electron microscopy (SEM), and X-ray diffraction (XRD) tests, were conducted to comprehend the macro- and microscopic mechanism. The results show that it is essential to grind raw PG to finer powdered state, so that it reacts more easily and quickly with LM and water. In addition, it was noticed that the UCS and P/F leaching concentration are not only affected by the mixing proportion of the PG-GGBS-LM ternary stabilizer, but also by the curing duration. The UCS increases rapidly from initial curing period and then grows slowly after 28 days of curing. From the perspective of strength evolution, mixing proportion of PG: GGBS: LM = 15:80:5 is optimal, but considering the economy and environmental related issues, PG: GGBS: LM = 30:65:5 was regarded as a more attractive choice. The findings can provide a reference for the selection of pretreatment methods and design of PG-based cementitious materials suited for stabilized soils.

3.
Environ Sci Technol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38780413

RESUMEN

The long-term leaching of polyfluoroalkyl substances (PFAS) within the vadose zone of an AFFF application site for which the depth to groundwater is approximately 100 m was investigated by characterizing the vertical distribution of PFAS in a high spatial resolution. The great majority (99%) of PFAS mass resides in the upper 3 m of the vadose zone. The depths to which each PFAS migrated, quantified by moment analysis, is an inverse function of molar volume, demonstrating chromatographic separation. The PFAS were operationally categorized into three chain-length groups based on the three general patterns of retention observed. The longest-chain (>∼335 cm3/mol molar volume) PFAS remained within the uppermost section of the core, exhibiting minimal leaching. Conversely, the shortest-chain (<∼220 cm3/mol) PFAS accumulated at the bottom of the interval, which coincides with the onset of a calcic horizon. PFAS with intermediate-chain lengths were distributed along the length of the core, exhibiting differential magnitudes of leaching. The minimal or differential leaching observed for the longest- and intermediate-chain-length PFAS, respectively, demonstrates that retention processes significantly impacted migration. The accumulation of shorter-chain PFAS at the bottom of the core is hypothesized to result from limited deep infiltration and potential-enhanced retention associated with the calcic horizon.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38780842

RESUMEN

The Bayer red mud (RM) and phosphogypsum (PG) accumulation have caused significant environmental contamination. However, practical and effective resource utilization technologies are still lacking currently. This work aims to develop ferric sulfoaluminate cement (FSAC) employing low-cost materials including Bayer red mud, phosphogypsum, and other materials. This method effectively improves the utilization rate of Bayer red mud and phosphogypsum. Under the premise of ensuring the performance of FSAC, the utilization rate of solid waste can reach up to 48.56%. The effects of different red mud dosages on cement mineral formation, workability, and mechanical properties are investigated. Then, untreated phosphogypsum is adopted as a retarder for FSAC, and the hydration process, working properties, mechanical properties, types of hydration products, and morphology of FSAC are explored. The results suggest that the crystal transformation of Ye'elemite C 4 A 3 S ¯  is promoted with the increase of Bayer red mud content. Cubic crystal system Ye'elemite C 4 A 3 S ¯ - c  with higher hydration activity is generated, which increases the early strength of cement but greatly reduces the setting time, hindering the later strength growth. Untreated phosphogypsum can effectively delay the early hydration process of FSAC, prolong the setting time of cement, and increase the strength of FSAC in the later stage. When the dosage of Bayer red mud and phosphogypsum is 17.64% and 9.21%, respectively, with phosphogypsum dosage of 20%, the prepared FSAC has satisfactory mechanical properties, and the 3-day and 90-day compressive strengths are 34.6 MPa and 57.1 MPa, respectively. In addition, the study of heavy metal leaching indicates that the FSAC prepared by Bayer red mud, phosphogypsum, and other raw materials will generate no environment pollution, and the solidification of heavy metal elements in the cement slurry is superior.

5.
Waste Manag Res ; : 734242X241251398, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725233

RESUMEN

Thermal soil treatment is a well-established remediation method to remove organic contaminants from soils in waste management. The co-contamination with heavy metals raises the question if thermal soil treatment affects heavy metal mobility in soils. In this study, four contaminated soils and a reference sample were subjected to thermal treatment at 105°C, 300°C and 500°C for 7 day. Thermogravimetry and differential scanning calorimetry were used to understand the reactions, and resulting gases were identified by Fourier-transformed infrared spectroscopy. Treated and untreated samples were characterised by X-ray diffraction (XRD) and electron microprobe analysis and subjected to pH-dependent leaching tests, untreated samples additionally by X-ray-fluorescence (XRF) and inductively coupled plasma mass spectroscopy (ICP-MS). Leachates were analysed using ICP-MS and ion chromatography. Maximum available concentrations were used for hydrogeochemical modelling using LeachXS/Orchestra to predict leaching control mechanisms. Leaching experiments show that thermal treatment tends to decrease the mobility at alkaline pH of Pb, Zn, Cd, As and Cu, but to increase the mobility of Cr. In the acidic to neutral pH range, no clear trend is visible. Hydrogeochemical modelling suggests that adsorption processes play a key role in controlling leaching. It is suggested that the formation of minerals with a more negatively charged surface during thermal treatment are one reason why cations such as Pb2+, Zn2+, Cd2+ and Cu2+ are less mobile after treatment. Future research should focus on a more comprehensive mineralogical investigation of a larger number of samples, using higher resolution techniques such as nanoscale secondary ion mass spectrometry to identify surface phases formed during thermal treatment and/or leaching.

6.
ChemSusChem ; : e202400410, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727554

RESUMEN

Deep eutectic solvents (DESs) have garnered attention in Li-ion battery (LIB) recycling due to their declared eco-friendly attributes and adjustable metal dissolution selectivity, offering a promising avenue for recycling processes. However, DESs currently lack competitiveness compared to mineral acids, commonly used in industrial-scale LIB recycling. Current research primarily focuses on optimizing DES formulation and experimental conditions to maximize metal dissolution yields in standalone leaching experiments. While achieving yields comparable to traditional leaching systems is important, extensive DES reuse is vital for overall recycling feasibility. To achieve this, evaluating the metal dissolution mechanism can assist in estimating DES consumption rates and assessing process makeup stream costs. The selection of appropriate metal recovery and DES regeneration strategies is essential to enable subsequent reuse over multiple cycles. Finally, decomposition of DES components should be avoided throughout the designed recycling process, as by-products can impact leaching efficiency and compromise the safety and environmental friendliness of DES. In this review, these aspects are emphasized with the aim of directing research efforts away from simply pursuing the maximization of metal dissolution efficiency, towards a broader view focusing on the application of DES beyond the laboratory scale.

7.
Molecules ; 29(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731477

RESUMEN

Reppe carbonylation of acetylene is an atom-economic and non-petroleum approach to synthesize acrylic acid and acrylate esters, which are key intermediates in the textile, leather finishing, and polymer industries. In the present work, a noble metal-free Co@SiO2 catalyst was prepared and evaluated in the methoxycarbonylation reaction of acetylene. It was discovered that pretreatment of the catalyst by different reductants (i.e., C2H2, CO, H2, and syngas) greatly improved the catalytic activity, of which Co/SiO2-H2 demonstrated the best performance under conditions of 160 °C, 0.05 MPa C2H2, 4 MPa CO, and 1 h, affording a production rate of 4.38 gMA+MP gcat-1 h-1 for methyl acrylate (MA) and methyl propionate (MP) and 0.91 gDMS gcat-1 h-1 for dimethyl succinate (DMS), respectively. Transmission electron microscopy (TEM), X-ray diffraction (XRD), and diffuse reflectance infrared Fourier transform spectra of CO adsorption (CO-DRIFTS) measurements revealed that an H2 reduction decreased the size of the Co nanoparticles and promoted the formation of hollow architectures, leading to an increase in the metal surface area and CO adsorption on the catalyst. The hot filtration experiment confirmed that Co2(CO)8 was generated in situ during the reaction or at the pre-activation stage, which served as the genuine active species. Our work provides a facile and convenient approach to the in situ synthetization of Co2(CO)8 for a Reppe carbonylation reaction.

8.
Sci Rep ; 14(1): 10818, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734772

RESUMEN

This study focuses on the effect of an emerging source of waste, lithium iron phosphate (LFP) cathode materials, on the hydrometallurgical recycling of the currently dominant industrial battery waste that is rich in transition metals (Ni, Co, Mn, and Li). The effects of the dosage of LFP, initial acidity, and timing of LFP reductant addition were investigated in sulfuric acid (H2SO4) leaching (t = 3 h, T = 60 °C, ω = 300 rpm). The results showed that addition of LFP increased both transition metal extraction and acid consumption. Further, the redox potential was lowered due to the increased presence of Fe2+. An initial acidity of 2.0 mol/L H2SO4 with acid consumption of 1.3 kg H2SO4/kg black mass provided optimal conditions for achieving a high leaching yield (Co = 100%, Ni = 87.6%, Mn = 91.1%, Li = 100%) and creating process solutions (Co 8.8 g/L, Ni 13.8 g/L, Li 6.7 g/L, Mn 7.6 g/L, P 12.1 g/L) favorable for subsequent hydrometallurgical processing. Additionally, the overall efficiency of H2O2 decreased due to its decomposition by high concentrations of Fe2+ and Mn2+ when H2O2 was added after t = 2 h, leading to only a minor increase in final battery metals extraction levels.

9.
Heliyon ; 10(9): e30545, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38765077

RESUMEN

Chinese yam production is thriving in Aomori Prefecture, a cold and snowy region in Japan. Recently, there has been an increasing risk of nitrogen leaching in Chinese-yam fields, which consist of sandy soil, due to localized torrential rain. The relationships between the type of fertilizer used for Chinese-yam cultivation, the amount of nitrogen (N) leaching, and the timing of leaching remain unknown. Therefore, this study aimed to fill this knowledge gap by investigating the effects of different fertilizers (fast-acting and/or slow-release fertilizer) and irrigation practices (conventional and/or excessive irrigation) in order to mitigate the detrimental impact of nitrogen leaching on groundwater quality. An enhanced mathematical model and the spatiotemporal dynamics of inorganic nitrogen concentration in soil pore water were evaluated the negative impact of nitrogen leaching on the groundwater environment was evaluated. The results showed that the combined use of slow-release fertilizers could significantly reduce nitrate-nitrogen concentration in soil-water, especially during the harvest season. This study demonstrated that cultivating Chinese yam with a fertilizer application system that includes the use of slow-release fertilizer can diminish the negative impact of nitrogen leaching on the groundwater environment, contributing to our understanding of sustainable agricultural practices in regions facing similar environmental challenges. Therefore, our findings represent an important advancement providing new approaches to maintaining productivity while mitigating the adverse impacts on groundwater environments, as well as offering guidelines for agricultural practices in regions facing similar environmental challenges.

10.
Environ Sci Technol ; 58(19): 8336-8348, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38703133

RESUMEN

The growing environmental consequences caused by plastic pollution highlight the need for a better understanding of plastic polymer cycles and their associated additives. We present a novel, comprehensive top-down method using inflow-driven dynamic probabilistic material flow analysis (DPMFA) to map the plastic cycle in coastal countries. For the first time, we covered the progressive leaching of microplastics to the environment during the use phase of products and modeled the presence of 232 plastic additives. We applied this methodology to Norway and proposed initial release pathways to different environmental compartments. 758 kt of plastics distributed among 13 different polymers was introduced to the Norwegian economy in 2020, 4.4 Mt was present in in-use stocks, and 632 kt was wasted, of which 15.2 kt (2.4%) was released to the environment with a similar share of macro- and microplastics and 4.8 kt ended up in the ocean. Our study shows tire wear rubber as a highly pollutive microplastic source, while most macroplastics originated from consumer packaging with LDPE, PP, and PET as dominant polymers. Additionally, 75 kt of plastic additives was potentially released to the environment alongside these polymers. We emphasize that upstream measures, such as consumption reduction and changes in product design, would result in the most positive impact for limiting plastic pollution.


Asunto(s)
Plásticos , Noruega , Monitoreo del Ambiente , Microplásticos , Contaminantes Químicos del Agua
11.
Heliyon ; 10(9): e30407, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726136

RESUMEN

Recycled concrete aggregates (RCA) and reclaimed asphalt pavements (RAP) are two construction waste products that are commonly used in the road construction industry. Besides many advantages, pollutants leaching from RCA and RAP are highlighted as the most concerning environmental issue. This study investigated metals leaching characteristics from RCA and RAP due to the variations in key influential factors of pH, dissolved organic carbon (DOC), compaction and liquid to solid ratio (L/S). The leaching tests for RCA and RAP were carried out separately and additionally, the standard leaching test was conducted as the benchmark for leaching investigations. Study outcomes revealed that the combined influences of factors are variable for RCA and RAP, while influences are also variable for individual metals. L/S ratios considerably affect the release of metals from RCA under saturated conditions, facilitating high metal concentrations in the leachate. On the other hand, acidic solutions are more favourable for leaching of metals from RAP. The influence of DOC in solution was minimal on the metal leachability. Interestingly, the increased degree of compaction with a higher density of materials presented the highest negative influence on metal leachability, suggesting that the metal leachability can significantly reduce, in particular when the RCA and RAP are used for the sub-base layers of road structure with a higher degree of compaction. However, the use of these recycled materials under field conditions should be further studied as there is an increasing concern of metal leaching from RCA and RAP with respect to recreational and drinking water thresholds.

12.
Heliyon ; 10(10): e30810, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38778945

RESUMEN

In this work, the transformation of waste iron cans to gamma iron oxide (γ-Fe2O3) nanoparticles following acid leaching precipitation method along with their structural, surface chemistry, and magnetic properties was studied. Highly magnetic iron-based nanomaterials, maghemite with high saturation magnetization have been synthesized through an acid leaching technique by carefully tuning of pH and calcination temperature. The phase composition and crystal structure, surface morphology, surface chemistry, and surface composition of the synthesized γ-Fe2O3 nanoparticles were explored by X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDS). The XRD results confirm the cubic spinel structure having crystallite size 26.90-52.15 nm. The XPS study reveals the presence of Fe, O element and the binding energy of Fe (710.31 and 724.48 eV) confirms the formation of γ-Fe2O3 as well. By dynamic light scattering (DLS) method and zeta potential analyzer, the particle size distribution and stability of the systems were investigated. The magnetic behavior of the synthesized γ-Fe2O3 nanoparticles were studied using a vibrating sample magnetometer (VSM) which confirmed the ferrimagnetic particles with saturation magnetization of 54.94 emu/g. The resultant maghemite nanoparticles will be used in photocatalysts and humidity sensing. The net impact of the work stated here is based on the principle of converting waste into useful nanomaterials. Finally, it was concluded that our results can give insights into the design of the synthesis procedure from the precursor to the high-quality gamma iron oxide nanoparticles with high saturation magnetization for different potential applications which are inexpensive and very simple.

13.
J Environ Manage ; 360: 121141, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38781874

RESUMEN

Harvesting of plantation conifers on peatlands is carried out as part of restoration and forestry operations. In particular, in the UK and Ireland, conifer plantations on drained ombrotrophic blanket and raised bogs are increasingly being removed (by harvesting), along with blocking of drainage ditches to help raise water tables to reinitiate and restore bog vegetation and function. However, both tree harvesting and peatland restoration operations can have significant impacts on water quality at local and catchment scales. Previous research has suggested that leaching from leftover decomposing brash (tree tops and branches, including wood and needles) is the primary cause, while other work has suggested that release from rewetted peat also contributes to water quality changes. This research investigates the relative importance of peat rewetting, needles and branches on water quality using mesocosm experiments, to help elucidate the mechanisms behind water quality changes following restoration and harvesting operations. Peat and brash were collected from a drained afforested blanket bog in the Flow Country, Scotland. Short-term mesocosm experiments were conducted by incubating peat, peat + needles and peat + needles + branches with rainwater in quadruplicate. Brash from Sitka spruce (Picea sitchensis) and lodgepole pine (Pinus contorta) was investigated separately, while we also conducted experiments with fresh and aged (∼18 months) brash. Peat, needles and branches all significantly impacted water quality in the order of branches > needles > peat, while concentrations of DOC, PO43-, NH4+, K and Mn were most impacted. Water quality impacts of spruce brash appeared generally greater than pine, while fresh brash had larger effects than aged brash. In our mesocosms, relative contributions to water quality changes were estimated by elemental yields. On average, peat contributed 25.4% (range 0.6-72.3%), while needles and brash contributed 19.7% (range 3.0-37.0%) and 54.9% (range 22.1-70.2%) to yields, respectively. We further estimate that 267 kg C ha-1 (255.8 kg as DOC, 10.7 kg as DIC), 27.4 kg K ha-1, 5.8 kg P ha-1 (as PO43-) and 0.5 kg N ha-1 (as NH4+) could be released from brash, over nine days.

14.
Environ Technol ; : 1-13, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783406

RESUMEN

The manufacture of foundry metal parts generates various types of mineral wastes. Studies mentioned in the literature are mainly interested in the characterisation of foundry sands and their recycling way. The other wastes (finer than sand) are not dealt and are currently stored in landfills without any recycling solution. This paper aims to fill this gap and reports the complete characterisation of foundry wastes (FW) we carried out to find a way of recycling these materials. FWs were characterised by X-ray fluorescence, X-ray diffraction, scanning electron microscopy and thermogravimetry analyses (TGAs). Leaching tests complying with the NF EN 12457-2 standard were also carried out to evaluate the pollution degree of the different waste products. The results of this work that foundries do not produce just one type of waste, but several. Five types of waste were thus analysed and the results indicated in the first step that each sand was unique and in a second one that the two foundries present a certain similarity with regard to their materials. This complete characterisation study will provide a better understanding of their chemical composition and degree of pollution, so that they can be used more effectively in cement blends, which will be the subject of the rest of this study. The reuse of FW in concrete and mortars is possible and can reduce the environmental impact caused by their storage in landfills.

15.
Sci Total Environ ; : 173376, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38795991

RESUMEN

The increasing demand for mineral resources due to industrial development has led to significant tailings pollution during the mineral extraction process. In the southwestern region of China, a large amount of pyritic tailings containing pyrite cinder easily leaches heavy metals and other pollutants when exposed to precipitation, resulting in widespread soil contamination. Effective remediation methods are urgently needed to address this issue. This study utilized naturally occurring Plant-blanket formed by the symbiosis of moss and herbaceous plants on pyritic tailings as restoration material. Through leaching experiments and staining tracer techniques, the study investigated the ability of Plant-blanket to reduce the migration of heavy metals from pyrite cinder to soil under the influence of precipitation and its role in improving the soil environment. The results showed that within 12 h, the Plant-blanket could absorb water equivalent to 206.9 % of its own weight and had good water retention ability. It reduced the stained area ratio of soil horizontal and vertical profiles after precipitation leaching by a maximum of 76.08 % and 46.41 %, respectively, and improved the pH, cation exchange capacity (CEC), bulk density, and water content of soil at different depths. In addition, after being covered by Plant-blanket, the migration of Cd and Cu was reduced by a maximum of 44.35 % and 55.77 % respectively, and it increased the diversity and abundance of bacterial communities, promoting the recovery of soil microbial ecological functions. These findings indicate that Plant-blanket can regulate water and improve soil environment, and has certain control ability on the migration of Cd and Cu produced by pyritic tailings. Meanwhile, Plant-blanket plays an important role in improving the soil environment in mining areas and promoting ecosystem restoration, providing valuable reference for further exploration of ecological restoration of tailings.

16.
Small Methods ; : e2400207, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801030

RESUMEN

Although the nickel-molybdenum electrocatalyst exhibits excellent activity in the alkaline hydrogen evolution reaction (HER), its stability is poor mainly due to molybdenum leaching. This work reports that doping samarium into nickel-molybdenum electrocatalyst effectively suppresses molybdenum leaching by forming a stable phase consisting of Sm, Mo, and O elements. The resulting electrode displays no noticeable activity degradation during the long-term testing (> 850 h) under a current density of 500 mA cm-2 in 1 м KOH. This enhanced stability is ascribed to the formation of a robust phase within the HER potential windows in alkaline electrolytes, as evidenced by the Pourbaix diagram. Furthermore, the samarium-modified electrocatalyst exhibits increased activity, with the overpotential decreasing by ≈59 mV from 159 to 100 mV at 500 mA cm-2 compared to the unmodified counterpart. These remarkable properties stem from samarium doping, which not only facilitates the formation of a stable phase to inhibit molybdenum leaching but also adjusts the electronic properties of molybdenum to enhance water dissociation.

17.
Sci Total Environ ; : 173536, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38802006

RESUMEN

Soil organic matter (SOM) and clay minerals are important sinks for reactive heavy metals (HMs) and exogenous hydrogen ions (H+). Therefore, HMs are likely to be released into soil porewater under acid rainfall conditions due to the competitive adsorption of H+. However, negligible Lead, Zinc, and Cadmium (<6 ‰) in the Pb/Zn smelter soil were leached, and the effects of SOM and clay minerals on HMs leaching were unclear. Herein, the H+ consumption and HMs redistribution on SOM and clay minerals were quantitated by the multi-surface model and density functional theory calculations to reveal the roles of SOM and clay minerals in alleviating HMs' leaching. Clay minerals consumed 43.2 %-52.0 % of the exogenous H+, serving as the dominant sink for the exogenous H+ due to its high content and hindering H+ competitive adsorption on SOM. Protonation of the functional groups constituted >90 % of the total H+ captured by clay minerals. Meanwhile, some H+ also competed with HMs for adsorption sites on clay minerals due to its 0.497-fold to 1.54-fold higher binding energies than HMs, resulting in the release of HMs. On the contrary, SOM served as an accommodator for taking over the released HMs from clay minerals. The HMs complexation on the low-affinity sites (R-L-) of SOM was responsible for the recapture of HMs. In Ca-enriched soil, the released HMs were also recaptured by SOM via ion exchange on the R-L-Ca+ and the high-affinity sites (R-H-Ca+) sites due to the 30.8 %-178 % higher binding energies of HMs on these sites than those of Ca. As a result, >63.4 % of the released HMs from clay minerals were transferred to the SOM. Thus, the synergy of SOM and clay minerals in alleviating the leaching of HMs in Pb/Zn smelter soils cannot be ignored in risk assessment and soil remediation.

18.
Water Res ; 257: 121716, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759611

RESUMEN

The importance of biofilm in tire derived aggregates (TDA) based underground systems has been investigated in this paper, to assess the utilization of tire waste as a cost-effective and sustainable resource for stormwater treatment. The primary objective of this study is to look into the role of biofilms in preventing metal leaching from a TDA based stormwater treatment system and to estimate the life span of a TDA based stormwater treatment system. TDA subjected to different influents to promote or limit the growth of biofilms were analyzed for their leaching and adsorption potential for fifteen different metals through 72 flushes, which is representative of roughly 9 years of TDA exposure to storm events in the upper Midwest USA. Biofilm growth on a manufacturing byproduct (wire exposed-TDA) was higher than on the traditional TDA. The presence of biofilm on TDA had a minor impact on orthophosphate adsorption as observed in a previous study conducted by the authors. However, metals such as iron, zinc and copper, which were previously a concern, had substantially lower leaching into the stored runoff. In addition, the orthophosphate removal from runoff by TDA with a biofilm through 72 flushes indicates that TDA based underground systems can have orthophosphate removal life span beyond 8-9 years. Thus, TDA with biofilms in an underground storage/infiltration chamber has the potential to establish itself as a sustainable, cost-effective, and long life-span alternative for stormwater remediation of orthophosphate pollution without leaching of metals.


Asunto(s)
Biopelículas , Contaminantes Químicos del Agua , Lluvia , Adsorción , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Fosfatos , Metales/química
19.
Waste Manag ; 184: 10-19, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788498

RESUMEN

Solid waste challenges in both the tungsten and photovoltaic industries present significant barriers to achieving carbon neutrality. This study introduces an innovative strategy for the efficient extraction of valuable metals from hazardous tungsten leaching residue (W-residue) by leveraging photovoltaic silicon kerf waste (SKW) as a silicothermic reducing agent. W-residue contains 26.2% valuable metal oxides (WO3, CoO, Nb2O5, and Ta2O5) and other refractory oxides (SiO2, TiO2, etc.), while micron-sized SKW contains 91.9% Si with a surface oxide layer. The impact of SKW addition on the silicothermic reduction process for valuable metal oxides in W-residue was investigated. Incorporating SKW and Na2CO3 flux enables valuable metal oxides from W-residue to be effectively reduced and enriched as a valuable alloy phase, with unreduced refractory oxides forming a harmless slag phase during the Na2O-SiO2-TiO2 slag refining process. This process achieved an overall recovery yield of valuable metals of 91.7%, with individual recovery yields of W, Co, and Nb exceeding 90% with the addition of 8 wt.% SKW. This innovative approach not only achieves high-value recovery from W-residue and utilization of SKW but also minimizes environmental impact through an efficient and eco-friendly recycling pathway. The strategy contributes significantly to the establishment of a resource-efficient circular economy, wherein the recovered high-value alloy phase return to the tungsten supply chain, and the harmless slag phase become raw materials for microcrystalline glass production.

20.
Sci Total Environ ; 935: 173344, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38772480

RESUMEN

The widespread presence of microplastics (MP) in water represents an environmental problem, not only because of the harmful effects of their size and potential to vector other pollutants, but also because of the release of additives, degradation products and residues contained in the polymer matrix. The latter includes metallic catalysts, which are often overlooked. This study focuses on the photo-aging of polypropylene (PP) and the resulting structural changes that promote its fragmentation microplastics (PP-MPs) and release of metals, as well as the resulting toxicity of leachates and their potential to inhibit biodegradation of organics in water. The pristine, photo-aged and waste PP are ground under the same regime to assess susceptibility to fragmentation. Obtained PP-MPs are submitted to leaching tests; the release of organics and metals is monitored by Total Organic Carbon (TOC) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analysis, respectively. The leachates are assessed for their toxicity against Vibrio fischeri, Daphnia magna and Pseudokirchneriella subcapitata and their influence on the biodegradability of the glucose solution. Photo-aging induced changes in the crystallinity and morphology of the PP and manifested in the abundance of smaller MPs, as revealed by the particle size distribution. In the case of pristine PP, all particles were > 100 µm in size, while aged PP yielded significant mass fraction of MPs <100 µm. The toxicity of leachates from aged PP-MPs is higher than that of pristine and exhibits a positive correlation with portion of metals released. The biodegradability of glucose is strongly inhibited by PP-MPs leachates containing a mixture of metals in trace concentrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...