Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.129
Filtrar
1.
Evol Med Public Health ; 12(1): 105-116, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099847

RESUMEN

Background and objectives: Cancer is a disease that affects nearly all multicellular life, including the broad and diverse taxa of Aves. While little is known about the factors that contribute to cancer risk across Aves, life history trade-offs may explain some of this variability in cancer prevalence. We predict birds with high investment in reproduction may have a higher likelihood of developing cancer. In this study, we tested whether life history traits are associated with cancer prevalence in 108 species of birds. Methodology: We obtained life history data from published databases and cancer data from 5,729 necropsies from 108 species of birds across 24 taxonomic orders from 25 different zoological facilities. We performed phylogenetically controlled regression analyses between adult body mass, lifespan, incubation length, clutch size, sexually dimorphic traits, and both neoplasia and malignancy prevalence. We also compared the neoplasia and malignancy prevalence of female and male birds. Results: Providing support for a life history trade-off between somatic maintenance and reproduction, we found a positive relationship between clutch size and cancer prevalence across Aves. There was no significant association with body mass, lifespan, incubation length, sexual dimorphism, and cancer. Conclusions and implications: Life history theory presents an important framework for understanding differences in cancer defenses across various species. These results suggest a trade-off between reproduction and somatic maintenance, where Aves with small clutch sizes get less cancer.

2.
J Morphol ; 285(8): e21754, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136647

RESUMEN

The mechanosensory lateral line (LL) system of salmonid fishes has been the focus of comparative morphological studies and behavioral and physiological analyses of flow sensing capabilities, but its morphology and development have not been studied in detail in any one species. Here, we describe the post-embryonic development of the cranial LL system in Brook Trout, Salvelinus fontinalis, using vital fluorescent staining (4-Di-2-ASP), scanning electron microscopy, µCT, and clearing and staining to visualize neuromasts and the process of cranial LL canal morphogenesis. We examined the relationship between the timing of LL development, the prolonged life history of salmonids, and potential ecological implications. The LL system is composed of seven canals containing canal neuromasts (CNs) and four lines of superficial neuromasts (SNs) on the skin. CNs and SNs increase in number and size during the alevin (larval) stage. CN number stabilizes as canal morphogenesis commences, but SN number increases well into the parr (juvenile) stage. CNs become larger and more elongated than SNs, but the relative area occupied by sensory hair cells decreases during ontogeny in both types of neuromasts. Neuromast-centered canal morphogenesis starts in alevins (yolk sac larvae), as they swim up into the water column from their gravel nests (~4 months post-fertilization), after which yolk sac absorption is completed and exogenous feeding begins. Canal morphogenesis proceeds asynchronously within and among canal series and is not complete until ~8 months post-fertilization (the parr stage). Three characters in the LL system and associated dermal bones were used to identify their homologs in other actinopterygians and to consider the evolution of LL canal reduction, thus demonstrating the value of salmonids for the study of LL evolution. The prolonged life history of Brook Trout and the onset of canal morphogenesis at swim-up are predicted to have implications for neuromast function at these critical behavioral and ecological transitions.


Asunto(s)
Evolución Biológica , Sistema de la Línea Lateral , Trucha , Animales , Sistema de la Línea Lateral/embriología , Sistema de la Línea Lateral/ultraestructura , Sistema de la Línea Lateral/crecimiento & desarrollo , Trucha/anatomía & histología , Trucha/crecimiento & desarrollo , Trucha/embriología , Larva/crecimiento & desarrollo , Cráneo/anatomía & histología , Cráneo/crecimiento & desarrollo , Cráneo/embriología , Morfogénesis
3.
Ecol Evol ; 14(8): e70134, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39119176

RESUMEN

Animals with different life-history types vary in their stress-coping styles, which can affect their fitness and survival in changing environments. We studied how chronic exposure to manganese sulfate (MnSO4), a common aquatic pollutant, affects life-history traits, physiology, and behavior of zebrafish (Danio rerio) with two life-history types: fast (previously selected for fast juvenile growth, early maturation, and small adult body size) and slow life histories (selected for slow juvenile growth, late maturation, and large adult body size). We found that MnSO4 had negative effects on growth and condition factors, but the magnitude of these effects depended on the life-history type. Individuals with fast life histories were more susceptible to MnSO4 than fish with slow life histories as they had lower growth rate, condition factor and feeding probability in high MnSO4 concentrations. Our results demonstrate that MnSO4 can impair fish performance, and life-history variation can modulate the stress-coping ability of individuals.

4.
Proc Natl Acad Sci U S A ; 121(34): e2319487121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133847

RESUMEN

Extending and safeguarding tropical forest ecosystems is critical for combating climate change and biodiversity loss. One of its constituents, lianas, is spreading and increasing in abundance on a global scale. This is particularly concerning as lianas negatively impact forests' carbon fluxes, dynamics, and overall resilience, potentially exacerbating both crises. While possibly linked to climate-change-induced atmospheric CO2 elevation and drought intensification, the reasons behind their increasing abundance remain elusive. Prior research shows distinct physiological differences between lianas and trees, but it is unclear whether these differences confer a demographic advantage to lianas with climate change. Guided by extensive datasets collected in Panamanian tropical forests, we developed a tractable model integrating physiology, demography, and epidemiology. Our findings suggest that CO2 fertilization, a climate change factor promoting forest productivity, gives lianas a demographic advantage. Conversely, factors such as extreme drought generally cause a decrease in liana prevalence. Such a decline in liana prevalence is expected from a physiological point of view because lianas have drought-sensitive traits. However, our analysis underscores the importance of not exclusively relying on physiological processes, as interactions with demographic mechanisms (i.e., the forest structure) can contrast these expectations, causing an increase in lianas with drought. Similarly, our results emphasize that identical physiological responses between lianas and trees still lead to liana increase. Even if lianas exhibit collinear but weaker responses in their performance compared to trees, a temporary liana prevalence increase might manifest driven by the faster response time of lianas imposed by their distinct life-history strategies than trees.


Asunto(s)
Cambio Climático , Árboles , Árboles/fisiología , Árboles/crecimiento & desarrollo , Bosques , Sequías , Clima Tropical , Biodiversidad , Ecosistema
5.
Proc Biol Sci ; 291(2028): 20241013, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106952

RESUMEN

Males and females often differ in ecology, behaviour and lifestyle, and these differences are expected to lead to sex differences in parasite susceptibility. However, neither the sex differences in parasite prevalence, nor their ecological and evolutionary drivers have been investigated across a broad range of taxa using phylogenetically corrected analyses. Using the most extensive dataset yet that includes 755 prevalence estimates from 151 wild bird species in a meta-analytic framework, here we compare sex differences in blood and gastrointestinal parasites. We show that despite sex differences in parasite infection being frequently reported in the literature, only Haemoproteus infections were more prevalent in females than in males. Notably, only seasonality was strongly associated with the sex-specific parasite prevalence of both Leucocytozoon and Haemoproteus, where birds showed greater female bias in prevalence during breeding periods compared to the non-breeding period. No other ecological or sexual selection variables were associated with sex-specific prevalence of parasite prevalence. We suggest that much of the variation in sex-biased prevalence could be idiosyncratic, and driven by local ecology and behavioural differences of the parasite and the host. Therefore, breeding ecology and sexual selection may only have a modest influence on sex-different parasite prevalence across wild birds.


Asunto(s)
Evolución Biológica , Enfermedades de las Aves , Aves , Animales , Aves/parasitología , Femenino , Enfermedades de las Aves/parasitología , Enfermedades de las Aves/epidemiología , Masculino , Prevalencia , Haemosporida/fisiología , Factores Sexuales , Caracteres Sexuales , Animales Salvajes/parasitología , Estaciones del Año , Infecciones Protozoarias en Animales/epidemiología , Infecciones Protozoarias en Animales/parasitología
6.
Sci Total Environ ; 950: 175309, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39111415

RESUMEN

Landscape simplification and the loss of semi-natural habitats are identified as important drivers of insect pollinator decline in farmlands, by disrupting the availability of floral resources and facilitating the occurrence of food shortages. Food shortages can lead to accelerated behavioral maturation in honey bees, with potential consequences for colony survival. However, little is known about the magnitude of behavioral maturation mediated by to food shortage under real field conditions, and whether it could be mitigated by the presence of semi-natural habitats. Here, we monitored the lifespan (LSP), age at first exit (AFE), foraging tenure, and foraging intensity of 1035 honey bees along a landscape gradient of semi-natural habitats in farmlands. We found a clear acceleration of behavioral maturation of bees during the food shortage season, with precocity in AFE between 6 and 10 days earlier and reduced LSP by 5 to 9 days, with no effect on foraging tenure or foraging intensity. We also found that higher proportions of semi-natural habitats mitigated behavioral maturation of bees by up to 6 days. Beyond the direct effects on adult bees, we found no delayed effect of larval feeding status on adult life-history traits or foraging behavior. Nevertheless, our results strongly advocate the implementation of policies aimed at increasing the coverage of semi-natural environments (e.g., grasslands, forests, hedgerows) in intensive agricultural landscapes to support honey bee survival and pollinator conservation.

7.
Trends Ecol Evol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39097475

RESUMEN

Fish experiencing harvest mortality often evolve a fast life-history that prioritizes investment in current versus future reproduction, thereby potentially limiting energetic investment in the brain. Fisheries may also select for shy fish that are less willing to learn, or directly select fish with poor cognitive ability. The resulting evolutionary changes can alter the cognitive performance of individuals and affect fish populations and fisheries quality.

8.
J Anim Ecol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953244

RESUMEN

Taylor's power law (TPL) describes the expected range of parameters of the mean-variance scaling relationship and has been extensively used in studies examining temporal variations in abundance. Few studies though have focused on biological and ecological covariates of TPL, while its statistical inherences have been extensively debated. In the present study, we focused on species-specific features (i.e. functional traits) that could be influential to temporal TPL. We combined field surveys of 180 fish species from 972 sites varying from small streams to large rivers with data on 31 ecological traits describing species-specific characteristics related to three main niche dimensions (trophic ecology, life history, and habitat use). For each species, the parameters of temporal TPL (intercept and slope) were estimated from the log-log mean-variance relationships while controlling for spatial dependencies and biological covariates (species richness and evenness). Then, we investigated whether functional traits explained variations in TPL parameters. Differences in TPL parameters among species were explained mostly by life history and environmental determinants, especially TPL slope. Life history was the main determinant of differences in TPL parameters and thereby aggregation patterns, with traits related to body size being the most influential, thus showing a high contrast between small-sized species with short lifespans and large-bodied migratory fishes, even after controlling for phylogenetic resemblances. We found that life history traits, especially those related to body size, mostly affect TPL and, as such, can be determinants of temporal variability of fish populations. We also found that statistical effects and phylogenetic resemblances are embedded in mean-variance relationships for fish, and that environmental drivers can interact with ecological characteristics of species in determining temporal fluctuations in abundance.

9.
BMC Ecol Evol ; 24(1): 88, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951762

RESUMEN

BACKGROUND: Parent-offspring conflict represents the sensitive balance of resource allocation between self-maintenance and reproduction. Two strategies have been proposed to better understand how species manage this conflict. In fixed-level feeding behavior, parents feed offspring consistent quantities of food; while flexible feeding shows plasticity in parental allocation based on offspring need. Life-history theory predicts that parents of long-lived species prioritize their survival and may favor the fixed-level hypothesis to maximize lifetime reproductive success. In this study, we highlight the natural variation of parent-offspring allocation strategies within a unique population of Leach's storm-petrels (Hydrobates leucorhous), and through month-long food supplementation and restriction manipulations, we investigate how chick condition affects parental provisioning during the chick-rearing period of reproduction. RESULTS: We show that the parents upregulated chick feeding frequency of nutritionally deprived chicks, resulting in a larger total amount of food delivered during the study period. Additionally, the proportion of nights when both parents fed was highest in restricted chicks, and the proportion of nights when neither parents fed was lowest in restricted chicks, suggesting that storm-petrel parents shorten their foraging bouts to deliver food more often when their chicks are in relatively poor condition. CONCLUSIONS: Our results support that Leach's storm-petrels use a flexible-level feeding strategy, suggesting that parents can assess offspring condition, and respond by feeding chicks at higher frequencies. These data provide insight on how a long-lived seabird balances its own energetic demands with that of their offspring during the reproductive period.


Asunto(s)
Conducta Alimentaria , Animales , Aves , Femenino , Masculino , Reproducción/fisiología , Longevidad
10.
BMC Ecol Evol ; 24(1): 87, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951779

RESUMEN

Widespread species often experience significant environmental clines over the area they naturally occupy. We investigated a widespread livebearing fish, the Sailfin molly (Poecilia latipinna) combining genetic, life-history, and environmental data, asking how structured populations are. Sailfin mollies can be found in coastal freshwater and brackish habitats from roughly Tampico, Veracruz in Mexico to Wilmington, North Carolina, in the USA. In addition, they are found inland on the Florida peninsula. Using microsatellite DNA, we genotyped 168 individuals from 18 populations covering most of the natural range of the Sailfin molly. We further determined standard life-history parameters for both males and females for these populations. Finally, we measured biotic and abiotic parameters in the field. We found six distinct genetic clusters based on microsatellite data, with very strong indication of isolation by distance. However, we also found significant numbers of migrants between adjacent populations. Despite genetic structuring we did not find evidence of cryptic speciation. The genetic clusters and the migration patterns do not match paleodrainages. Life histories vary between populations but not in a way that is easy to interpret. We suggest a role of humans in migration in the sailfin molly, for example in the form of a ship channel that connects southern Texas with Louisiana which might be a conduit for fish migration.


Asunto(s)
Repeticiones de Microsatélite , Poecilia , Animales , Poecilia/genética , Repeticiones de Microsatélite/genética , Masculino , Femenino , Fenotipo , Variación Genética/genética , Ecosistema , Rasgos de la Historia de Vida
11.
Evol Appl ; 17(7): e13741, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957311

RESUMEN

Chinook salmon (Oncorhynchus tshawytscha) display remarkable life history diversity, underpinning their ability to adapt to environmental change. Maintaining life history diversity is vital to the resilience and stability of Chinook salmon metapopulations, particularly under changing climates. However, the conditions that promote life history diversity are rapidly disappearing, as anthropogenic forces promote homogenization of habitats and genetic lineages. In this study, we use the highly modified Yuba River in California to understand if distinct genetic lineages and life histories still exist, despite reductions in spawning habitat and hatchery practices that have promoted introgression. There is currently a concerted effort to protect federally listed Central Valley spring-run Chinook salmon populations, given that few wild populations still exist. Despite this, we lack a comprehensive understanding of the genetic and life history diversity of Chinook salmon present in the Yuba River. To understand this diversity, we collected migration timing data and GREB1L genotypes from hook-and-line, acoustic tagging, and carcass surveys of Chinook salmon in the Yuba River between 2009 and 2011. Variation in the GREB1L region of the genome is tightly linked with run timing in Chinook salmon throughout their range, but the relationship between this variation and entry on spawning grounds is little explored in California's Central Valley. We found that the date Chinook salmon crossed the lowest barrier to Yuba River spawning habitat (Daguerre Point Dam) was tightly correlated with their GREB1L genotype. Importantly, our study confirms that ESA-listed spring-run Chinook salmon are spawning in the Yuba River, promoting a portfolio of life history and genetic diversity, despite the highly compressed habitat. This work highlights the need to identify and protect this life history diversity, especially in heavily impacted systems, to maintain healthy Chinook salmon metapopulations. Without protection, we run the risk of losing the last vestiges of important genetic variation.

12.
Ecol Evol ; 14(7): e11681, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988346

RESUMEN

Male and female birds have different roles in reproduction and, thereby in their reproductive investment, which in turn may increase negative effects of poorer breeding conditions caused by e.g., climate change or ecosystem regime shifts. By using a 33-year time series of resightings of Atlantic puffins Fratercula arctica individually colour-ringed as breeders in previous years, we showed that the difference in colony attendance of male and female birds depended on the environmental conditions for raising young, proxied by the average duration of the chick period and size of the herring Clupea harengus fed to the chicks in the colony each year. The longer the chick period, the more was the sex ratio of adults sitting visibly in the colony biased in favour of males. An increase in herring size, indicating better feeding conditions for raising chicks, led to more observations of both sexes. Additionally, we found that birds were observed less with age and females more so than males. We discuss the results in relation to general life-history theory on sexual differences in trade-offs between individual investment in breeding and own survival. Our results suggest that females are increasingly more willing than males to invest in provisioning for the chick the more and longer the chick needs such care.

13.
ISME Commun ; 4(1): ycae081, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38988701

RESUMEN

Not all bacteria are fast growers. In soil as in other environments, bacteria exist along a continuum-from copiotrophs that can grow rapidly under resource-rich conditions to oligotrophs that are adapted to life in the "slow lane." However, the field of microbiology is built almost exclusively on the study of copiotrophs due, in part, to the ease of studying them in vitro. To begin understanding the attributes of soil oligotrophs, we analyzed three independent datasets that represent contrasts in organic carbon availability. These datasets included 185 samples collected from soil profiles across the USA, 950 paired bulk soil and rhizosphere samples collected across Europe, and soils from a microcosm experiment where carbon availability was manipulated directly. Using a combination of marker gene sequencing and targeted genomic analyses, we identified specific oligotrophic taxa that were consistently more abundant in carbon-limited environments (subsurface, bulk, unamended soils) compared to the corresponding carbon-rich environment (surface, rhizosphere, glucose-amended soils), including members of the Dormibacterota and Chloroflexi phyla. In general, putative soil oligotrophs had smaller genomes, slower maximum potential growth rates, and were under-represented in culture collections. The genomes of oligotrophs were more likely to be enriched in pathways that allow oligotrophs to metabolize a range of energy sources and store carbon, while genes associated with energy-intensive functions like chemotaxis and motility were under-represented. However, few genomic attributes were shared, highlighting that oligotrophs likely use a range of different metabolic strategies and regulatory pathways to thrive in resource-limited soils.

14.
J Fish Biol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38988009

RESUMEN

We recorded the morphological characteristics and effect of preservation methods on the structure of the egg veils of Lophius litulon found in field investigations. The egg veils were characterized as translucent sheet-shape with parallel opaque creases spaced approximately 2 cm apart. The egg veils were found to be composed of pentagonal or hexagonal chambers with rounded corners arranged in one layer, and each chamber enveloped one to three embryos. Cryopreservation is recommended to prevent structural changes in the egg veil rather than ethanol solution and neutral buffered formalin solution.

15.
J Evol Biol ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38989795

RESUMEN

Phenological advances are a widespread response to global warming and can contribute to determine the climate vulnerability of organisms, particularly in ectothermic species which are highly dependent on ambient temperatures to complete their life cycle. Yet, the relative contribution of breeding dates and temperature conditions during gestation on fitness of females and their offspring is poorly documented in reptiles. Here, we exposed females of the common lizard Zootoca vivipara to contrasting thermal scenarios (cold versus hot treatment) during gestation and quantified effects of parturition dates and thermal treatment on life-history traits of females and their offspring for one year. Overall, our results suggest that parturition date has a greater impact than thermal conditions during gestation on life history strategies. In particular, we found positive effects of an earlier parturition date on juvenile survival, growth and recruitment suggesting that environmental dependent selection and/or differences in parental quality between early and late breeders underlie seasonal changes in offspring fitness. Yet, an earlier parturition date compromised the energetic condition of gravid females, which suggests the existence of a mother-offspring conflict regarding the optimisation of parturition dates. While numerous studies focused on the direct effects of alterations in incubation temperatures on reptile life-history traits, our results highlight the importance of considering the role of breeding phenology in assessing the short- and long-term effects of thermal developmental plasticity.

16.
J Therm Biol ; 123: 103895, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38996476

RESUMEN

Global warming may affect the early developmental stages of high-altitude amphibians, thereby influencing their later fitness. Yet, this has been largely unexplored. To investigate whether and how the temperatures experienced by embryonic and larval stages affect their fitness at later developmental stages, we designed two experiments in which the embryos and larvae were treated with three temperatures (24, 18 and 12 °C), respectively. Then, the life history traits of the tadpoles during the metamorphotic climax in all treatments were evaluated, including growth rate, survival rate, morphology, thermal physiology, swimming performance, standard metabolic rate (SMR), oxidative and antioxidative system, and metabolic enzyme activities. The results revealed that elevated temperature accelerated metamorphosis but decreased body size at metamorphosis. Additionally, warming during the embryonic and larval stages decreased the thermal tolerance range and induced increased oxidative stress. Furthermore, high embryonic temperature significantly decreased the hatching success, but had no significant effect on swimming performance and SMR. Warming during larval periods was harmful to the survival and swimming performance of tadpoles. The effect size analysis revealed that the negative impacts of embryonic temperature on certain physiological traits, such as growth and development, survival and swimming performance, were more pronounced than those of larval temperature. Our results highlight the necessity for particular attention to be paid to the early stages of amphibians, notably the embryonic stages when evaluating the impact of global warming on their survival.

17.
Trends Ecol Evol ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003192

RESUMEN

Life history strategies, which combine schedules of survival, development, and reproduction, shape how natural selection acts on species' heritable traits and organismal fitness. Comparative analyses have historically ranked life histories along a fast-slow continuum, describing a negative association between time allocation to reproduction and development versus survival. However, higher-quality, more representative data and analyses have revealed that life history variation cannot be fully accounted for by this single continuum. Moreover, studies often do not test predictions from existing theories and instead operate as exploratory exercises. To move forward, we offer three recommendations for future investigations: standardizing life history traits, overcoming taxonomic siloes, and using theory to move from describing to understanding life history variation across the Tree of Life.

18.
Parasit Vectors ; 17(1): 294, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982472

RESUMEN

BACKGROUND: Microsporidia MB (MB) is a naturally occurring symbiont of Anopheles and has recently been identified as having a potential to inhibit the transmission of Plasmodium in mosquitoes. MB intensity is high in mosquito gonads, with no fitness consequences for the mosquito, and is linked to horizontal (sexual) and vertical (transovarial) transmission from one mosquito to another. Maximising MB intensity and transmission is important for maintaining heavily infected mosquito colonies for experiments and ultimately for mosquito releases. We have investigated how diet affects the MB-Anopheles arabiensis symbiosis phenotypes, such as larval development and mortality, adult size and survival, as well as MB intensity in both larvae and adults. METHODS: F1 larvae of G0 females confirmed to be An. arabiensis and infected with MB were either combined (group lines [GLs]) or reared separately (isofemale lines [IMLs]) depending on the specific experiment. Four diet regimes (all mg/larva/day) were tested on F1 GLs: Tetramin 0.07, Tetramin 0.3, Gocat 0.3 and Cerelac 0.3. GLs reared on Tetramin 0.3 mg/larva/day were then fed either a 1% or 6% glucose diet to determine adult survival. Larvae of IMLs were fed Tetramin 0.07 mg and Tetramin 0.3 mg for larval experiments. The mosquitoes in the adult experiments with IMLs were reared on 1% or 6% glucose. RESULTS: Amongst the four larval diet regimes tested on An. arabiensis development in the presence of MB, the fastest larval development highest adult emergence, largest body size of mosquitoes, highest prevalence and highest density of MB occurred in those fed Tetramin 0.3 mg/larva/day. Although adult MB-positive mosquitoes fed on 6% glucose survived longer than MB-negative mosquitoes, there was no such effect for those fed on the 1% glucose diet. Development time, wing length and adult survival were not significantly different between MB-infected and uninfected An. arabiensis fed on the Tetramin 0.07 mg/larva/day diet, demonstrating that the MB-conferred fitness advantage was diet-dependent. CONCLUSIONS: Microsporidia MB does not adversely impact the development and fitness of An. arabiensis, even under limited dietary conditions. The diet regime of Tetramin 0.3 mg/larva/day + 6% glucose for adults is the superior diet for the mass rearing of MB-infected An. arabiensis mosquitoes. These results are important for rearing MB-infected An. arabiensis in the laboratory for experiments and the mass rearing required for field releases.


Asunto(s)
Anopheles , Dieta , Larva , Microsporidios , Animales , Anopheles/microbiología , Anopheles/fisiología , Anopheles/parasitología , Femenino , Larva/microbiología , Larva/crecimiento & desarrollo , Microsporidios/fisiología , Simbiosis , Mosquitos Vectores/microbiología , Mosquitos Vectores/fisiología
19.
Insect Sci ; 2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39034425

RESUMEN

We made separate experiments to examine life-history traits and activities of protective enzymes as affected by carbon dioxide (CO2) elevation to 780 µL/L as compared to 390 µL/L in imidacloprid- or buprofezin-resistant strains of the brown planthopper (BPH) Nilaparvata lugens. We found an interaction effect between resistance and the CO2 level on the nymphal survival and duration in both resistant strains. Nymphal durations in both resistant strains were much shorter in the resistant than susceptible BPH at 780 µL/L but similar between them or slightly shorter in the resistant than susceptible BPH at 390 µL/L. Nymphal survival was lower for imidacloprid-resistant than its susceptible BPH at 390 µL/L but higher at 780 µL/L; it stayed unaffected by the CO2 elevation in buprofezin-resistant BPH. We did not observe an interaction effect between resistance and the CO2 level on major reproductive parameters in both resistant strains. But the 2 strains were not consistent across CO2 levels in all parameters. Our measurements of protective enzyme activities of superoxide dismutase, catalase, and peroxidase showed an interaction between resistance and the CO2 level. Overall, these enzymes became similar in activity between resistant and susceptible BPH at 780 µL/L compared to 390 µL/L and the change was more distinct in the imidacloprid- than buprofezin-resistant BPH strains. Our findings suggest that CO2 elevation can affect life-history traits of insecticide-resistant BPH, while the effect may vary depending on the kind of insecticides it is resistant to.

20.
Glob Chang Biol ; 30(7): e17400, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39007244

RESUMEN

Species exploiting seasonal environments must alter timings of key life-history events in response to large-scale climatic changes in order to maintain trophic synchrony with required resources. Yet, substantial among-species variation in long-term phenological changes has been observed. Advancing from simply describing such variation towards predicting future phenological responses requires studies that rigorously quantify and explain variation in the direction and magnitude of changing timings across diverse species in relation to key ecological and life-history variables. Accordingly, we fitted multi-quantile regressions to 59 years of multi-species data on spring and autumn bird migration timings through northern Scotland. We demonstrate substantial variation in changes in timings among 72 species, and tested whether such variation can be explained by species ecology, life-history and changes in local abundance. Consistent with predictions, species that advanced their migration timing in one or both seasons had more seasonally restricted diet types, fewer suitable breeding habitat types, shorter generation lengths and capability to produce multiple offspring broods per year. In contrast, species with less seasonally restricted diet types and that produce single annual offspring broods, showed no change. Meanwhile, contrary to prediction, long-distance and short-distance migrants advanced migration timings similarly. Changes in migration timing also varied with changes in local migratory abundance, such that species with increasing seasonal abundance apparently altered their migration timing, whilst species with decreasing abundance did not. Such patterns broadly concur with expectation given adaptive changes in migration timing. However, we demonstrate that similar patterns can be generated by numerical sampling given changing local abundances. Any apparent phenology-abundance relationships should, therefore, be carefully validated and interpreted. Overall, our results show that migrant bird species with differing ecologies and life-histories showed systematically differing phenological changes over six decades contextualised by large-scale environmental changes, potentially facilitating future predictions and altering temporal dynamics of seasonal species co-occurrences.


Asunto(s)
Migración Animal , Aves , Estaciones del Año , Animales , Migración Animal/fisiología , Aves/fisiología , Escocia , Ecosistema , Rasgos de la Historia de Vida , Cambio Climático , Dieta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA