Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Intervalo de año de publicación
1.
FEBS Lett ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152528

RESUMEN

Lin28A and Lin28B are paralogous RNA-binding proteins that play fundamental roles in development and cancer by regulating the microRNA family of tumor suppressor Let-7. Although Lin28A and Lin28B share some functional similarities with Let-7 inhibitors, they also have distinct expression patterns and biological functions. Increasing evidence indicates that Lin28A and Lin28B differentially impact cancer stem cell properties, epithelial-mesenchymal transition, metabolic reprogramming, and other hallmarks of cancer. Therefore, it is important to understand the overexpression of Lin28A and Lin28B paralogs in specific cancer contexts. In this review, we summarize the main similarities and differences between Lin28A and Lin28B, their implications in different cellular processes, and their role in different types of cancer. In addition, we provide evidence of other specific targets of each lin28 paralog, as well as the lncRNAs and miRNAs that promote or inhibit its expression, and how this impacts cancer development and progression.

2.
Ciênc. rural (Online) ; 52(10): e20210171, 2022. tab, graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1364719

RESUMEN

LIN28 is a RNA-binding protein including two highly conserved homologous, LIN28A and LIN28B. Proto-oncogenes such as LIN28A and LIN28B are generally targeted by the let-7 miRNAs in different types of human cancers. Here, we determined the expression of LIN28A in canine mammary tumor samples and the LIN28/let-7 pathway in canine mammary cell lines. In those cell lines, we identified a functional LIN28/let-7 pathway which exhibited high expression of let-7 members and low expression of its targets, including LIN28A and LIN28B. However, the mammary carcinoma tissue samples showed a frequent expression of LIN28A being expressed mainly in the epithelial cells. No association was observed between LIN28A expression and histopathological classification and grade, TNM and survival time. Our results suggested a possible role of the LIN28A protein in the development of canine mammary carcinomas due to the high frequency observed in the tumor samples (28 of 32). The in vitro experiments suggested that the LIN28/let-7 pathway is active in the tumor cells evaluated. However, more studies are necessary to elucidate the exact role of LIN28/let-7 pathway in canine mammary carcinomas.


LIN28 é uma proteína de ligação ao RNA, com duas formas homólogas altamente conservadas, LIN28A e LIN28B. Os proto-oncogenes LIN28A e LIN28B são regulados pela família de miRNAs let-7 em diferentes tipos de cânceres em humanos. No presente trabalho, o objetivo foi determinar a expressão de LIN28A em amostras de tumor mamário de cadelas e a via LIN28/let-7 em linhagens celulares mamárias caninas. Nestas linhagens, através das técnicas de qPCR e RNAseq, foi identificado que a via LIN28/let-7 apresenta-se funcional, com alta expressão dos membros da família let-7 e baixa expressão de seus alvos, entre eles LIN28A e LIN28B. No entanto, as amostras de tecidos de carcinomas mamários caninos demonstraram expressão frequente de LIN28A, sendo observada principalmente em células epiteliais. Não foram observadas associações entre expressão de LIN28A com classificação e gradação histopatológicas, TNM e tempo de sobrevida. Nossos resultados sugerem uma possível relação da proteína LIN28A no desenvolvimento de carcinomas mamários caninos devido à alta frequência observada nas amostras tumorais (28 de 32). Os experimentos in vitro sugerem que a via LIN28/let-7 é ativa nas linhagens celulares caninas avaliadas. Entretanto, estudos funcionais ainda são necessários para elucidar a função exata da via LIN28/let-7 nos carcinomas mamários caninos.


Asunto(s)
Animales , Femenino , Perros , Neoplasias Mamarias Animales/genética , Proteínas de Unión al ARN/análisis , MicroARNs/análisis , Reacción en Cadena de la Polimerasa
3.
Adv Exp Med Biol ; 1326: 55-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33378003

RESUMEN

Lin28 is a highly conserved RNA binding protein that regulates stemness whose molecular role has been widely studied in vitro. However, the regulation and the molecular role of Lin28 during the development of the vertebrate central nervous system (CNS) in vivo are not completely understood. Here, the expression and the putative role of Lin28 in the development of the mammalian CNS are reviewed in the context of recent results showing the progressive cellular and molecular changes in neural progenitor cells. Downstream genes that may play a role during CNS development and the effect of misregulated expression of Lin28 are discussed. Evidence suggests that Lin28 promotes symmetric divisions over asymmetric divisions, increasing the number of progenitors during early neurogenesis. Future quantitative analysis of Lin28 isoforms levels and stabilities together with single cell transcriptomics data, cell cycle dynamics and cell fate analysis in Lin28 gain- and loss-of-function experiments will provide a better understanding of the molecular role of Lin28 during development.


Asunto(s)
MicroARNs , Células-Madre Neurales , Animales , Diferenciación Celular , Proliferación Celular , Sistema Nervioso Central
4.
Artículo en Inglés | MEDLINE | ID: mdl-33319653

RESUMEN

The Let-7:LIN28 regulatory loop is a paradigm in miRNA regulation. LIN28 harbors two RNA binding domains, which interact with well-conserved sequences in pre-let-7 RNAs, the GNGAY and the GGAG motifs. Here, the differential binding between LIN28B and pre-let-7 members was associated with the structural characteristics of the pre-let-7 family mapped by SHAPE, uncovering diverse structural patterns within pre-let-7 members. Pre-let-7 mutants supported a relevant role of the GGAG motif location and the preE-stem stability for the interaction with LIN28B. Based on these results, we propose a core RNA structure for LIN28B interaction.


Asunto(s)
MicroARNs/química , MicroARNs/metabolismo , Precursores del ARN/química , Precursores del ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Secuencia de Bases , Humanos , MicroARNs/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Precursores del ARN/genética
5.
Front Cell Dev Biol ; 8: 562940, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330447

RESUMEN

The axolotl (Ambystoma mexicanum) is a caudate amphibian, which has an extraordinary ability to restore a wide variety of damaged structures by a process denominated epimorphosis. While the origin and potentiality of progenitor cells that take part during epimorphic regeneration are known to some extent, the metabolic changes experienced and their associated implications, remain unexplored. However, a circuit with a potential role as a modulator of cellular metabolism along regeneration is that formed by Lin28/let-7. In this study, we report two Lin28 paralogs and eight mature let-7 microRNAs encoded in the axolotl genome. Particularly, in the proliferative blastema stage amxLin28B is more abundant in the nuclei of blastemal cells, while the microRNAs amx-let-7c and amx-let-7a are most downregulated. Functional inhibition of Lin28 factors increase the levels of most mature let-7 microRNAs, consistent with an increment of intermediary metabolites of the Krebs cycle, and phenotypic alterations in the outgrowth of the blastema. In summary, we describe the primary components of the Lin28/let-7 circuit and their function during axolotl regeneration, acting upstream of metabolic reprogramming events.

6.
Am J Physiol Cell Physiol ; 319(3): C541-C551, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697599

RESUMEN

Lin28a/miRNA let-7b-5p pathway has emerged as a key regulators of energy homeostasis in the skeletal muscle. However, the mechanism through which this pathway is regulated in the skeletal muscle has remained unclear. We have found that 8 wk of aerobic training (Tr) markedly decreased let-7b-5p expression in murine skeletal muscle, whereas high-fat diet (Hfd) increased its expression. Conversely, Lin28a expression, a well-known inhibitor of let-7b-5p, was induced by Tr and decreased by Hfd. Similarly, in human muscle biopsies, Tr increased LIN28 expression and decreased let-7b-5p expression. Bioinformatics analysis of LIN28a DNA sequence revealed that its enrichment in peroxisome proliferator-activated receptor delta (PPARδ) binding sites, which is a well-known metabolic regulator of exercise. Treatment of primary mouse skeletal muscle cells or C2C12 cells with PPARδ activators GW501516 and AICAR increased Lin28a expression. Lin28a and let-7b-5p expression was also regulated by PPARδ coregulators. While PPARγ coactivator-1α (PGC1α) increased Lin28a expression, corepressor NCoR1 decreased its expression. Furthermore, PGC1α markedly reduced the let-7b-5p expression. PGC1α-mediated induction of Lin28a expression was blocked by the PPARδ inhibitor GSK0660. In agreement, Lin28a expression was downregulated in PPARδ knocked-down cells leading to increased let-7b-5p expression. Finally, we show that modulation of the Lin28a-let-7b-5p pathway in muscle cells leads to changes in mitochondrial metabolism in PGC1α dependent fashion. In summary, we demonstrate that Lin28a-let-7b-5p is a direct target of PPARδ in the skeletal muscle, where it impacts mitochondrial respiration.


Asunto(s)
Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , PPAR delta/metabolismo , Proteínas de Unión al ARN/genética , Animales , Línea Celular , Regulación hacia Abajo , Ratones , Fibras Musculares Esqueléticas/metabolismo , PPAR delta/genética
7.
Dev Dyn ; 248(10): 969-978, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31397023

RESUMEN

BACKGROUND: Lin28 regulates stem cell biology and developmental timing. At the molecular level Lin28 inhibits the biogenesis of the micro RNA let-7 and directly controls the transcription and translation of several genes. In Xenopus, Lin28 overexpression delays metamorphosis and affects the expression of genes of the thyroid hormone (TH) axis. The TH carrier albumin, synthesized by the liver, is down-regulated in limbs and tail after Lin28 overexpression. The molecular mechanisms underlying the interaction between Lin28, let-7, and the hypothalamus-pituitary-thyroid gland (HPT) axis are unknown. RESULTS: We found that precursor and mature forms of let-7 increase during Xenopus metamorphosis. In the liver, lin28b is down-regulated and albumin is up-regulated during metamorphosis. Overexpression of a truncated form of Lin28a (Lin28aΔC), which has been shown not to interact with RNA helicase A to regulate translation, delays metamorphosis, indicating that the translational regulation domain is not required to inhibit the HPT axis. Importantly, both full length Lin28a and Lin28aΔC block the increase of albumin mRNA in the liver independently of changes in TH signaling. CONCLUSIONS: These results suggest that Lin28 delays metamorphosis through regulation of let-7 and that the decrease of the TH carrier albumin is one of the early changes after Lin28 overexpression.


Asunto(s)
Albúminas/metabolismo , Metamorfosis Biológica/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Regulación hacia Abajo , Regulación del Desarrollo de la Expresión Génica , Hígado/metabolismo , MicroARNs/antagonistas & inhibidores , Biosíntesis de Proteínas , Dominios Proteicos , Proteínas de Unión al ARN/farmacología , Hormonas Tiroideas/metabolismo , Proteínas de Xenopus/farmacología , Xenopus laevis
8.
Mech Dev ; 154: 107-115, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29908237

RESUMEN

Insect metamorphosis has been a classic model to understand the role of hormones in growth and timing of developmental transitions. In addition to hormones, transitions in some species are regulated by genetic programs, such as the heterochronic gene network discovered in C. elegans. However, the functional link between hormones and heterochronic genes is not clear. The heterochronic gene lin-28 is involved in the maintenance of stem cells, growth and developmental timing in vertebrates. In this work, we used gain-of-function and loss-of-function experiments to study the role of Lin-28 in larval growth and the timing of metamorphosis of Drosophila melanogaster. During the late third instar stage, Lin-28 is mainly expressed in neurons of the central nervous system and in the intestine. Loss-of-function lin-28 mutant larvae are smaller and the larval-to-pupal transition is accelerated. This faster transition correlates with increased levels of ecdysone direct target genes such as Broad-Complex (BR-C) and Ecdysone Receptor (EcR). Overexpression of Lin-28 does not affect the timing of pupariation but most animals are not able to eclose, suggesting defects in metamorphosis. Overexpression of human Lin-28 results in delayed pupariation and the death of animals during metamorphosis. Altogether, these results suggest that Lin-28 is involved in the control of growth during larval development and in the timing and progression of metamorphosis.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Metamorfosis Biológica/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Larva/genética , Larva/crecimiento & desarrollo , Pupa/genética , Pupa/crecimiento & desarrollo , Receptores de Esteroides/genética , Alineación de Secuencia
9.
Microrna ; 7(1): 62-71, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29336272

RESUMEN

BACKGROUND: The let-7 microRNAs (miRNAs) are frequently dysregulated in carcinogenic processes, including cervical cancer. LIN28 proteins regulate let-7 biogenesis by binding to conserved sequences within the pre-miRNA structure. Nevertheless, recent research has shown that some let-7 miRNAs may escape LIN28 regulation. OBJECTIVE: Correlate pre-let-7 miRNAs and LIN28B levels in cervical cell lines with different malignancy and HPV content. METHODS: Pre-let-7 levels were determined by RTqPCR. LIN28B and other let-7 targets were analyzed by immunoblot. In silico tools were used to correlate let-7 and LIN28B expression and to analyze prelet- 7 sequences and structures. RESULTS: Lin28B protein was detected in all tested cell lines although it was more expressed in tumor cell lines. High levels of pre-let-7c/f-1 and pre-miR-98 were present in almost all cell lines regardless malignancy and LIN28B expression. Pre-let-7g/i were mainly expressed in tumor cell lines, pre-let-7e and pre-let-7-a3 were absent in all cell lines and pre-let-7a-2 showed indistinct expression. LIN28B showed positive correlation with pre-let-7i/g/f-1 and pre-miR-98 in tumor cell lines, suggesting escape from regulation. Sequence alignment and analysis of pre-let-7 miRNAs showed distinctive structural features within the preE region that may influence the ideal pre-let-7 structuring for LIN28B interaction. Short preE-stems were present in pre-let-7 that may escape LIN28B regulation, but long preEstems were mostly associated with high-level pre-let-7 miRNAs. CONCLUSION: The observed differences of pre-let-7 levels in cervical cell lines may be the result of alternative preE structuring affecting interaction with LIN28B thus resulting in differential let-7 regulation.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Proteínas de Unión al ARN/genética , Neoplasias del Cuello Uterino/genética , Emparejamiento Base , Secuencia de Bases , Secuencia Conservada , Femenino , Humanos , MicroARNs/metabolismo , Proteínas de Unión al ARN/metabolismo , Alineación de Secuencia , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología
10.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(7): e7220, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-889115

RESUMEN

An abnormality in the Lin28/let-7a axis is relevant to the progression of hepatitis B virus (HBV)-positive hepatocellular carcinoma (HCC), which could be a novel therapeutic target for this malignant tumor. The present study aimed to investigate the antiproliferative and anti-invasive effects of urolithin A in a stable full-length HBV gene integrated cell line HepG2.2.15 using CCK-8 and transwell assays. The RNA and protein expressions of targets were assessed by quantitative PCR and western blot, respectively. Results revealed that urolithin A induced cytotoxicity in HepG2.2.15 cells, which was accompanied by the cleavage of caspase-3 protein and down-regulation of Bcl-2/Bax ratio. Moreover, urolithin A suppressed the protein expressions of Sp-1, Lin28a, and Zcchc11, and elevated the expression of microRNA let-7a. Importantly, urolithin A also regulated the Lin28a/let-7a axis in transient HBx-transfected HCC HepG2 cells. Furthermore, urolithin A decelerated the HepG2.2.15 cell invasion, which was involved in suppressing the let-7a downstream factors HMGA2 and K-ras. These findings indicated that urolithin A exerted the antiproliferative effect by regulating the Lin28a/let-7a axis and may be a potential supplement for HBV-infected HCC therapy.


Asunto(s)
Humanos , Proteínas de Unión al ARN/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Cumarinas/farmacología , MicroARNs/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Valores de Referencia , Sincalida/análisis , Factores de Tiempo , Replicación Viral/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Western Blotting , Reproducibilidad de los Resultados , Análisis de Varianza , Proteínas de Unión al ARN/análisis , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , MicroARNs/análisis , Proliferación Celular/efectos de los fármacos , Células Hep G2 , Reacción en Cadena en Tiempo Real de la Polimerasa , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología
11.
Oncotarget ; 8(12): 19192-19204, 2017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28186969

RESUMEN

Medulloblastoma is a highly aggressive pediatric brain tumor, in which sporadic expression of the pluripotency factor OCT4 has been recently correlated with poor patient survival. However the contribution of specific OCT4 isoforms to tumor aggressiveness is still poorly understood. Here, we report that medulloblastoma cells stably overexpressing the OCT4A isoform displayed enhanced clonogenic, tumorsphere generation, and invasion capabilities. Moreover, in an orthotopic metastatic model of medulloblastoma, OCT4A overexpressing cells generated more developed, aggressive and infiltrative tumors, with tumor-bearing mice attaining advanced metastatic disease and shorter survival rates. Pro-oncogenic OCT4A effects were expression-level dependent and accompanied by distinct chromosomal aberrations. OCT4A overexpression in medulloblastoma cells also induced a marked differential expression of non-coding RNAs, including poorly characterized long non-coding RNAs and small nucleolar RNAs. Altogether, our findings support the relevance of pluripotency-related factors in the aggravation of medulloblastoma traits classically associated with poor clinical outcome, and underscore the prognostic and therapeutic value of OCT4A in this challenging type of pediatric brain cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias Cerebelosas/patología , Meduloblastoma/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Movimiento Celular , Proliferación Celular , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Femenino , Humanos , Meduloblastoma/genética , Meduloblastoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Factor 3 de Transcripción de Unión a Octámeros/genética , Pronóstico , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA