Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Ecol Evol ; 14(7): e70075, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39041019

RESUMEN

Conspecific adults impose strong negative density-dependent effects on seed survival nearby parent trees, however, the underlying mechanisms are diversified and remain unclear. In this study, we presented consistent evidence that parent-scented forest floor masked seed odor, reduced cache recovery rate by scatter-hoarding animals, and then increased seed dispersal far away from mother trees. Our results showed that seed odors of Korean pine Pinus koraiensis match well with the volatile profile of their forest floor. Moreover, scatter-hoarding animals selectively transported P. koraiensis seeds toward the areas where seed odor was more contrasting against the background substrate, possibly due to the fact that accumulation of conspecific volatile compounds in caches hindered seed detection by scatter-hoarding animals. Our study provides insight into the role of leaf litter in directing seed dispersal process, representing a novel mechanism by which P. koraiensis increases selection for seed dispersal far away from the parent tree.

2.
FEMS Microbiol Ecol ; 100(8)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39020097

RESUMEN

Leaf litter microbes collectively degrade plant polysaccharides, influencing land-atmosphere carbon exchange. An open question is how substrate complexity-defined as the structure of the saccharide and the amount of external processing by extracellular enzymes-influences species interactions. We tested the hypothesis that monosaccharides (i.e. xylose) promote negative interactions through resource competition, and polysaccharides (i.e. xylan) promote neutral or positive interactions through resource partitioning or synergism among extracellular enzymes. We assembled a three-species community of leaf litter-degrading bacteria isolated from a grassland site in Southern California. In the polysaccharide xylan, pairs of species stably coexisted and grew equally in coculture and in monoculture. Conversely, in the monosaccharide xylose, competitive exclusion and negative interactions prevailed. These pairwise dynamics remained consistent in a three-species community: all three species coexisted in xylan, while only two species coexisted in xylose, with one species capable of using peptone. A mathematical model showed that in xylose these dynamics could be explained by resource competition. Instead, the model could not predict the coexistence patterns in xylan, suggesting other interactions exist during biopolymer degradation. Overall, our study shows that substrate complexity influences species interactions and patterns of coexistence in a synthetic microbial community of leaf litter degraders.


Asunto(s)
Bacterias , Interacciones Microbianas , Hojas de la Planta , Poaceae , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Bacterias/metabolismo , Ecosistema , Especificidad de la Especie , Xilanos/metabolismo , Xilosa/metabolismo , Modelos Teóricos , Actinobacteria/crecimiento & desarrollo , Actinobacteria/metabolismo , Bacteroidetes/crecimiento & desarrollo , Bacteroidetes/metabolismo , Proteobacteria/crecimiento & desarrollo , Proteobacteria/metabolismo , Interacciones Microbianas/fisiología , Poaceae/microbiología
3.
Environ Pollut ; 357: 124418, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38908673

RESUMEN

Polystyrene nanoparticles (PS NPs) released from plastic products have been demonstrated to pose a threat to leaf litter decomposition in streams. Given the multitrophic systems of species interactions, the effects of PS NPs through different exposure routes on ecosystem functioning remain unclear. Especially dietary exposure, a frequently overlooked pathway leading to toxicity, deserves more attention. A microcosm experiment was conducted in this study to assess the effects of waterborne and dietary exposure to PS NPs on the litter-based food chain involving leaves, microbial decomposers, and detritivores (river snails). Compared to waterborne contamination, dietary contamination resulted in lower microbial enzyme activities and a significantly higher decrease in the lipid content of leaves. For river snails, their antioxidant activity was significantly increased by 20.21%-69.93%, and their leaf consumption rate was significantly reduced by 16.60% through the dietary route due to the lower lipid content of leaves. Besides, the significantly decreased nutritional quality of river snails would negatively influence their palatability to predators. The findings of this study indicate that dietary exposure to PS NPs significantly impacts microbial and detritivore activities, thus affecting their functions in the detritus food chain as well as nutrient cycling.


Asunto(s)
Cadena Alimentaria , Nanopartículas , Hojas de la Planta , Ríos , Caracoles , Contaminantes Químicos del Agua , Hojas de la Planta/química , Animales , Ríos/química , Contaminantes Químicos del Agua/análisis , Caracoles/efectos de los fármacos , Caracoles/fisiología , Poliestirenos , Plásticos , Ecosistema
4.
Ambio ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871928

RESUMEN

Foliar fungi on urban trees are important for tree health, biodiversity and ecosystem functioning. Yet, we lack insights into how urbanization influences foliar fungal communities. We created detailed maps of Stockholm region's climate and air quality and characterized foliar fungi from mature oaks (Quercus robur) across climatic, air quality and local habitat gradients. Fungal richness was higher in locations with high growing season relative humidity, and fungal community composition was structured by growing season maximum temperature, NO2 concentration and leaf litter cover. The relative abundance of mycoparasites and endophytes increased with temperature. The relative abundance of pathogens was lowest with high concentrations of NO2 and particulate matter (PM2.5), while saprotrophs increased with leaf litter cover. Our findings show that urbanization influences foliar fungi, providing insights for developing management guidelines to promote tree health, prevent disease outbreaks and maintain biodiversity within urban landscapes.

5.
Arch Microbiol ; 206(6): 264, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38760519

RESUMEN

Fungi that inhabit fire-prone forests have to be adapted to harsh conditions and fungi affiliated to Ascomycota recovered from foliar litter samples were used for bioprospecting of molecules such as enzymes. Agni's fungi isolated from leaf litter, whose spores are capable of tolerating 110 oC were screened for thermostable lipases. One of the isolates, Leptosphaerulina trifolii A SMR-2011 exhibited high positive lipase activity than other isolates while screening through agar plate assay using Tween 20 in the medium. Maximum lipase activity (173.2 U/mg) of L. trifolii was observed at six days of inoculation and decreased thereafter. Among different oils used, the maximum lipase activity was attained by soybean oil (940.1 U/mg) followed by sunflower oil (917.1 U/mg), and then by mustard oil (884.8 U/mg), showing its specificity towards unsaturated fatty acids. Among the various organic nitrogen sources tested, soybean meal showed maximum lipase activity (985.4 U/mg). The partially purified enzyme was active over a wide range of pH from 8 to 12 with a pH optimum of 11.0 (728.1 U/mg) and a temperature range of 60-80 oC with an optimal temperature of 70 oC (779.1 U/mg). The results showed that lipase produced by L. trifolii is alkali stable and retained 85% of its activity at pH 11.0. This enzyme also showed high thermal stability retaining more than 50% of activity when incubated at 60 oC to 90 °C for 2 h. The ions Ca2+ and Mn2+ induced the lipase activity, while Cu2+ and Zn2+ ions lowered the activity compared to control. These results suggests that the leaf litter fungus L. trifolii serves as a potential source for the production of alkali-tolerant and thermostable lipase.


Asunto(s)
Ascomicetos , Estabilidad de Enzimas , Proteínas Fúngicas , Lipasa , Hojas de la Planta , Lipasa/metabolismo , Lipasa/genética , Hojas de la Planta/microbiología , Ascomicetos/enzimología , Ascomicetos/genética , Ascomicetos/metabolismo , Concentración de Iones de Hidrógeno , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Temperatura , Especificidad por Sustrato , Calor , Proteínas Bacterianas
6.
Microb Pathog ; 192: 106690, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759935

RESUMEN

The soil comprising organic matter, nutrients, serve as substrate for plant growth and various organisms. In areas where there are large plantations, there is a huge leaf litter fall. The leaf litter upon decomposition releases nutrients and helps in nutrient recycling, for which the soil engineers such as earthworms, ants and termites are important key players. In this context, the present study was conducted to assess the characteristics of the vermicast obtained by vermicomposting neem leaf litter in terms of microbial flora, plant growth promoting properties and antagonistic activities of the vermicast against phytopathogens. Vermicomposting of neem leaf litter was done using two epigeic earthworm species Eisenia fetida and Eudrilus eugeniae. The vermicast exhibited antagonistic potential against plant pathogens. Out of the four vermiwash infusions studied, the 75 % formulation reduced the disease incidence against mealybug by 82 % in the tree Neolamarkia cadamba. The result of the study suggests that vermicast made from neem leaf litter may be a potent combination of a biofertilizer and a pesticide.


Asunto(s)
Azadirachta , Fertilizantes , Oligoquetos , Plaguicidas , Hojas de la Planta , Azadirachta/química , Animales , Oligoquetos/microbiología , Hojas de la Planta/microbiología , Plaguicidas/farmacología , Compostaje , Microbiología del Suelo , Suelo/química , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
7.
FEMS Microbiol Ecol ; 100(6)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38684466

RESUMEN

Cynanchum auriculatum Royle ex Wight (CA) is experiencing challenges with continuous cropping obstacle (CCO) due to soil-borne fungal pathogens. The leaf litter from CA is regularly incorporated into the soil after root harvesting, but the impact of this practice on pathogen outbreaks remains uncertain. In this study, a fungal strain D1, identified as Fusarium solani, was isolated and confirmed as a potential factor in CCO. Both leave extract (LE) and root extract (RE) were found to inhibit seed germination and the activities of plant defense-related enzymes. The combinations of extracts and D1 exacerbated these negative effects. Beyond promoting the proliferation of D1 in soil, the extracts also enhanced the hypha weight, spore number, and spore germination rate of D1. Compared to RE, LE exhibited a greater degree of promotion in the activities of pathogenesis-related enzymes in D1. Additionally, caffeic acid and ferulic acid were identified as potential active compounds. LE, particularly in combination with D1, induced a shift in the composition of fungal communities rather than bacterial communities. These findings indicate that the water extract of leaf litter stimulated the growth and proliferation of fungal strain D1, thereby augmenting its pathogenicity toward CA and ultimately contributing to the CCO process.


Asunto(s)
Cynanchum , Fusarium , Enfermedades de las Plantas , Hojas de la Planta , Raíces de Plantas , Microbiología del Suelo , Fusarium/genética , Fusarium/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Esporas Fúngicas/crecimiento & desarrollo , Extractos Vegetales/farmacología
8.
Heliyon ; 10(5): e27228, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495134

RESUMEN

Leaf litter decomposition is a major component of nutrient cycling which depends on the quality and quantity of the leaf material. Ash trees (Fraxinus excelsior, decay time âˆ¼ 0.4 years) are declining throughout Europe due to a fungal pathogen (Hymenoscyphus fraxineus), which is likely to alter biochemical cycling across the continent. The ecological impact of losing species with fast decomposing leaves is not well quantified. In this study we examine how decomposition of three leaf species with varying decomposition rates including ash, sycamore (Acer pseudoplatanus, decay time âˆ¼ 1.4 years), and beech (Fagus sylvatica, decay time âˆ¼ 6.8 years) differ in habitats with and without ash as the dominant overstorey species. Ten plots (40 m × 40 m) were set up in five locations representing ash dominated and non-ash dominated habitats. In each plot mesh bags (30 cm × 30 cm, 0.5 mm aperture) with a single leaf species (5 g) were used to include (large holes added) and exclude macrofauna invertebrates (with a focus on decomposer organisms such as earthworms, millipedes, and woodlice). The mesh bags were installed in October 2020 and retrieved without replacement at exponential intervals after 6, 12, 24 and 48 weeks. Total leaf mass loss was highest in the ash dominated habitat (ash dominated: 88.5%, non-ash dominated: 66.5%) where macrofauna were the main contributor (macrofauna: 96%, microorganisms/mesofauna: 4%). The difference between macrofauna vs microorganisms and mesofauna was less pronounced in the non-ash dominated habitat (macrofauna: 68%, microorganisms/mesofauna: 31%). Our results suggest that if ash dominated habitats are replaced by species such as sycamore, beech, and oak, the role of macrofauna decomposers will be reduced and leaf litter decomposition rates will decrease by 25%. These results provide important insights for future ash dieback management decisions.

9.
Sci Total Environ ; 926: 171935, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38527547

RESUMEN

Urban streams are affected by a complex combination of stressors, which modify physical habitat structure, flow regime, water quality, biological community composition, and ecosystem processes and services, thereby altering ecosystem structure and functioning. Rehabilitation projects have been undertaken in several countries to rehabilitate urban streams. However, stream rehabilitation is still rarely reported for neotropical regions. In addition, most studies focus on structural aspects, such as water quality, sediment control, and flood events, without considering ecosystem function indicators. Here, we evaluated the structure and functioning of three 15-y old rehabilitated urban stream sites in comparison with three stream sites in the best available ecological condition (reference), three sites with moderate habitat alteration, and three severely degraded sites. Compared to degraded streams, rehabilitated streams had higher habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores, and lower biochemical oxygen demand, primary production, sediment deposition, and siltation. However, rehabilitated streams had higher primary production than moderate and reference streams, and lower canopy cover, habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores than reference streams. These results indicate that rehabilitated streams have better structural and functional condition than degraded streams, but do not strongly differ from moderately altered streams, nor have they reached reference stream condition. Nonetheless, we conclude that rehabilitation is effective in removing streams from a degraded state by improving ecosystem structure and functioning. Furthermore, the combined use of functional and structural indicators facilitated an integrative assessment of stream ecological condition and distinguished stream conditions beyond those based on water quality indicators.


Asunto(s)
Ecosistema , Invertebrados , Animales , Calidad del Agua , Biota , Monitoreo del Ambiente
10.
Environ Entomol ; 53(2): 268-276, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38376061

RESUMEN

Ticks and tick-borne diseases are of increasing concern across the United States, particularly in the Northeast. Ixodes scapularis Say (Ixodida: Ixodidae) remains the primary vector for the Lyme disease spirochete, Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner). Prior studies established that I. scapularis can be found in greatest abundance in the 1-m forested ecotone surrounding the lawn edge in residential backyards. Our study was conducted on 42 properties in Guilford, CT, and sought to expand upon this premise by determining which key habitat features were associated with increased densities of host-seeking I. scapularis nymphs. We quantified nymphal abundances in 19 different habitat types that were posited to influence densities. We determined that nymphal I. scapularis densities were greatest in forested areas closest to lawn edges with leaf litter or understory vegetation present, as well as short lawns adjacent to woodland edges. Additionally, we determined that there were no significant declines in nymphal I. scapularis density where leaf litter was removed, lawns were left unmowed, or woodchip barriers were installed. Bird feeders and woodpiles were not associated with increased nymphal I. scapularis densities. However, areas adjacent to stone walls did have nearly 3 times the density of I. scapularis nymphs present compared with habitats without stone walls. The culmination of the results from this study can be utilized to create more targeted acaricide applications rather than broadcast spraying, as well as increase homeowner awareness for areas with heightened risk for exposure to nymphal I. scapularis, which are deemed the most epidemiologically important species and stage for pathogen transfer to humans.


Asunto(s)
Borrelia burgdorferi , Ixodes , Ixodidae , Enfermedad de Lyme , Humanos , Estados Unidos , Animales , Connecticut , Ninfa
11.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38373845

RESUMEN

Community assembly is influenced by environmental niche processes as well as stochastic processes that can be spatially dependent (e.g. dispersal limitation) or independent (e.g. priority effects). Here, we sampled senesced tree leaves as unit habitats to investigate fungal community assembly at two spatial scales: (i) small neighborhoods of overlapping leaves from differing tree species and (ii) forest stands of differing ecosystem types. Among forest stands, ecosystem type explained the most variation in community composition. Among adjacent leaves within stands, variability in fungal composition was surprisingly high. Leaf type was more important in stands with high soil fertility and dominated by differing tree mycorrhizal types (sugar maple vs. basswood or red oak), whereas distance decay was more important in oak-dominated forest stands with low soil fertility. Abundance of functional groups was explained by environmental factors, but predictors of taxonomic composition within differing functional groups were highly variable. These results suggest that fungal community assembly processes are clearest for functional group abundances and large spatial scales. Understanding fungal community assembly at smaller spatial scales will benefit from further study focusing on differences in drivers for different ecosystems and functional groups, as well as the importance of spatially independent factors such as priority effects.


Asunto(s)
Ecosistema , Micobioma , Microbiología del Suelo , Bosques , Árboles/microbiología , Suelo , Hongos/genética
12.
Microb Ecol ; 87(1): 32, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228918

RESUMEN

Alders are nitrogen (N)-fixing riparian trees that promote leaf litter decomposition in streams through their high-nutrient leaf litter inputs. While alders are widespread across Europe, their populations are at risk due to infection by the oomycete Phytophthora ×alni, which causes alder dieback. Moreover, alder death opens a space for the establishment of an aggressive N-fixing invasive species, the black locust (Robinia pseudoacacia). Shifts from riparian vegetation containing healthy to infected alder and, eventually, alder loss and replacement with black locust may alter the key process of leaf litter decomposition and associated microbial decomposer assemblages. We examined this question in a microcosm experiment comparing three types of leaf litter mixtures: one representing an original riparian forest composed of healthy alder (Alnus lusitanica), ash (Fraxinus angustifolia), and poplar (Populus nigra); one with the same species composition where alder had been infected by P. ×alni; and one where alder had been replaced with black locust. The experiment lasted six weeks, and every two weeks, microbially driven decomposition, fungal biomass, reproduction, and assemblage structure were measured. Decomposition was highest in mixtures with infected alder and lowest in mixtures with black locust, reflecting differences in leaf nutrient concentrations. Mixtures with alder showed distinct fungal assemblages and higher sporulation rates than mixtures with black locust. Our results indicate that alder loss and its replacement with black locust may alter key stream ecosystem processes and assemblages, with important changes already occurring during alder infection. This highlights the importance of maintaining heathy riparian forests to preserve proper stream ecosystem functioning.


Asunto(s)
Alnus , Ecosistema , Árboles , Ríos/microbiología , Biomasa , Nitrógeno , Hojas de la Planta/microbiología , Alnus/microbiología
13.
Ecol Lett ; 27(1): e14330, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37866881

RESUMEN

The associations of arbuscular mycorrhizal (AM) or ectomycorrhiza (EcM) fungi with plants have sequentially evolved and significantly contributed to enhancing plant nutrition. Nonetheless, how evolutionary and ecological forces drive nutrient acquisition strategies of AM and EcM woody plants remains poorly understood. Our global analysis of woody species revealed that, over divergence time, AM woody plants evolved faster nitrogen mineralization rates without changes in nitrogen resorption. However, EcM woody plants exhibited an increase in nitrogen mineralization but a decrease in nitrogen resorption, indicating a shift towards a more inorganic nutrient economy. Despite this alteration, when evaluating present-day woody species, AM woody plants still display faster nitrogen mineralization and lower nitrogen resorption than EcM woody plants. This inorganic nutrient economy allows AM woody plants to thrive in warm environments with a faster litter decomposition rate. Our findings indicate that the global pattern of nutrient acquisition strategies in mycorrhizal plants is shaped by the interplay between phylogeny and climate.


Asunto(s)
Micorrizas , Raíces de Plantas/microbiología , Nitrógeno , Plantas , Nutrientes , Suelo , Simbiosis
14.
Environ Res ; 243: 117752, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38008202

RESUMEN

Plant leaf litter has a major role in the structure and function of soil ecosystems as it is associated with nutrient release and cycling. The present study is aimed to understand how well the decomposing leaf litter kept soil organic carbon and nitrogen levels stable during an incubation experiment that was carried out in a lab setting under controlled conditions and the results were compared to those from a natural plantation. In natural site soil samples, Anacardium. occidentale showed a higher value of organic carbon at surface (1.14%) and subsurface (0.93%) and Azadirachta. indica exhibited a higher value of total nitrogen at surface (0.28%) and subsurface sample (0.14%). In the incubation experiment, Acacia auriculiformis had the highest organic carbon content initially (5.26%), whereas A. occidentale had the highest nitrogen level on 30th day (0.67%). The overall carbon-nitrogen ratio showed a varied tendency, which may be due to dynamic changes in the complex decomposition cycle. The higher rate of mass loss and decay was observed in A. indica leaf litter, the range of the decay constant is 1.26-2.22. The morphological and chemical changes of soil sample and the vermicast were substantained using scanning electron microscopy (SEM) and Fourier transmission infrared spectroscopy (FT-IR).


Asunto(s)
Azadirachta , Suelo , Suelo/química , Árboles , Ecosistema , Carbono/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Nitrógeno/análisis , Hojas de la Planta
15.
Sci Total Environ ; 912: 168836, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38016568

RESUMEN

River ecosystems are heavily impacted by multiple stressors, where effects can cascade downstream of point sources. However, a spatial approach to assess the effects of multiple stressors is missing. We assessed the local and downstream effects on litter decomposition, and associated invertebrate communities of two stressors: flow reduction and artificial light at night (ALAN). We used an 18-flow-through mesocosm system consisting of two tributaries, where we applied the stressors, merging in a downstream section. We assessed the changes in decomposition rate and invertebrate community structure in leaf bags. We found no effect of ALAN or its interaction with flow reduction on the litter decomposition or the invertebrate community in the tributaries. Flow reduction alone led to a 14.8 % reduction in decomposition rate in the tributaries. We recorded no effect of flow reduction on the macroinvertebrates community composition in the litter bags. We also observed no effects of the spatial arrangement of the stressors on the litter decomposition and macroinvertebrate community structure downstream. Overall, our results suggest the impact of stressors on litter decomposition and macroinvertebrate communities remained local in our experiment. Our work thus calls for further studies to identify the mechanisms and the conditions under which spatial effects dominate over local processes.


Asunto(s)
Ecosistema , Contaminación Lumínica , Animales , Invertebrados , Ríos/química , Hojas de la Planta/química
16.
Sci Total Environ ; 912: 168926, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38029985

RESUMEN

Arable land use and the associated application of agrochemicals can affect local freshwater communities with consequences for the entire ecosystem. For instance, the structure and function of leaf-associated microbial communities can be affected by pesticides, such as fungicides. Additionally, the leaf species on which these microbial communities grow reflects another environmental filter for community structure. These factors and their interaction may jointly modify leaves' nutritional quality for higher trophic levels. To test this assumption, we studied the structure of leaf-associated microbial communities with distinct exposure histories (pristine [P] vs vineyard run off [V]) colonising two leaf species (black alder, European beech, and a mixture thereof). By offering these differently colonised leaves as food to males and females of the leaf-shredding amphipod Gammarus fossarum (Crustacea; Amphipoda) we assessed for potential bottom-up effects. The growth rate, feeding rate, faeces production and neutral lipid fatty acid profile of the amphipod served as response variable in a 2 × 3 × 2-factorial test design over 21d. A clear separation of community history (P vs V), leaf species and an interaction between the two factors was observed for the leaf-associated aquatic hyphomycete (i.e., fungal) community. Sensitive fungal species were reduced by up to 70 % in the V- compared to P-community. Gammarus' growth rate, feeding rate and faeces production were affected by the factor leaf species. Growth was negatively affected when Gammarus were fed with beech leaves only, whereas the impact of alder and the mixture of both leaf species was sex-specific. Overall, this study highlights that leaf species identity had a more substantial impact on gammarids relative to the microbial community itself. Furthermore, the sex-specificity of the observed effects (excluding fatty acid profile, which was only measured for male) questions the procedure of earlier studies, that is using either only one sex or not being able to differentiate between males and females. However, these results need additional verification to support a reliable extrapolation.


Asunto(s)
Anfípodos , Fungicidas Industriales , Microbiota , Contaminantes Químicos del Agua , Animales , Anfípodos/fisiología , Ecosistema , Ácidos Grasos , Agua Dulce , Fungicidas Industriales/toxicidad , Hojas de la Planta , Contaminantes Químicos del Agua/toxicidad
17.
Plants (Basel) ; 12(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38140411

RESUMEN

Biochemical composition was studied in the leaf litter of alien woody species included in the 100 most aggressive invasive species of Europe: Ailanthus altissima, Quercus rubra, Acer negundo, Robinia pseudoacacia, and Elaeagnus angustifolia. Using GC-MS, we detected 187 metabolites in the leaf litter, which are phenolic acids and their derivatives, carbohydrates and their derivatives, polyphenolic compounds, cyclic esters, glycosides, and amino acids and their derivatives. Species-specific metabolites were identified for each species. The main allelochemicals in the leaf litter extract of Q. rubra are determined mainly by the relative abundance of phenolic and fatty acids and their esters, whereas those in the leaf litter extract of R. pseudoacacia are determined by carbohydrates and their derivatives and ester of fatty acid, and those in the leaf litter extract of A. altissima are determined by glycosides. Profiles of macro- and microelements were characterized. It was found that aqueous extracts of leaf litter from all the invasive woody plants under study have a negative effect on the seed germination and initial growth of Vicia cracca and Avena strigosa used for the reclamation of disturbed urban and industrial lands. At the same time, V. cracca is potentially more sensitive.

18.
MycoKeys ; 100: 95-121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025587

RESUMEN

The genus Ciliochorella is a group of pestalotioid fungi, which typically occurs in subtropical and tropical areas. Species from the Ciliochorella genus play important roles in the decomposition of litter. In this study, we introduce two new species (Ciliochorellachinensissp. nov. and C.savannicasp. nov.) that were found on leaf litter collected from savanna-like vegetation in hot dry valleys of southwestern China. Phylogenetic analyses of combined LSU, ITS and tub2 sequence datasets indicated that C.chinensis and C.savannica respectively form a distinct clade within the Ciliochorella genus. The comparison of the morphological characteristics indicated that the two new species are well differentiated within this genus species. Analysis of the evolutionary history suggests that Ciliochorella originated from the Eurasian continent during the Paleogene (38 Mya). Further, we find that both new species can produce cellulase and laccase, playing a decomposer role.

19.
Chemosphere ; 344: 140417, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37827468

RESUMEN

Threats of soil quality deterioration and metal pollution have inflicted several parts of the world, apart from the need for surplus crop production. The investigation used biochar prepared from waste biomasses such as wheat and rice straw, kitchen waste, leaf litter, Lantana camara, orange peel, and walnut shell to improve soil quality, reduce As pollution, and enhance plant growth. Biochars were amended at doses of 0%, 2.5%, 5%, and 7.5% and conditioned for 3 months. At a 7.5% dose, the maximum improvements in cation exchange capacity (a 62% increase), anion exchange capacity (a two-fold increase), bulk density (a 31% decrease), porosity (a 32% increase), water holding capacity (an 86% increase), soil respiration (a 32% increase), total carbon (a two-and-a-half-fold increase), total nitrogen (an eleven-fold increase), total phosphorus (3 times rise), total potassium (a two-and-a-half-fold increase), mobile As (a 38% decrease), leachable As (a 53% decrease), and bio-available As (a 56% decrease) were observed. Further, pot experiments revealed augmented biomass growth (61% and 177%), increased length (71% and 209%), and decreased As accumulation (56% and 55%) in the above-ground parts of Bengal gram and coriander plants, respectively. Therefore, the application of biochar was found to enhance the physico-chemical properties of soil, reduce As contamination levels, and improve crop growth. The study recommends using waste biomasses to prepare eco-friendly biochars, which could contribute to advancing sustainable agriculture and the circular economy.


Asunto(s)
Arsénico , Oryza , Contaminantes del Suelo , Suelo/química , Mejoramiento de la Calidad , Carbón Orgánico/química
20.
Zookeys ; 1177: 147-165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692327

RESUMEN

The diversity and biology of the moss and leaf litter-inhabiting flea beetles are still poorly known. In this study, three new species of Benedictus are described from China: Benedictusfuanensis Ruan & Konstantinov, sp. nov., Benedictusquadrimaculatus Ruan & Konstantinov, sp. nov., and Benedictuswangi Ruan & Konstantinov, sp. nov. Comments on their biology are given. Benedictusquadrimaculatus has a highly unusual morphological feature not reported before in flea beetles: black spots on the abdominal tergites that are visible through the elytra. Traditional and modified ethanol traps were tested and proven useful for collecting leaf litter- and moss-inhabiting flea beetles. Based on our tests, eight traps could collect one specimen each day in the testing sites in Fujian Province; three traps could collect one specimen each day in the testing sites in Guangdong Province.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA