RESUMEN
Thirteen fucosterol derivatives were prepared by structural modification at the hydroxyl group in C-3 and catalytic hydrogenation at the carbon-carbon double bond in C-5(6) and C-24(28). The structures of all compounds were established based on their spectral data (IR, MS, and NMR). Fucosterol (1) and its derivatives (2-12, and a mixture of 13a and 13b) were evaluated for their in vitro antibacterial activity against Klebsiella pneumoniae (ATCC 10031), Escherichia coli (ATCC 10536), Pseudomonas aeruginosa (ATCC 15442), Streptococcus mutans (ATCC 0046) and Staphylococcus aureus using the microdilution method. Among them, 1, 8, 9, 10, and a mixture of 13a and 13b exhibited the best antibacterial activity. The derivative 7 was inactive against all bacterial strains evaluated (MIC ≥ 2.327 mM). In addition, the investigation of binding interactions of more active compounds (1, 8, 9, 10, and mixture of 13a and 13b) to appropriate proteins was performed using molecular docking. This paper registers for the first time the in silico studies on the antibacterial activity of compounds 1, 8, 9, 10, and mixture of 13a/13b, and the spectral data of compounds 4, 6, and 7.
Asunto(s)
Antibacterianos , Bacterias , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Microbiana , Antibacterianos/químicaRESUMEN
A 12.4 kDa laminarin (LM) composed of ß(1â3)-glucan with ß(1â6)-branches was extracted from brown seaweed Lobophora variegata and modified via carboxylation using dielectric barrier discharge (LMC), conjugation with gallic acid (LMG), and sulfation (LMS). Analyses of the chemical composition of LMC, LMG, and LMS yielded 11.7% carboxyl groups, 1.5% gallic acid, and 1.4% sulfate content, respectively. Antioxidant activities of native and modified laminarins were assessed using six different in vitro methods. Sulfation stopped the antioxidant activities of LM. On the other hand, carboxylation improved cooper chelation (1.2 times). LMG was found to be a more efficient antioxidant agent than LM in terms of copper chelation (1.3 times), reducing power (1.3 times), and total antioxidant capacity (80 times). Gallic acid conjugation was further confirmed using Fourier transform infrared spectroscopy (FT-IR) and one- and two-dimensional NMR spectroscopy analyses. LMG also did not induce cell death or affect the cell cycle of Madin-Darby canine kidney (MDCK) cells. On the contrary, LMG protected MDCK cells from H2O2-induced oxidative damage. Taken together, these results show that LMG has the potent antioxidant capacity, and, therefore, potential applications in pharmacological and functional food products.
RESUMEN
Echinometra viridis previously was considered a cryptic species unable to control the development and growth of macroalgae on coral reefs. Its role as a herbivore was seen as minor compared to other grazers present on the reef. However, the present disturbed state of some reefs has highlighted the role played by this sea-urchin. Combining field data with experiments on the Caribbean coast of Panama, we demonstrate that the current community organization on disturbed coral reefs in the Mesoamerican Caribbean is largely due to the action of E. viridis. It is the most abundant sea-urchin species, together with two others (Diadema antillarum and Echinometra lucunter). Field data also indicate that the relationship between its density and the abundance of macroalgae is stronger and it is more negative in impact than those of the other two. However, the niche this urchin exploits most efficiently is confined to leeward reefs with low levels of sedimentation. Outside these habitats, their populations are not decisive in controlling macroalgal growth. Grazing experiments showed that E. viridis consumes more fresh macroalgae per day and per weight of sea-urchin, and is a more effective grazer than D. antillarum or E. lucunter. E. viridis showed food preferences for early-successional turf macroalgae (Acanthophora spicifera), avoiding the less palatable late-successional and fleshy macroalgae (Lobophora variegata, Halimeda opuntia). However, it becomes a generalist herbivore feeding on all varieties of macroalgae when resources are scarce. H. opuntia is the macroalga that most resists E. viridis activity, which may explain its wide distribution.
Asunto(s)
Arrecifes de Coral , Monitoreo del Ambiente , Herbivoria , Erizos de Mar/fisiología , Animales , Antozoos , Ecosistema , Panamá , Densidad de Población , Algas MarinasRESUMEN
Lobophora variegata, a brown alga collected from the coast of the Yucatan peninsula, Mexico, was studied for antiprotozoal activity against Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis. The whole extract showed the highest activity against T. vaginalis, with an IC(50) value of 3.2 microg/mL. For the fractions, the best antiprotozoal activity was found in non-polar fractions. The chloroform fraction of the extract contained a major sulfoquinovosyldiacylglycerol (SQDG), identified as 1-O-palmitoyl-2-O-myristoyl-3-O-(6'''-sulfo-alpha-D-quinovopyranosyl)-glycerol (1), together with small amounts of 1,2-di-O-palmitoyl-3-O-(6'''-sulfo-alpha-D-quinovopyranosyl)-glycerol (2) and a new compound identified as 1-O-palmitoyl-2-O-oleoyl-3-O-(6'''-sulfo-alpha-D-quinovopyranosyl)-glycerol (3). Their structures were elucidated on the basis of chemical and enzymatic hydrolysis and careful analysis of FAB-MS and NMR spectroscopic data. This is the first report on the isolation of SQDGs from L. variegata. The mixture of 1-3 showed good activity against E. histolytica and moderate activity against T. vaginalis with IC(50s) of 3.9 and 8.0 microg/mL, respectively, however, the activity of 1-3 is not as effective as metronidazole. These results afford ground information for the potential use of the whole extract and fractions of this species in protozoal infections.