Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37447967

RESUMEN

Autonomous vehicles (AVs) rely on advanced sensory systems, such as Light Detection and Ranging (LiDAR), to function seamlessly in intricate and dynamic environments. LiDAR produces highly accurate 3D point clouds, which are vital for the detection, classification, and tracking of multiple targets. A systematic review and classification of various clustering and Multi-Target Tracking (MTT) techniques are necessary due to the inherent challenges posed by LiDAR data, such as density, noise, and varying sampling rates. As part of this study, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was employed to examine the challenges and advancements in MTT techniques and clustering for LiDAR point clouds within the context of autonomous driving. Searches were conducted in major databases such as IEEE Xplore, ScienceDirect, SpringerLink, ACM Digital Library, and Google Scholar, utilizing customized search strategies. We identified and critically reviewed 76 relevant studies based on rigorous screening and evaluation processes, assessing their methodological quality, data handling adequacy, and reporting compliance. As a result of this comprehensive review and classification, we were able to provide a detailed overview of current challenges, research gaps, and advancements in clustering and MTT techniques for LiDAR point clouds, thus contributing to the field of autonomous driving. Researchers and practitioners working in the field of autonomous driving will benefit from this study, which was characterized by transparency and reproducibility on a systematic basis.


Asunto(s)
Vehículos Autónomos , Lagunas en las Evidencias , Reproducibilidad de los Resultados , Análisis por Conglomerados , Bases de Datos Factuales
2.
Sensors (Basel) ; 20(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182360

RESUMEN

As overhead contact (OC) is an essential part of power supply systems in high-speed railways, it is necessary to regularly inspect and repair abnormal OC components. Relative to manual inspection, applying LiDAR (light detection and ranging) to OC inspection can improve efficiency, accuracy, and safety, but it faces challenges to efficiently and effectively segment LiDAR point cloud data and identify catenary components. Recent deep learning-based recognition methods are rarely employed to recognize OC components, because they have high computational complexity, while their accuracy needs to be improved. To track these problems, we first propose a lightweight model, RobotNet, with depthwise and pointwise convolutions and an attention module to recognize the point cloud. Second, we optimize RobotNet to accelerate its recognition speed on embedded devices using an existing compilation tool. Third, we design software to facilitate the visualization of point cloud data. Our software can not only display a large amount of point cloud data, but also visualize the details of OC components. Extensive experiments demonstrate that RobotNet recognizes OC components more accurately and efficiently than others. The inference speed of the optimized RobotNet increases by an order of magnitude. RobotNet has lower computational complexity than other studies. The visualization results also show that our recognition method is effective.

3.
Front Plant Sci ; 9: 866, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29988466

RESUMEN

The rapid development of light detection and ranging (Lidar) provides a promising way to obtain three-dimensional (3D) phenotype traits with its high ability of recording accurate 3D laser points. Recently, Lidar has been widely used to obtain phenotype data in the greenhouse and field with along other sensors. Individual maize segmentation is the prerequisite for high throughput phenotype data extraction at individual crop or leaf level, which is still a huge challenge. Deep learning, a state-of-the-art machine learning method, has shown high performance in object detection, classification, and segmentation. In this study, we proposed a method to combine deep leaning and regional growth algorithms to segment individual maize from terrestrial Lidar data. The scanned 3D points of the training site were sliced row and row with a fixed 3D window. Points within the window were compressed into deep images, which were used to train the Faster R-CNN (region-based convolutional neural network) model to learn the ability of detecting maize stem. Three sites of different planting densities were used to test the method. Each site was also sliced into many 3D windows, and the testing deep images were generated. The detected stem in the testing images can be mapped into 3D points, which were used as seed points for the regional growth algorithm to grow individual maize from bottom to up. The results showed that the method combing deep leaning and regional growth algorithms was promising in individual maize segmentation, and the values of r, p, and F of the three testing sites with different planting density were all over 0.9. Moreover, the height of the truly segmented maize was highly correlated to the manually measured height (R2> 0.9). This work shows the possibility of using deep leaning to solve the individual maize segmentation problem from Lidar data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA