Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.374
Filtrar
1.
Plant Dis ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320378

RESUMEN

Root-lesion nematodes, Pratylenchus spp. are reported to cause serious yield losses in various crops including soybean. A new root-lesion nematode species was recently detected in a soybean field in North Dakota (ND) and named Pratylenchus dakotaensis. Nematode detection and differentiation from other species are critical in management strategies. Thus, a recombinase polymerase amplification (RPA) assay was developed for rapid detection of this nematode from field soils under isothermal conditions. New primers and probes were designed from ITS-rDNA region of the nematode genome and tested for both specificity and sensitivity. The RPA assay was able to detect DNA from a single adult nematode at 39.5°C in 20 minutes using both Basic and Exo kits. The specificity of the primers was initially confirmed through in silico analyses, followed by laboratory tests. The assay successfully amplified DNA from the target species, while no amplification occurred for other Pratylenchus spp. and non-Pratylenchus control species. Sensitivity testing with real-time RPA revealed its ability to detect DNA in dilutions equivalent to 1/32 of a single nematode from DNA extracted from inoculated sterile soil. To further validate the assay, it was tested with 19 field soil samples collected in ND. This assay amplified soil DNA extracts of all P. dakotaensis-infested field samples confirmed through conventional PCR. It did not amplify DNA from 13 other field soils infested with other Pratylenchus spp. This is the first report of RPA develoment for detecting a root-lesion nematode species. The RPA assay developed can help in the rapid detection of this nematode species for effective nematode management.

2.
Foods ; 13(18)2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39335859

RESUMEN

Our study investigated how different levels of antioxidants and contrasting proportions of native legumes in the diet affect lamb meat quality. Twenty-four male Texel lambs were randomly assigned to three groups: two groups on a natural pasture in southern Brazil (Pampa Biome), each at a different proportion of legumes: Low-legume (LL, 4.37%) and High-legume (HL, 14.01%); the other group was stall-fed (Control) to achieve the same growth rates as the grazing groups. Cold carcass yield from the Control lambs was higher than HL. The meat from pasture-fed animals had a higher deposition of muscle α-tocopherol and lower lipid oxidation (TBARS values) after 9 days of storage. LL lambs had higher subcutaneous fat thickness, which promoted better sensory quality of the meat, as assessed by a trained panel. Pasture-based diets enhanced odd- and branched-chain fatty acids (OBCFAs), trans vaccenic acid, and total conjugated linoleic acids (CLAs), while decreasing elaidic acid. Despite the lower ∆9-desaturase activity, the higher proportion of Desmodium incanum (condensed tannin-rich native legume) in the HL diet did not impact meat nutritional quality. Finishing lambs on the Pampa Biome grasslands is an option for improving the oxidative stability and beneficial fatty acid content of lamb meat, which improves product quality and human consumer health.

3.
Plant Dis ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254851

RESUMEN

Bacterial blight caused by Pseudomonas syringae pv. glycines (Psg) is a widespread foliar disease. Although four Resistance to Pseudomonas syringae pv. glycinea (Rpg) 1 ~ 4 (Rpg1~4) genes that have been observed to segregate in a Mendelian pattern have been reported to confer resistance to Psg in soybean, the genetic basis of quantitative resistance to bacterial blight in soybean remains unclear. In the present study, the Psg resistance of two soybean association panels consisting of 573 and 213 lines, respectively, were phenotyped in multiple environments in 2014 - 2016. Genome-wide association study (GWAS) were performed using 2 models FarmCPU and BLINK to identify Psg resistance loci. A total of 40 soybean varieties with high level of Psg resistance were identified, and 14 quantitative trait loci (QTLs) were detected on 12 soybean chromosomes. These QTLs were identified for the first time. The majority of the QTLs were only detected in one or the other association panels, while qRPG-18-1 was detected in both association panels for at least one growing season. A total of 46 candidate Psg resistance genes were identified from the qRpg_13_1, qRPG-15-1, and qRPG-18-1 loci based on gene function annotation. In addition, we found the genomic region covering rpg1-b and rpg1-r harbored the synteny with a genomic region on chromosome 15, and identified 16 nucleotide binding site - leucine-rich repeat (NBS-LRR) genes as the candidate Psg resistance genes from the synteny blocks. This study provides new information for dissecting the genetic control of Psg resistance in soybean.

4.
Eur J Nutr ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327283

RESUMEN

PURPOSE: This study aimed to investigate the association between total consumption of fruits (F), vegetables (V), and legumes (L) and their subgroups and hypertension risk in adults aged ≥ 40 years in the Cardiovascular Disease Association Study (CAVAS). METHODS: We analyzed data from 10,325 normotensive participants using cumulative average dietary consumption from repeated food frequency questionnaires during the follow-up. Incidence rate ratios (IRRs) were estimated with a modified Poisson regression model and a robust error estimator to evaluate the association between hypertension risk and total consumption of fruits, vegetables, and legumes, as well as their 17 subgroups. RESULTS: During an average follow-up of 5.20 years, 2159 cases of hypertension were recorded. Total consumption of FVL, FV, fruits, vegetables, and legumes showed overall inverse trends with hypertension risk. Considering multiplicity, fruit consumption was inversely associated with hypertension risk in both men (IRR 0.64; 95% CI 0.52-0.79) and women (IRR 0.76; 95% CI 0.64-0.91). Vegetables were inversely associated with hypertension in women (IRR 0.67; 95% CI 0.53-0.86). Most subgroups showed inverse associations, especially in men with overweight/obesity. However, frequent pickled green leafy vegetable consumption was positively associated with hypertension risk in postmenopausal women but not in premenopausal women (Pinteraction = 0.0004). CONCLUSION: Consumption of FVL, including their subgroups, generally shows inverse associations with hypertension risk. However, caution is advised for recommending pickled vegetables, particularly for postmenopausal women, due to the potential adverse effects of sodium. The benefits of these foods in preventing hypertension are especially pronounced in men with overweight/obesity.

5.
J Food Sci ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251487

RESUMEN

Unlocking the potential of legumes through short-term germination offers an innovative approach to improving the functionality of the resultant flour. This review examines the multifaceted benefits of short-term germinated legume flour, emphasizing the enzymatic activities that breakdown complex legume compounds into simpler forms and reduce anti-nutritional factors. This process improves digestibility, nutrient bioavailability, and health-promoting properties. Furthermore, short-term germination enhances the techno-functional properties of legume flours without compromising their quality, avoiding excessive starch and protein degradation associated with prolonged germination. This review also explores the applications of short-term germinated legume flours in developing nutritious and healthy food products tailored to diverse dietary needs. Subsequent integration of these short-term germinated flours into food products provides a route for the development of cost-effective, nutritious, and sustainable options that can address malnutrition and enhance overall well-being.

6.
J Chem Ecol ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39231864

RESUMEN

Legumes are notorious for coevolutionary arms races where chemical defenses are employed to ward off herbivores-particularly insect seed predators. Locoweeds are legumes containing the toxic alkaloid swainsonine which can poison livestock, but its role as a deterrent for insects is unknown. Swainsonine is produced by the fungal endophyte Alternaria section Undifilum, and the chemical composition of the toxin has been well characterized. Despite this knowledge, the ecological roles and evolutionary drivers of swainsonine toxins in locoweeds remain uncertain. Here, we quantify swainsonine concentrations and herbivory levels in the hyper-diverse locoweed Astragalus lentiginosus to evaluate its role as an evolved chemical defense. We found that A. lentiginosus shows considerable variation in swainsonine concentrations according to variety, in particular showing presence/absence variation at both population and local geographic scales. Surprisingly, herbivory levels from presumed generalist insects emerging from fruits showed no correlation with swainsonine concentrations. Conversely, seed and fruit herbivory levels linked to specialist Acanthoscelides seed beetles increased with concentrations of swainsonine-suggesting a possible coevolutionary arms race. Our results highlight that variation in endophyte-produced toxin systems may not follow classical expectations for geographic variation and ecological roles of plant chemicals. We discuss the implications of these results on plant-endophytic toxin systems and coevolutionary dynamics more broadly, highlighting a considerable need for more research in these systems.

7.
Food Chem X ; 23: 101780, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39286044

RESUMEN

This study explored how genotype, seed color, and seed weight affect major biochemical components in 95 faba bean accessions. Genotype variation significantly affected convicine, total tannin (TTC), total saponin, and total phenol (TPC) contents. Seed color and weight variations affected several parameters, with their interaction significantly affecting convicine, total vicine-convicine content (TVC), TTC, total polyunsaturated fatty acid (PUFA), and antioxidant activities. Genotype interaction with seed weight and seed color also significantly affected convicine, TVC, TPC, oleic acid, linoleic acid, PUFA, and ferric-reducing antioxidant power. Vicine, dietary fiber, total fat, crude protein, palmitic acid, and stearic acid contents remain unaffected by these factors. Multivariate analysis showed that brown and small beans had distinctive characteristics. Overall, this study demonstrated the connection between biochemical components, genotype, and seed traits in faba beans. Therefore, these factors should be considered when choosing faba bean genotypes for use in the food industry and breeding programs.

8.
Data Brief ; 56: 110842, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39257684

RESUMEN

The presented set of data brings results of the experimental production of biogas and methane from silages of alternative substrates consisting of maize and three leguminous species with a potential to make the production of biogas more friendly to the environment because the cultivation of legumes is generally considered to be more environment friendly than the cultivation of maize: white sweet clover (Melilotus albus Medik.), fodder vetch (Vicia villosa Roth.) and white lupin (Lupinus albus L.). Obtained data allow to compare the composition of experimental substrates and their important parameters (VS, DM, NDF, ADF, CF, starch, cellulose, hemicellulose, CP, lipids and ADL) as well as the yield of biogas, methane and methane in biogas from silage produced as a monosubstrate from the biomass of maize shreddings on the one side with silages produced from the mixture of biomass from maize and diverse legumes on the other side. This set of data can contribute to awareness about possibilities for reducing environmental risks connected with the cultivation of maize in growers of energy crops and operators of biogas plants. The reason is that a considerable number of farmers do not use new technologies of growing biomass for the production of biogas as they cannot quantify the potential impact on biogas yield and hence on the profitability of biogas plant operation. The measured values demonstrate that silages made from the mixed culture were reaching at least the same production of biogas and its quality as the monocultural maize silage.

9.
Plant J ; 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39264984

RESUMEN

Lupinus mutabilis is an under-domesticated legume species from the Andean region of South America. It belongs to the New World lupins clade, which groups several lupin species displaying large genetic variation and adaptability to highly different environments. L. mutabilis is attracting interest as a potential multipurpose crop to diversify the European supply of plant proteins, increase agricultural biodiversity, and fulfill bio-based applications. This study reports the first high-quality L. mutabilis genome assembly, which is also the first sequenced assembly of a New World lupin species. Through comparative genomics and phylogenetics, the evolution of L. mutabilis within legumes and lupins is described, highlighting both genomic similarities and patterns specific to L. mutabilis, potentially linked to environmental adaptations. Furthermore, the assembly was used to study the genetics underlying important traits for the establishment of L. mutabilis as a novel crop, including protein and quinolizidine alkaloids contents in seeds, genomic patterns of classic resistance genes, and genomic properties of L. mutabilis mycorrhiza-related genes. These analyses pointed out copy number variation, differential genomic gene contexts, and gene family expansion through tandem duplications as likely important drivers of the genomic diversity observed for these traits between L. mutabilis and other lupins and legumes. Overall, the L. mutabilis genome assembly will be a valuable resource to conduct genetic research and enable genomic-based breeding approaches to turn L. mutabilis into a multipurpose legume crop.

10.
Arch Microbiol ; 206(9): 377, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141120

RESUMEN

The high content and quality of protein in Andean legumes make them valuable for producing protein hydrolysates using proteases from bacteria isolated from extreme environments. This study aimed to carry out a single-step purification of a haloprotease from Micrococcus sp. PC7 isolated from Peru salterns. In addition, characterize and apply the enzyme for the production of bioactive protein hydrolysates from underutilized Andean legumes. The PC7 protease was fully purified using only tangential flow filtration (TFF) and exhibited maximum activity at pH 7.5 and 40 °C. It was characterized as a serine protease with an estimated molecular weight of 130 kDa. PC7 activity was enhanced by Cu2+ (1.7-fold) and remained active in the presence of most surfactants and acetonitrile. Furthermore, it stayed completely active up to 6% NaCl and kept Ì´ 60% of its activity up to 8%. The protease maintained over 50% of its activity at 25 °C and 40 °C and over 70% at pH from 6 to 10 for up to 24 h. The determined Km and Vmax were 0.1098 mg mL-1 and 273.7 U mL-1, respectively. PC7 protease hydrolyzed 43%, 22% and 11% of the Lupinus mutabilis, Phaseolus lunatus and Erythrina edulis protein concentrates, respectively. Likewise, the hydrolysates from Lupinus mutabilis and Erythrina edulis presented the maximum antioxidant and antihypertensive activities, respectively. Our results demonstrated the feasibility of a simple purification step for the PC7 protease and its potential to be applied in industrial and biotechnological processes. Bioactive protein hydrolysates produced from Andean legumes may lead to the development of nutraceuticals and functional foods contributing to address some United Nations Sustainable Development Goals (SDGs).


Asunto(s)
Fabaceae , Micrococcus , Hidrolisados de Proteína , Micrococcus/metabolismo , Micrococcus/enzimología , Concentración de Iones de Hidrógeno , Hidrolisados de Proteína/química , Hidrolisados de Proteína/metabolismo , Peso Molecular , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/aislamiento & purificación , Perú , Temperatura , Serina Proteasas/metabolismo , Serina Proteasas/aislamiento & purificación , Serina Proteasas/química , Estabilidad de Enzimas , Cloruro de Sodio/metabolismo , Cloruro de Sodio/farmacología , Hidrólisis , Cinética
11.
J Nutr Biochem ; 133: 109718, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39103105

RESUMEN

Nonsoy legumes offer many health benefits, including improved arterial function, reduced cholesterol levels, and better management of cardiovascular diseases and type 2 diabetes. This systematic review and meta-analysis aim to clarify the inconclusive findings from randomized controlled trials (RCTs) by comprehensively evaluating the effects of nonsoy legumes consumption on serum levels of inflammatory biomarkers and Adiponectin. The search encompassed databases up to January 2024, including PubMed, EMBASE, MEDLINE, Scopus, Web of Science, and Cochrane CENTRAL to retrieve all RCTs examining the effects of nonsoy legumes on inflammatory biomarkers or Adiponectin. The effect sizes quantified as mean differences (MD) and standard deviations (SD) of outcomes, and an overall effect estimate was derived using a random-effects model. RCTs examining serum levels of C-reactive protein (CRP), Interleukin-6 (IL-6), Tumor Necrosis Factor-alpha (TNF-α), Interleukin-1ß (IL-1ß), and Adiponectin were included in the final meta-analysis. Results revealed that consumption of nonsoy legumes increased Adiponectin serum levels (P=.0017) and reduced IL-1ß serum levels (P<.0001). However, it may not significantly affect CRP (P=.2951), IL-6 (P=.2286), and TNF-α (P=.6661) levels. Subgroup analyses showed that nonsoy legumes consumption significantly decreased TNF-α serum levels in studies involving healthy participants. Additionally, sensitivity analysis using the leave-one-out method suggested a potential significant reduction in serum levels of IL-6. This study indicates that consuming nonsoy legumes can increase levels of Adiponectin and decrease serum levels of IL-1ß in overweight or obese adults.


Asunto(s)
Adiponectina , Biomarcadores , Fabaceae , Obesidad , Sobrepeso , Adulto , Humanos , Adiponectina/sangre , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Inflamación/sangre , Inflamación/dietoterapia , Inflamación/inmunología , Interleucina-1beta/sangre , Interleucina-1beta/inmunología , Interleucina-6/sangre , Interleucina-6/inmunología , Obesidad/sangre , Obesidad/dietoterapia , Obesidad/inmunología , Sobrepeso/sangre , Sobrepeso/dietoterapia , Sobrepeso/inmunología , Ensayos Clínicos Controlados Aleatorios como Asunto , Factor de Necrosis Tumoral alfa/sangre , Factor de Necrosis Tumoral alfa/inmunología
12.
BMC Plant Biol ; 24(1): 749, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39103780

RESUMEN

BACKGROUND: Climate change induces perturbation in the global water cycle, profoundly impacting water availability for agriculture and therefore global food security. Water stress encompasses both drought (i.e. water scarcity) that causes the drying of soil and subsequent plant desiccation, and flooding, which results in excess soil water and hypoxia for plant roots. Terrestrial plants have evolved diverse mechanisms to cope with soil water stress, with the root system serving as the first line of defense. The responses of roots to water stress can involve both structural and physiological changes, and their plasticity is a vital feature of these adaptations. Genetic methodologies have been extensively employed to identify numerous genetic loci linked to water stress-responsive root traits. This knowledge is immensely important for developing crops with optimal root systems that enhance yield and guarantee food security under water stress conditions. RESULTS: This review focused on the latest insights into modifications in the root system architecture and anatomical features of legume roots in response to drought and flooding stresses. Special attention was given to recent breakthroughs in understanding the genetic underpinnings of legume root development under water stress. The review also described various root phenotyping techniques and examples of their applications in different legume species. Finally, the prevailing challenges and prospective research avenues in this dynamic field as well as the potential for using root system architecture as a breeding target are discussed. CONCLUSIONS: This review integrated the latest knowledge of the genetic components governing the adaptability of legume roots to water stress, providing a reference for using root traits as the new crop breeding targets.


Asunto(s)
Mapeo Cromosómico , Deshidratación , Fabaceae , Fenotipo , Raíces de Plantas , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Fabaceae/genética , Fabaceae/fisiología , Adaptación Fisiológica/genética , Sequías , Inundaciones , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/fisiología
13.
Plant J ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115024

RESUMEN

Pea is a grain legume crop with a high potential to accelerate the food transition due to its high seed protein content and relatively well-balanced amino acid composition. The critical role of external sulfur (S) supply in determining seed yield and seed quality in pea makes it essential to understand the impact of whole plant S management on the trade-off between these two traits. Here, we investigated the physiological relevance of vacuolar sulfate remobilization by targeting PsSULTR4, the only pea sulfate transporter showing substantial similarity to the vacuolar sulfate exporter AtSULTR4;1. Five mutations in PsSULTR4 were identified by TILLING (Targeting Induced Local Lesions IN Genomes), two of which, a loss of function (W78*) and a missense (E568K), significantly decreased seed yield under S deprivation. We demonstrate that PsSULTR4 triggers S distribution from source tissues, especially lower leaves, to reproductive organs to maintain seed yield under S deficiency. Under sufficient S supply, sultr4 seeds display lower levels of the S-rich storage protein PA1 at maturity. They also overaccumulate sulfate in the endosperm at the onset of seed filling. These findings uncover a role of PsSULTR4 in the remobilization of vacuolar sulfate during embryo development, allowing the efficient synthesis of S-rich proteins. Our study uncovers that PsSULTR4 functions (i) in source tissues to remobilize stored vacuolar sulfate for seed production under low S availability and (ii) in developing seeds well supplied with S to fine-tune sulfate remobilization from the endosperm as a critical control point for storage activities in the embryo.

14.
Data Brief ; 55: 110644, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100783

RESUMEN

It is expected that CO2 concentration will increase in the air, thereby stimulating the photosynthesis process and, hence, plant biomass production. In the case of legumes, increased biomass due to higher CO2 concentration can stimulate atmospheric nitrogen (N2) fixation in the nodules. However, N2 fixation is inhibited by external N supply. Thus, biomass production and N2 fixation were analysed in two legumes (Pisum sativum L. and Vicia faba L.) grown at two levels of CO2 and three N levels. P. sativum reduces fixation with high soil N (facultative), while V. faba maintains high fixation regardless of soil N levels (obligate). The N2 fixation and plant and nodule biomass of the two species were evaluated in a pot experiment under controlled conditions using growth chambers with artificial CO2 supply and N addition. The proportion of N derived from the air (%Ndfa) present in the plants' biomass was calculated from the natural abundance of 15N and the N concentration of plant tissues using nonlegumes reference plants. Additionally, N content data are presented for both species growing at two levels of air CO2. The data may be useful for plant physiologists, especially those working on biological N2 fixation with non-model legumes at elevated CO2.

15.
Plants (Basel) ; 13(15)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39124243

RESUMEN

The objective of this study was to evaluate the chemical composition of two chickpea varieties, 'Costa 2004' and 'El Patrón', and to characterize their proteins to determine their technological potential for the food industry. For this purpose, chickpea samples of both varieties from the 2019 harvest region of Guanajuato, Mexico, were obtained and chemically characterized to determine the protein fractions using electrophoretic and amino acid profiling. The chickpea variety 'Costa 2004' contained 3% less protein and 7% less dietary fiber content than the variety 'El Patrón'; whereas, the carbohydrate content of 'Costa 2004' was 4% greater. Additionally, the chickpeas demonstrated an antioxidant capacity ranging from 319 to 387 µMET/g and total phenol levels exceeding 500 mg/g. Among the protein fractions, globulins represented the highest proportion in both varieties of chickpea, at approximately 8.73 g/100 g ('Costa 2004') and 10.42 g/100 g ('El Patrón'), followed by albumin, at approximately 1.24 g/100 g and 1.47 g/100 g, respectively. The chickpea proteins ranged in molecular weight between 100 and 25 kDa, with particularly strong signals in the albumin and globulin bands. Regarding the amino acid profile, histidine was predominant in both varieties. In conclusion, both varieties of chickpea have high nutritional value and broad potential for technological use in the food industry.

16.
Nutrients ; 16(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39125264

RESUMEN

Primary liver cancer is globally on the rise, partially due to poor diets and sedentary lifestyles. Shifting to more plant-based diets may lower the risk. We aimed to estimate the effect of replacing total red meat, unprocessed red meat and processed red meat with legumes on primary liver cancer in a free-living population. We analyzed data from 126,744 UK Biobank participants who completed ≥ two 24 h diet recalls. Baseline characteristics were collected from the initial assessment visit. Information on liver cancer diagnoses was collected via external linkage to inpatient hospital episodes or central cancer registries. Cox proportional hazards regression models were used to estimate the substitution of 15 g/day of legumes with 15 g/day of total red meat, unprocessed red meat or processed red meat on liver cancer risk, using the leave-one-out food substitution model. During a median follow-up time of 11.1 years, 173 participants developed liver cancer. In the fully adjusted models, no association was observed when substituting 15 g/day of legumes with total red meat (HR: 1.02 (95% CI 0.96-1.08)), unprocessed red meat (HR: 1.00 (95% CI 0.94-1.06)) or processed red meat (HR: 1.09 (95% CI 0.99-1.21)). Overall, little evidence of an association between replacing red meat with legumes and liver cancer was observed. Further research in other study populations with longer follow-up time is warranted.


Asunto(s)
Fabaceae , Neoplasias Hepáticas , Carne Roja , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios de Cohortes , Dieta/efectos adversos , Dieta/estadística & datos numéricos , Dieta Vegetariana , Neoplasias Hepáticas/epidemiología , Neoplasias Hepáticas/etiología , Modelos de Riesgos Proporcionales , Carne Roja/efectos adversos , Factores de Riesgo , Biobanco del Reino Unido , Reino Unido/epidemiología
17.
BMC Biol ; 22(1): 165, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113037

RESUMEN

BACKGROUND: White clover (Trifolium repens) is a globally important perennial forage legume. This species also serves as an eco-evolutionary model system for studying within-species chemical defense variation; it features a well-studied polymorphism for cyanogenesis (HCN release following tissue damage), with higher frequencies of cyanogenic plants favored in warmer locations worldwide. Using a newly generated haplotype-resolved genome and two other long-read assemblies, we tested the hypothesis that copy number variants (CNVs) at cyanogenesis genes play a role in the ability of white clover to rapidly adapt to local environments. We also examined questions on subgenome evolution in this recently evolved allotetraploid species and on chromosomal rearrangements in the broader IRLC legume clade. RESULTS: Integration of PacBio HiFi, Omni-C, Illumina, and linkage map data yielded a completely de novo genome assembly for white clover (created without a priori sequence assignment to subgenomes). We find that white clover has undergone extensive transposon diversification since its origin but otherwise shows highly conserved genome organization and composition with its diploid progenitors. Unlike some other clover species, its chromosomal structure is conserved with other IRLC legumes. We further find extensive evidence of CNVs at the major cyanogenesis loci; these contribute to quantitative variation in the cyanogenic phenotype and to local adaptation across wild North American populations. CONCLUSIONS: This work provides a case study documenting the role of CNVs in local adaptation in a plant species, and it highlights the value of pan-genome data for identifying contributions of structural variants to adaptation in nature.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genoma de Planta , Trifolium , Adaptación Fisiológica/genética , Trifolium/genética
18.
Front Plant Sci ; 15: 1388866, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148611

RESUMEN

In developing countries, orphan legumes stand at the forefront in the struggle against climate change. Their high nutrient value is crucial in malnutrition and chronic diseases prevention. However, as the 'orphan' definition suggests, their seed systems are still underestimated and seed production is scanty. Seed priming is an effective, sustainable strategy to boost seed quality in orphan legumes for which up-to-date guidelines are required to guarantee reliable and reproducible results. How far are we along this path? What do we expect from seed priming? This brings to other relevant questions. What is the socio-economic relevance of orphan legumes in the Mediterranean Basin? How to potentiate a broader cultivation in specific regions? The case study of the BENEFIT-Med (Boosting technologies of orphan legumes towards resilient farming systems) project, developed by multidisciplinary research networks, envisions a roadmap for producing new knowledge and innovative technologies to improve seed productivity through priming, with the long-term objective of promoting sustainability and food security for/in the climate-sensitive regions. This review highlights the existing drawbacks that must be overcome before orphan legumes could reach the state of 'climate-ready crops'. Only by the integration of knowledge in seed biology, technology and agronomy, the barrier existing between research bench and local agricultural fields may be overcome, generating high-impact technical innovations for orphan legumes. We intend to provide a powerful message to encourage future research in line with the United Nations Agenda 2030 for Sustainable Development.

19.
Nutrients ; 16(16)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39203907

RESUMEN

Dietary isoflavones have been associated with a lower risk of gastric cancer (GC), but the evidence for this association is still limited. We investigated the association between isoflavone intake and GC risk using data from a case-control study including 230 incident, histologically confirmed GC cases and 547 controls with acute, non-neoplastic conditions. Dietary information was collected through a validated food frequency questionnaire (FFQ) and isoflavone intake was estimated using ad hoc databases. We estimated the odds ratios (OR) and the corresponding 95% confidence intervals (CI) of GC using logistic regression models, including terms for total energy intake and other major confounders. The OR for the highest versus the lowest tertile of intake was 0.65 (95%CI = 0.44-0.97, p for trend = 0.04) for daidzein, 0.75 (95%CI = 0.54-1.11, p for trend = 0.15) for genistein, and 0.66 (95%CI = 0.45-0.99, p for trend = 0.05) for total isoflavones. Stratified analyses by sex, age, education, and smoking showed no heterogeneity. These findings indicate a favorable effect of dietary isoflavones on GC.


Asunto(s)
Dieta , Isoflavonas , Neoplasias Gástricas , Humanos , Isoflavonas/administración & dosificación , Neoplasias Gástricas/prevención & control , Neoplasias Gástricas/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano , Dieta/estadística & datos numéricos , Oportunidad Relativa , Adulto , Factores de Riesgo , Genisteína/administración & dosificación , Modelos Logísticos
20.
Sci Total Environ ; 951: 175554, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39151610

RESUMEN

Legume-rhizobial symbiosis plays an important role in agriculture and ecological restoration. This process occurs within special new structures, called nodules, formed mainly on legume roots. Soil bacteria, commonly known as rhizobia, fix atmospheric dinitrogen, converting it into a form that can be assimilated by plants. Various environmental factors, including a low temperature, have an impact on the symbiotic efficiency. Nevertheless, the effect of temperature on the phenotypic and symbiotic traits of rhizobia has not been determined in detail to date. Therefore, in this study, the influence of temperature on different cell surface and symbiotic properties of rhizobia was estimated. In total, 31 Rhizobium leguminosarum sv. trifolii strains isolated from root nodules of red clover plants growing in the subpolar and temperate climate regions, which essentially differ in year and day temperature profiles, were chosen for this analysis. Our results showed that temperature has a significant effect on several surface properties of rhizobial cells, such as hydrophobicity, aggregation, and motility. Low temperature also stimulated EPS synthesis and biofilm formation in R. leguminosarum sv. trifolii. This extracellular polysaccharide is known to play an important protective role against different environmental stresses. The strains produced large amounts of EPS under tested temperature conditions that facilitated adherence of rhizobial cells to different surfaces. The high adaptability of these strains to cold stress was also confirmed during symbiosis. Irrespective of their climatic origin, the strains proved to be highly effective in attachment to legume roots and were efficient microsymbionts of clover plants. However, some diversity in the response to low temperature stress was found among the strains. Among them, M16 and R137 proved to be highly competitive and efficient in nodule occupancy and biomass production; thus, they can be potential yield-enhancing inoculants of legumes.


Asunto(s)
Rhizobium leguminosarum , Simbiosis , Rhizobium leguminosarum/fisiología , Frío , Trifolium/microbiología , Trifolium/fisiología , Adaptación Fisiológica , Medicago/microbiología , Medicago/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA