Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 264: 122220, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39116613

RESUMEN

The environmental transport and fate of nanoscale zero-valent iron particles (nZVI) in soil and groundwater can be altered by their hetero-aggregation with clay mineral particles (CMP). This study examines the interactions between bare or carboxymethyl cellulose (CMC)-coated nZVI with typical CMP, specifically kaolinite and montmorillonite. Methods include co-settling experiments, aggregation kinetic studies, electron microscopy, Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO (EDLVO) energy analysis, and density functional theory calculations, focusing on the pH dependency of these interactions. The EDLVO theory effectively described the interactions between nZVI and CMP in aquatic environments. Under acidic conditions (pH 3.5), the interfacial interaction between bare nZVI and kaolinite is regulated by van der Waals forces, while complexation, van der Waals forces, and electrostatic attraction govern the interaction of bare nZVI with montmorillonite, primarily depositing on the SiO face. In contrast, the positively charged AlO face and edge of CMP are the main deposition sites for CMC-coated nZVI through hydrogen bonding, van der Waals forces, and electrostatic attraction. At neutral (pH 6.5) and alkaline (pH 9.5) conditions, both bare and CMC-coated nZVI predominantly attach to the AlO face and edge, facilitated by complexation or hydrogen bonding, alongside van der Waals forces. The attachment of CMC-coated nZVI to CMP surfaces shows reversible aggregation or deposition due to the steric repulsion from the CMC coating. These findings hold significant implications for the environmental applications and risk of nZVI.

2.
Small ; : e2404579, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39126178

RESUMEN

Designing robust photocatalysts with broad light absorption, effective charge separation, and sufficient reactive sites is critical for achieving efficient solar energy conversion. However, realizing these aims simultaneously through a single material modulation approach poses a challenge. Here, a 2D ultrathin oxygen vacancy (Ov)-rich Bi2W0.2Mo0.8O6 solid solution photocatalyst is designed and fabricated to tackle the dilemma through component and structure optimization. Specifically, the construction of a solid solution with ultrathin structure initially facilitates the separation of photoinduced electron-hole pairs, while the introduction of Ov strengthens such separation. In the meantime, the presence of Ov extends light absorption to the NIR region, triggering a photothermal effect that further enhances the charge separation and accelerates the redox reaction. As such, photoinduced charge carriers in the Ov-Bi2W0.2Mo0.8O6 are separated step by step via the synergistic action of 2D solid solution, OV, and solar heating. Furthermore, the introduction of OV exposes surface metal sites that serve as reactive Lewis acid sites, promoting the adsorption and activation of toluene. Consequently, the designed Ov-Bi2W0.2Mo0.8O6 reveals an enhanced photothermal catalytic toluene oxidation rate of 2445 µmol g-1 h-1 under a wide spectrum without extra heat input. The performance is 9.0 and 3.9 times that of Bi2WO6 and Bi2MoO6 nanosheets, respectively.

3.
Front Cell Infect Microbiol ; 14: 1408179, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119288

RESUMEN

Introduction: Hypervirulent Klebsiella pneumoniae (hvKp) and carbapenem-resistant K. pneumoniae (CR-Kp) are rapidly emerging as opportunistic pathogens that have a global impact leading to a significant increase in mortality rates among clinical patients. Anti-virulence strategies that target bacterial behavior, such as adhesion and biofilm formation, have been proposed as alternatives to biocidal antibiotic treatments to reduce the rapid emergence of bacterial resistance. The main objective of this study was to examine the efficacy of fatty acid-enriched extract (AWME3) derived from the fat of Black Soldier Fly larvae (Hermetia illucens) in fighting against biofilms of multi-drug resistant (MDR) and highly virulent Klebsiella pneumoniae (hvKp) pathogens. Additionally, the study also aimed to investigate the potential mechanisms underlying this effect. Methods: Crystal violet (CV) and ethidium bromide (EtBr) assays show how AWME3 affects the formation of mixed and mature biofilms by the KP ATCC BAA-2473, KPi1627, and KPM9 strains. AWME3 has shown exceptional efficacy in combating the hypermucoviscosity (HMV) virulent factors of KPi1627 and KPM9 strains when tested using the string assay. The rudimentary motility of MDR KPM9 and KP ATCC BAA-2473 strains was detected through swimming, swarming, and twitching assays. The cell wall membrane disturbances induced by AWME3 were detected by light and scanning electron microscopy and further validated by an increase in the bacterial cell wall permeability and Lewis acid-base/van der Waals characteristics of K. pneumoniae strains tested by MATS (microbial adhesion to solvents) method. Results: After being exposed to 0.5 MIC (0.125 mg/ml) of AWME3, a significant reduction in the rudimentary motility of MDR KPM9 and KP ATCC BAA-2473 strains, whereas the treated bacterial strains exhibited motility between 4.23 ± 0.25 and 4.47 ± 0.25 mm, while the non-treated control groups showed significantly higher motility ranging from 8.5 ± 0.5 to 10.5 ± 0.5 mm. Conclusion: In conclusion, this study demonstrates the exceptional capability of the natural AWME3 extract enriched with a unique combination of fatty acids to effectively eliminate the biofilms formed by the highly drug-resistant and highly virulent K. pneumoniae (hvKp) pathogens. Our results highlight the opportunity to control and minimize the rapid emergence of bacterial resistance through the treatment using AWME3 of biofilm-associated infections caused by hvKp and CRKp pathogens.


Asunto(s)
Antibacterianos , Biopelículas , Dípteros , Farmacorresistencia Bacteriana Múltiple , Ácidos Grasos , Klebsiella pneumoniae , Larva , Factores de Virulencia , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Animales , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/patogenicidad , Ácidos Grasos/metabolismo , Factores de Virulencia/metabolismo , Dípteros/microbiología , Larva/microbiología , Larva/efectos de los fármacos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Virulencia/efectos de los fármacos , Infecciones por Klebsiella/microbiología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo
4.
Molecules ; 29(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124868

RESUMEN

As an important class of nitrogen-containing fused heterocyclic compounds, imidazo[1,2-a]pyridines often exhibit significant biological activities, such as analgesic, anticancer, antiosteoporosis, anxiolytic, etc. Using Y(OTf)3 as a Lewis acid catalyst, a simple and efficient method has been developed for the synthesis of C3-alkylated imidazo[1,2-a]pyridines through the three-component aza-Friedel-Crafts reaction of imidazo[1,2-a]pyridines, aldehydes, and amines in the normal air atmosphere without the protection of inert gas and special requirements for anhydrous and anaerobic conditions. A series of imidazo[1,2-a]pyridine derivatives were obtained with moderate to good yields, and their structures were confirmed by 1H NMR, 13C NMR, and HRMS. Furthermore, this conversion has the advantages of simple operation, excellent functional group tolerance, high atomic economy, broad substrate scope, and can achieve gram-level reactions. Notably, this methodology may be conveniently applied to the further design and rapid synthesis of potential biologically active imidazo[1,2-a]pyridines with multifunctional groups.

5.
Mol Divers ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141206

RESUMEN

In order to achieve the high adsorption and catalytic performance of CO2, the direct self-assembly of robust defect-engineered MOFs is a scarcely reported and challenging proposition. Herein, a highly robust nanoporous indium(III)-organic framework of {[In2(CPPDA)(H2O)3](NO3)·2DMF·3H2O}n (NUC-107) consisting of two kinds of inorganic units of chain-shaped [In(COO)2(H2O)]n and watery binuclear [In2(COO)4(H2O)8] was generated by regulating the growth environment. It is worth mentioning that [In2(COO)4(H2O)8] is very rare in terms of its richer associated water molecules, implying that defect-enriched metal ions in the activated host framework can serve as strong Lewis acid. Compared to reported skeleton of [In4(CPPDA)2(µ3-OH)2(DMF)(H2O)2]n (NUC-66) with tetranuclear clusters of [In4(µ3-OH)2(COO)10(DMF)(H2O)2] as nodes, the void volume of NUC-107 (50.7%) is slightly lower than the one of NUC-66 (52.8%). However, each In3+ ion in NUC-107 has an average of 1.5 coordinated small molecules (H2O), which far exceeds the average of 0.75 in NUC-66 (H2O and DMF). After thermal activation, NUC-107a characterizes the merits of unsaturated In3+ sites, free pyridine moieties, solvent-free nanochannels (10.2 × 15.7 Å2). Adsorption tests prove that the host framework of NUC-107a has a higher CO2 adsorption (113.2 cm3/g at 273 K and 64.8 cm3/g at 298 K) than NUC-66 (91.2 cm3/g at 273 K and 53.0 cm3/g at 298 K). Catalytic experiments confirmed that activated NUC-107a with the aid of n-Bu4NBr was capable of efficiently catalyzing the cycloaddition of CO2 with epoxides into corresponding cyclic carbonates under the mild conditions. Under the similar conditions of 0.10 mol% MOFs, 0.5 mol% n-Bu4NBr, 0.5 MP CO2, 60 °C and 3 h, compared with NUC-66a, the conversion of SO to SC catalyzed by NUC-107a increased by 21%. Hence, this work offers a valuable perspective that the in situ creation of robust defect-engineered MOFs can be realized by regulating the growth environment.

6.
ChemSusChem ; : e202400128, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045636

RESUMEN

WOx/ZrO2 with a higher concentration of Brønsted acid sites (BAS) and a bigger ratio of Brønsted to Lewis acid sites (B/L) than achievable by conventional impregnation (IM) were synthesized using flame spray pyrolysis (FSP). The rapid quenching and short residence time inherent to FSP prevent the accumulation of W atoms on the ZrO2 support and thus provide an excellent surface dispersion of WOx species. As a result, FSP-made WOx/ZrO2 (FSP-WOx/ZrO2) has a much higher surface concentration of three-dimensional Zr-WOx clusters than corresponding materials prepared by conventional impregnation (IM-WOx/ZrO2). The coordination of W-OH to the unsaturated Zr4+ sites in these clusters results in a remarkable decrease of the concentration of Lewis acid sites (LAS) on the surface of ZrO2 and promotes the formation of bridging W-O(H)-Zr hydroxyl groups acting as BAS. FSP-WOx/ZrO2 possesses ~80% of BAS and a B/L ratio of around 4, while IM-WOx/ZrO2 exhibits ~50% BAS and a B/L ratio of around 1. These catalysts were evaluated in the dehydration of glucose to HMF. The catalytic study demonstrated that B/L ratio plays a crucial role in glucose conversion. The best catalyst, FSP-WOx/ZrO2 with a W/Zr ratio of 1/10 affords nearly 100% glucose conversion and an HMF selectivity of 56-69%.

7.
Adv Sci (Weinh) ; : e2307106, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021320

RESUMEN

About one decade after the first report on MXenes, these 2D early transition metal carbides or nitrides have become among the best-performing materials in electrode applications related to electrical energy storage devices and power-to-fuels conversion. MXenes are obtained by a top-down approach starting from the appropriate 3D MAX phase that undergoes etching of the A-site metal. Initial etching procedures are based on the use of concentrated HF or the in situ generation of this highly corrosive and poisonous reagent. Etching of the MAX phase is one of the major hurdles limiting the progress of the field. The present review summarizes an alternative, universal, and easily scalable etching procedure based on treating the MAX precursor with a Lewis acid molten salt. The review starts with presenting the current state of the art of the molten salt etching procedure to obtain or modify MXene, followed by a summary of the applications of these MXene samples. The aim of the review is to show the versatility and advantages of molten salt etching in terms of general applicability, control of the surface terminal groups, and uniform deposition of metal nanoparticles, among other features of the procedure.

8.
Sci Rep ; 14(1): 16827, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039149

RESUMEN

Within the context of Molecular Electronic Density Theory (MEDT), this study investigates the Diels-Alder reaction among isoprene (2) and R-carvone (1R) applying DFT simulations, with and without Lewis acid (LA) catalysis. The results show that carvone (1R) acts as an electrophile and isoprene (2) as a nucleophile in a polar process. LA catalysis increases the electrophilicity of carvone, thereby improving the reactivity and selectivity of the reaction by reducing the activation Gibbs free energy. Parr functions reveal that the C5=C6 double bond is more reactive than the C9=C10 double bond, indicating chemoselectivity. The examination of the Electron Localization Function (ELF) reveals high regio- and stereoselectivity, indicating an asynchronous mechanism for the LA-catalyzed DA reaction. Furthermore, it is suggested that cycloadduct 3 has great anti-HIV potential because it exhibits lower binding energies than azidothymidine (AZT) in the docking studies of cycloadducts 3 and 4 amongst a primary HIV-1protein (1A8O plus 5W4Q).

9.
Adv Mater ; : e2406151, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39030779

RESUMEN

Lewis acid-base interactions are common in chemical processes presented in diverse applications, such as synthesis, catalysis, batteries, semiconductors, and solar cells. The Lewis acid-base interactions allow precise tuning of material properties from the molecular level to more aggregated and organized structures. This review will focus on the origin, development, and prospects of applying Lewis acid-base interactions for the materials design and mechanism understanding in the advancement of battery materials and chemistries. The covered topics relate to aqueous batteries, lithium-ion batteries, solid-state batteries, alkali metal-sulfur batteries, and alkali metal-oxygen batteries. In this review, the Lewis acid-base theories will be first introduced. Thereafter the application strategies for Lewis acid-base interactions in solid-state and liquid-based batteries will be introduced from the aspects of liquid electrolyte, solid polymer electrolyte, metal anodes, and high-capacity cathodes. The underlying mechanism is highlighted in regard to ion transport, electrochemical stability, mechanical property, reaction kinetics, dendrite growth, corrosion, and so on. Last but not least, perspectives on the future directions related to Lewis acid-base interactions for next-generation batteries are like to be shared.

10.
Environ Res ; 260: 119579, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986803

RESUMEN

In this work, a novel nitrogen-doped biochar bentonite composite was synthesized by a single-pot co-pyrolysis method. Batch studies were conducted to evaluate the performance of the developed composite in eliminating synthetic dyes from the aqueous matrix. Energy dispersive X-ray spectroscopy analysis and field emission scanning electron microscopy imaging confirmed the N doping and bentonite impregnation into biochar. X-ray photoelectron spectroscopy analysis revealed that the N atoms were doped interstitially into the carbon matrix of biochar in the form of pyridinic and pyrrolic nitrogen. Simultaneous heteroatom doping and bentonite impregnation reduced the specific surface area to 41.721 m2 g-1 but improved the adsorption capacity of biochar for dye adsorption. Further experimental studies depicted that simultaneous bentonite impregnation and N doping into the biochar matrix is beneficial for direct blue-6 (DB-6) and methylene blue (MB) removal and maximum adsorption capacities of 53.17 mg. g-1 and 41.33 mg. g-1 were obtained for MB and DB-6, respectively, at varying conditions. Adsorption energetics of the dyes with the developed composite portrayed the spontaneity of the process through negative ΔG values. The Langmuir and Freundlich isotherm models fitted the best for MB and DB-6 adsorption. The monolayer adsorption capacity and favourability factor for MB and DB-6 adsorption were calculated to be 54.15 mg. g-1 and 0.217, respectively from the best-fitted isotherms. Based on density functional theory calculations and spectroscopic studies, major interactions governing the adsorption were predicted to be charge-based interactions, π-π interactions, H-bonding, and Lewis acid-base interactions.

11.
Angew Chem Int Ed Engl ; : e202411099, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967599

RESUMEN

We present a series of borane-tethered cyclic (alkyl)(amino)carbene (cAAC)-copper complexes, including a borane-capped Cu(I) hydride. This hydride is unusually hydridic and reacts rapidly with both CO2 and 2,6-dimethylphenol at room temperature. Its reactivity is distinct from variants without a tethered borane, and the underlying principles governing the enhanced hydricity were evaluated experimentally and theoretically. These stoichiometric results were extended to catalytic CO2 hydrogenation, and the borane-tethered (intramolecular) system exhibits ~3-fold enhancement relative to an intermolecular system.

12.
Angew Chem Int Ed Engl ; : e202409419, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975974

RESUMEN

The local acidity at the anode surface during electrolysis is apparently stronger than that in bulk electrolyte due to the deprotonation from the reactant, which leads to the deteriorated electrocatalytic performances and product distributions. Here, an anode-electrolyte interfacial acidity regulation strategy has been proposed to inhibit local acidification at the surface of anode and enhance the electrocatalytic activity and selectivity of anodic reactions. As a proof of the concept, CeO2-x Lewis acid component has been employed as a supporter to load Au nanoparticles to accelerate the diffusion and enrichment of OH- toward the anode surface, so as to accelerate the electrocatalytic alcohol oxidation reaction. As the result, Au/CeO2-x exhibits much enhanced lactic acid selectivity of 81% and electrochemical activity of 693 mA·cm-2 current density in glycerol oxidation reaction compared to pure Au. Mechanism investigation reveals that the introduced Lewis acid promotes the mass transport and concentration of OH- on the anode surface, thus promoting the generation of lactic acid through the simultaneous enhancements of Faradaic and non-Faradaic processes. Attractively, the proposed strategy can be used for the electro-oxidation performance enhancements of a variety of alcohols, which thereby provides a new perspective for efficient alcohol electro-oxidations and the corresponding electrocatalyst design.

13.
Molecules ; 29(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38999101

RESUMEN

Electron-rich heteroaromatics, such as furan, thiophene and pyrrole, as well as their benzo-condensed derivatives, are of great interest as components of natural products and as starting substances for various products including high-tech materials. Although their reactions with Brønsted and Lewis acids play important roles, in particular as the primary step of various transformations, they are often disregarded and mechanistically not understood. The present publication gives a first overview about this chemistry focusing on the parent compounds. It comprises reactions with strong Brønsted acids forming adducts that can undergo intramolecular proton and/or substituent transfer reactions, ring openings or ring transformations into other heterocycles, depending on their structure. Interactions with weak Brønsted acids usually initiate oligomerizations/polymerizations. A similar behaviour is observed in reactions of these heteroaromatics with Lewis acids. Special effects are achieved when the Lewis acids are activated through primary protonation. Deuterated Brønsted acids allow straight forward deuteration of electron-rich heteroaromatics. Mercury salts as extremely weak Lewis acids cause direct metalation in a straight forward way replacing ring H-atoms yielding organomercury heterocycles. This review will provide comprehensive information about the chemistry of adducts of such heterocycles with Brønsted and Lewis acids enabling chemists to understand the mechanisms and the potential of this field and to apply the findings in future syntheses.

14.
Natl Sci Rev ; 11(8): nwae218, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39034947

RESUMEN

Both the catalyst and electrolyte strongly impact the performance of CO2 electrolysis. Despite substantial progress in catalysts, it remains highly challenging to tailor electrolyte compositions and understand their functions at the catalyst interface. Here, we report that the ethylenediaminetetraacetic acid (EDTA) and its analogs, featuring strong Lewis acid-base interaction with metal cations, are selected as electrolyte additives to reshape the catalyst-electrolyte interface for promoting CO2 electrolysis. Mechanistic studies reveal that EDTA molecules are dynamically assembled toward interface regions in response to bias potential due to strong Lewis acid-base interaction of EDTA4--K+. As a result, the original hydrogen-bond network among interfacial H2O is disrupted, and a hydrogen-bond gap layer at the electrified interface is established. The EDTA-reshaped K+ solvation structure promotes the protonation of *CO2 to *COOH and suppressing *H2O dissociation to *H, thereby boosting the co-electrolysis of CO2 and H2O toward carbon-based products. In particular, when 5 mM of EDTA is added into the electrolytes, the Faradaic efficiency of CO on the commercial Ag nanoparticle catalyst is increased from 57.0% to 90.0% at an industry-relevant current density of 500 mA cm-2. More importantly, the Lewis-base ligand-reshaped interface allows a range of catalysts (Ag, Zn, Pd, Bi, Sn, and Cu) to deliver substantially increased selectivity of carbon-based products in both H-type and flow-type electrolysis cells.

15.
ACS Nano ; 18(32): 21480-21490, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39079179

RESUMEN

Using electrocatalysts is effective in solving the slow reaction kinetics of polysulfides in Li-S batteries, but designing stable electrocatalysts with an integrated adsorption-catalysis-desorption system is challenging. Here, we report a stable metal-semiconductor (Co-ZrO2) heterojunction electrocatalyst fabricated by assembling electron-coupled Co-ZrO2 nanodots into macroporous carbon nanofibers. The Co-ZrO2 contact causes interfacial electron enrichment and electron transfer from Co to ZrO2, which creates abundant Lewis-acid sites on Co that can adsorb polysulfides. Simultaneously, the enriched interfacial electrons can activate the S-S bond and boost the catalytic conversion of long-chain polysulfides, while the ZrO2 with Lewis-base sites facilitate the desorption of short-chain polysulfides from the electrocatalyst. Moreover, the nanodot heterojunctions show great chemical stability and high redox reaction kinetics of polysulfides. Li-S batteries show high discharge capacities of 954.5 mA h·g-1 at 0.5 C with a retention of 84.9% over 200 cycles, and 710.2 mA hg-1 at 1 C with a retention of 98.6% over 200 cycles. This study provides an effective strategy for developing active and durable electrocatalysts for Li-S batteries.

16.
Chemistry ; : e202401997, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873846

RESUMEN

A protocol exploiting isocyanides as carbamoylating agents for the α-C(sp3)-H functionalization of cyclic ethers has been optimized via a combined visible light-driven hydrogen atom transfer/Lewis acid-catalyzed approach. The isocyanide substrate scope revealed an exquisite functional group compatibility (18 examples, with yields up to 99 %). Both radical and polar trapping, kinetic isotopic effect and real-time NMR studies support the mechanistic hypothesis and provide insightful details for the design of new chemical processes involving the generation of oxocarbenium ions.

17.
J Colloid Interface Sci ; 673: 134-142, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38875784

RESUMEN

Nowadays, it is becoming increasingly urgent to lower the escalating carbon dioxide (CO2) to reduce greenhouse effect. Fortunately, it is an ideal strategy by using the inexhaustible solar energy as the driving force to manipulate the cycloaddition reaction, the atomic efficiency of which is 100 %. This work represents the first attempt on utilization of rare-earth metal Tb with atomic dispersion, and the structure of Tb coordinated with 4 N-atoms and 2B-atoms was constructed on interconnected carbon hollow spheres. The introduction of electron-deficient B reduces the electron density of Tb, thereby boosting Lewis acidity and promoting the occurrence of ring-opening reaction. The mechanism exploration enunciates that TbN4B2/C is a photothermal synergistic catalyst, the combined action of photogenerated electrons and strong Lewis acidic site of Tb reduces the free energy of the rate-determining step, and then improving the yield of cyclic carbonate up to 739 mmol g-1h-1.

18.
Molecules ; 29(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38893585

RESUMEN

The wide use of boronic compounds, especially boronic acids and benzoxaboroles, in virtually all fields of chemistry is related to their specific properties. The most important of them are the ability to form cyclic esters with diols and the complexation of anions. In both cases, the equilibrium of the reaction depends mainly on the acidity of the compounds, although other factors must also be taken into account. Quantification of the acidity (pKa value) is a fundamental factor considered when designing new compounds of practical importance. The aim of the current work was to collect available values of the acidity constants of monosubstituted phenylboronic acids, critically evaluate these data, and supplement the database with data for missing compounds. Measurements were made using various methods, as a result of which a fast and reliable method for determining the pKa of boronic compounds was selected. For an extensive database of monosubstituted phenylboronic acids, their correlation with their Brønsted analogues-namely carboxylic acids-was examined. Compounds with ortho substituents do not show any correlation, which is due to the different natures of both types of acids. Nonetheless, both meta- and para-substituted compounds show excellent correlation. From a practical point of view, acidity constants are best determined from the Hammett equation. Computational approaches for determining acidity constants were also analyzed. In general, the reported calculated values are not compatible with experimental ones, providing comparable results only for selected groups of compounds.

19.
Beilstein J Org Chem ; 20: 1376-1395, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919603

RESUMEN

The Cannizzaro reaction has emerged as a versatile synthetic tool for the construction of functionalized molecules. Dating back to the 19th century, this reaction, though initially used for the synthesis of an alcohol and acid functionality from aldehydes, has henceforth proven useful to generate diverse molecular entities using both intermolecular and intramolecular synthetic strategies. Immense applications in the synthesis of hydroxy acids and esters, heterocycles, fused carbocycles, natural products, and others with broad substrate scope have raised profound interest from methodological and synthetic standpoints. The ongoing development of reagents, solvents, and technologies for the Cannizzaro reaction reflects the broader trend in organic synthesis towards more sustainable and efficient practices. The focus of this review is to highlight some recent advances in synthetic strategies and applications of the Cannizzaro reaction towards the synthesis of potentially useful molecules.

20.
Nanomaterials (Basel) ; 14(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38921881

RESUMEN

The electrooxidation of organic compounds offers a promising strategy for producing value-added chemicals through environmentally sustainable processes. A key challenge in this field is the development of electrocatalysts that are both effective and durable. In this study, we grow gold nanoparticles (Au NPs) on the surface of various phases of titanium dioxide (TiO2) as highly effective electrooxidation catalysts. Subsequently, the samples are tested for the oxidation of benzaldehyde (BZH) to benzoic acid (BZA) coupled with a hydrogen evolution reaction (HER). We observe the support containing a combination of rutile and anatase phases to provide the highest activity. The excellent electrooxidation performance of this Au-TiO2 sample is correlated with its mixed-phase composition, large surface area, high oxygen vacancy content, and the presence of Lewis acid active sites on its surface. This catalyst demonstrates an overpotential of 0.467 V at 10 mA cm-2 in a 1 M KOH solution containing 20 mM BZH, and 0.387 V in 100 mM BZH, well below the oxygen evolution reaction (OER) overpotential. The electrooxidation of BZH not only serves as OER alternative in applications such as electrochemical hydrogen evolution, enhancing energy efficiency, but simultaneously allows for the generation of high-value byproducts such as BZA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA