Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Intervalo de año de publicación
1.
Luminescence ; 39(1): e4601, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37743791

RESUMEN

A new class of lanthanide mixed-carboxylate ligands compounds with formula {[Ln2 (phthgly)4 (bdc)(H2 O)6 ]·(H2 O)4 }∞ , labelled as Ln3+ : Eu (1) and Gd (2) coordination polymers (CP) were synthesized under mild reaction conditions between lanthanide nitrate salts and a solution of N-phthaloylglycine (phthgly) and terephthalic (bdc) ligands. The (1) and (2) coordination polymers were formed by symmetric binuclear units, in which phthgly and bdc carboxylate ligands are coordinated to the lanthanide ions by different coordination modes. Surprisingly, all organic ligands participate in hydrogen bonding interactions, forming an extremally rigid crystalline structure. The red narrow emission bands from the 5 D0 →7 FJ transitions of the Eu3+ ion show a high colour purity. The intramolecular energy transfer process from L→Eu3+ ion has been discussed. The experimental intensity parameters (Ω2,4 ) reflect lower angular distortion and polarizability of the chemical environment around the metal ion compared with other Eu3+ compounds reported in the literature. This novel class of coordination polymer offers a more attractive platform for developing luminescent functional materials for different applications.


Asunto(s)
Elementos de la Serie de los Lantanoides , Compuestos Organometálicos , Ácidos Ftálicos , Elementos de la Serie de los Lantanoides/química , Compuestos Organometálicos/química , Polímeros/química , Modelos Moleculares , Cristalografía por Rayos X , Ligandos , Ácidos Carboxílicos
2.
Molecules ; 28(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38067653

RESUMEN

[Eu(3DPIQC)3] (where DPIQC = 3-(diphenyl phosphoryl)-1-isoquinolinecarboxylate), a luminescent europium complex with antenna ligands, has been carefully embedded within a polyvinyl butyral (PVB) matrix and the resulting material was used to prepare films used as luminescent down-shifting layers (LDSLs) for crystalline Si-based solar cells. The films were characterized using photoluminescence spectroscopy, atomic force spectroscopy (AFM), UV-Vis spectroscopy, and fluorescence microscopy. The AFM analysis shows films with low surface roughness, while fluorescence microscopy revealed that the Eu complex embedded in PVB assumed a spheroidal configuration, a morphology especially beneficial for optical applications. The so-obtained LDSLs were utilized as energy converters in c-Si solar cells to enhance the utilization of high-energy photons, thereby improving their overall efficiency. The determination of photovoltaic parameters carried out before and after the deposition of the LDSLs on the c-Si cells confirms a positive effect on the efficiency of the cell. The Jsc increases from 121.6 mA/cm2 to 124.9 mA/cm2, and the open circuit voltage (Voc) is found to be unrelated to the complex concentration in the films. The fill factor (FF) remains constant with the Eu concentration. The EQE curves indicate an enhancement in the performance of the photovoltaic cells within the UV region of the spectrum for all coated devices. Electrochemical impedance spectroscopy (EIS) was also carried out in order to analyze the effect of the Eu complex in the charge transfer process of the devices.

3.
Nanomaterials (Basel) ; 13(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37686987

RESUMEN

Luminescent solar concentrators (LSCs) have become an attractive way to produce green energy via their integration into buildings as photovoltaic windows. Recently, carbon quantum dots (C-QDs) have become the most studied luminescent material for the manufacture of luminescent solar concentrators due to their advantages, such as low toxicity, sustainability, and low cost. Despite the advantages of carbon quantum dots, they remain a low-efficiency material, and it is difficult to fabricate LSCs with a good performance. To address this problem, some of the research has used SiO2 nanoparticles (Nps) to produce a light-scattering effect that helps to improve the system performance. However, these studies are limited and have not been discussed in detail. In this regard, this research work was designed to evaluate the contribution of the scattering effect in different systems of carbon quantum dots used in a possible luminescent solar concentrator. To carry out this study, C-QDs and SiO2 Nps were synthesized by hydrothermal methods and the Stober method, respectively. We used different concentrations of both materials to fabricate film LSCs (10 × 10 cm2). The results show that the light scattered by the SiO2 Nps has a double contribution, in terms of light redirected towards the edges of the window and as a secondary source of excitation for the C-QDs; thus, an improvement in the performance of the LSC is achieved. The best improvement in photoluminescence is achieved when the films are composed of 20% wt carbon quantum dots and 10% wt SiO2 Nps, reaching a gain of 16% of the intensity of the light incident on the edges of the window with respect to the LSCs where only C-QDs were used.

4.
J Fungi (Basel) ; 9(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37755010

RESUMEN

Mycena section Calodontes is macromorphologically distinguished by the collybioid or mycenoid basidiome, which is pink, purple, or violet, and, rarely, reddish-brown or yellowish. It is further characterized by the presence of oxalate crystals in the basal mycelium. The section comprises approximately 40 taxa, of which only five species and one variety exhibit bioluminescence. As part of an extensive study on Mycena sect. Calodontes in Mexico, specimens belonging to this section were collected and subjected to morphological analysis. Sequences from the nuclear internal transcribed spacer (ITS) of nuclear ribosomal DNA, RNA polymerase II large subunit Rpb1 (rpb1), and translation elongation factor-1α (Tef-1α) were generated to infer the relationships within Mycena sect. Calodontes using maximum likelihood and Bayesian inference. The phylogenetic evidence, along with the macro- and micromorphological features, supported the recognition of five new bioluminescent species within Mycena sect. Calodontes. Detailed macro- and micromorphological descriptions, line-drawing illustrations, and light and dark photographs of the new species are provided.

5.
Chemphyschem ; 24(21): e202300134, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37594478

RESUMEN

This research endeavors to overcome the significant challenge of developing materials that simultaneously possess photostability and photosensitivity to UV-visible irradiation. Sulfurized nanorod (NR)-like ZnO/Zn(OH)2 and hierarchical flower-like γ-Zn(OH)2 /ϵ-Zn(OH)2 were identified from XRD diffraction patterns and Raman vibrational modes. The sulfurized material, observed by FEG-SEM and TEM, showed diameters ranging from 10 and 40 nm and lengths exceeding 200 nm. The S2- ions intercalated Zn2+ , modulating NRs to dumbbell-like microrods. SAED and HRTEM illustrated the atomic structure in (101) crystal plane. Its direct band gap of 3.0 eV was attributed to the oxygen vacancies, which also contribute to the deep-level emissions at 422 and 485 nm. BET indicated specific surface area of 4.4 m2 g-1 and pore size as mesoporosity, which are higher compared to the non-sulfurized analogue. These findings were consistent with the observed photocurrent, photostability and photoluminescence (PL), further supporting the suitability of sulfurized NR-like ZnO/Zn(OH)2 as a promising candidate for Luminescent solar concentrators (LSC)-photovoltaic (PV) system.

6.
Front Immunol ; 14: 1220477, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37497229

RESUMEN

Antigen tests have been crucial for managing the COVID-19 pandemic by identifying individuals infected with SARS-CoV-2. This remains true even after immunity has been widely attained through natural infection and vaccination, since it only provides moderate protection against transmission and is highly permeable to the emergence of new virus variants. For this reason, the widespread availability of diagnostic methods is essential for health systems to manage outbreaks effectively. In this work, we generated nanobodies to the virus nucleocapsid protein (NP) and after an affinity-guided selection identified a nanobody pair that allowed the detection of NP at sub-ng/mL levels in a colorimetric two-site ELISA, demonstrating high diagnostic value with clinical samples. We further modified the assay by using a nanobody-NanoLuc luciferase chimeric tracer, resulting in increased sensitivity (detection limit = 61 pg/mL) and remarkable improvement in diagnostic performance. The luminescent assay was finally evaluated using 115 nasopharyngeal swab samples. Receiver Operating Characteristic (ROC) curve analysis revealed a sensitivity of 78.7% (95% confidence interval: 64.3%-89.3%) and specificity of 100.0% (95% confidence interval: 94.7%-100.0%). The test allows the parallel analysis of a large number of untreated samples, and fulfills our goal of producing a recombinant reagent-based test that can be reproduced at low cost by other laboratories with recombinant expression capabilities, aiding to build diagnostic capacity.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Indicadores y Reactivos , Pandemias , Anticuerpos Antivirales , Inmunoensayo/métodos , Proteínas de la Nucleocápside
7.
J Forensic Sci ; 68(3): 780-789, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36951355

RESUMEN

Currently, SEM-EDS is used to detect gunshot residue (GSR) from the presence of Ba, Pb, and Sb in the sample. However, the development of new nontoxic ammunition (NTA) has prevented conventional metals from being found. In this work, we aim to determine the presence of an inorganic luminescent chemical marker based on rare earth in gunshot residues using the technique of squarewave voltammetry (SWV). After firing, the luminescent complex [(Eu2 Zr)(btc)3 (Hbtc)0.5 .6H2 O], which is used as a chemical marker, can be detected under a UV lamp. An aqueous solution with 0.1 mol L-1 KCl as supporting electrolyte can be easily collected on carbon paste electrode surfaces for SWV analysis A = 100 mV, f = 10 Hz, and step potential of 5 mV are required. The luminescent marker incorporated into the carbon paste electrode showed two anodic peak currents in the region of 0.4 V (vs Ag/AgCl) and at 0.75 V (vs Ag/AgCl) and also a cathodic one in 0.4 V (vs Ag/AgCl). SEM-EDS was able to analyze the same voltammetric results for conventional and nontoxic ammunition containing the luminescent marker. Therefore, voltammetry and SEM-EDS are valid for detecting the new residue marker in GSR. Despite this, the electrochemical method is still more advantageous because of its low cost and lack of expensive equipment and supplies in forensic laboratories.

8.
Appl Radiat Isot ; 191: 110529, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36356556

RESUMEN

We use 395 nm ultraviolet radiation to excite the matrix of barium hafnate doped with europium ions to develop an optical temperature sensor. Luminescent analysis as a function of temperature was performed in the physiological range. The Emission spectra showed significant variations in luminescent intensity at all transitions, obtaining a relative sensitivity of 1574.3/T2, when the temperature of the material increases from 289.7 to 323.8 K. The 5D0 -> 7F2 transition presented the better temperature resolution (1.1 × 102 K).


Asunto(s)
Europio , Rayos Ultravioleta , Temperatura , Fluorescencia , Luminiscencia
9.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498852

RESUMEN

In this work, we synthesized a polydimethylsiloxane membrane containing two emitter groups chemically attached to the membrane structure. For this, we attached the anthracene group and the [Eu(bzac)3] complex as blue and red emitters, respectively, in the matrix via hydrosilylation reactions. The synthesized membrane can be used as a bifunctional temperature and oxygen ratiometric optical probe by analyzing the effects that temperature changes and oxygen levels produce on the ratio of anthracene and europium(III) emission components. As a temperature probe, the system is operational in the 203-323 K range, with an observed maximum relative sensitivity of 2.06% K-1 at 290 K and temperature uncertainties below 0.1 K over all the operational range. As an oxygen probe, we evaluated the ratiometric response at 25, 30, 35, and 40 °C. These results show an interesting approach to obtaining bifunctional ratiometric optical probes and also suggest the presence of an anthracene → europium(III) energy transfer, even though there is no chemical bonding between species.


Asunto(s)
Europio , Oxígeno , Europio/química , Luminiscencia , Antracenos
10.
ACS Appl Mater Interfaces ; 14(33): 38311-38319, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35969002

RESUMEN

Whereas lanthanide-based upconverting particles are promising candidates for several micro- and nanothermometry applications, understanding spatially varying effects related to their internal dynamics and interactions with the environment near the surface remains challenging. To separate the bulk from the surface response, this work proposes and performs hyperspectral sample-scanning experiments to obtain spatially resolved thermometric measurements on single microparticles of NaYF4: Yb3+,Er3+. Our results showed that the particle's thermometric response depends on the excitation laser incidence position, which may directly affect the temperature readout. Furthermore, it was noticed that even minor temperature changes (<1 K) caused by room temperature variations at the spectrometer CCD sensor used to record the luminescence signal may significantly modify the measurements. This work also provides some suggestions for building 2D thermal maps that shall be helpful for understanding surface-related effects in micro- and nanothermometers using hyperspectral techniques. Therefore, the results presented herein may impact applications of lanthanide-based nanothermometers, as in the understanding of energy-transfer processes inside systems such as nanoelectronic devices or living cells.

11.
Vitae (Medellín) ; 29(3): 1-7, 2022-08-18. Ilustraciones
Artículo en Inglés | LILACS, COLNAL | ID: biblio-1393174

RESUMEN

Background: Hepatocellular carcinoma (HCC) is one of the most diagnosed cancers worldwide. Chemoprevention of HCC can be achieved using natural or synthetic compounds that reverse, suppress, detect, or prevent cancer progression. Objectives: In this study, both the antiproliferative effects and luminescent properties of 2'-hydroxychalcones were evaluated. Methods: Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay, spectroscopy assays, and density functional theory (DFT) calculations were used to determine the luminescent properties of 2 ́-hydroxychalcones. Results: Cytotoxic effects of 2 ́-hydroxychalcones were observed over the HepG2 and EA.hy926 cells. Since the chalcone moiety could be used as a fluorescent probe, these compounds may be helpful in cancer diagnosis and tumor localization. They may enable tumor observation and regression through the fluorescence during treatment; therefore, the compounds are a potential candidate as novel anticancer agents acting on human hepatomas. Conclusions: This report describes the chalcones' use as a specific luminescent biomarker in tumor cells. We also report the cellular uptake of 2'-hydroxychalcones, their cellular distribution, and the mechanisms that may be responsible for their cytotoxic effects


ANTECEDENTES: El carcinoma hepatocelular (CHC) es uno de los cánceres más diagnosticados en todo el mundo. La quimio prevención del CHC se puede lograr utilizando compuestos naturales o sintéticos que reviertan, supriman, detecten o prevengan la progresión del cáncer. OBJETIVOS: En este estudio, se investigó tanto los efectos antiproliferativos como las propiedades luminiscentes de las 2'-hidroxicalconas. MÉTODOS: La viabilidad celular se evaluó usando el ensayo colorimétrico (MTT), los ensayos de espectroscopia y los cálculos DFT se usaron para determinar las propiedades luminiscentes de las 2 ́-hidroxichalconas. RESULTADOS: Se observaron efectos citotóxicos sobre las líneas celulares del tipo HepG2 y EA.hy926. Dado que la estructura de la 2 ́-hidroxichalcona puede ser usada como sonda fluorescente, estos compuestos pueden ser útiles en el diagnóstico del cáncer y la localización del tumor, ya que pueden permitir la observación a través de la fluorescencia y la regresión del tumor durante el tratamiento, por lo que son candidatas potenciales como nuevos agentes anticancerígenos que podrían actuar sobre hepatomas humanos. CONCLUSIONES: Este trabajo describe el uso de las 2 ́-hidroxichalconas como un biomarcador luminiscente específico para células tumorales. También informamos la captación celular de 2>-hidroxicalconas, su distribución celular y los mecanismos que pueden ser responsables de sus efectos citotóxicos


Asunto(s)
Humanos , Biomarcadores de Tumor , Supervivencia Celular/efectos de los fármacos , Chalconas/farmacología , Sustancias Luminiscentes , Antineoplásicos/farmacología , Células Hep G2/efectos de los fármacos
12.
Nanomaterials (Basel) ; 11(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34361202

RESUMEN

In recent years, the use of quantum dots (Qdots) to obtain biological images has attracted attention due to their excellent luminescent properties and the possibility of their association with contrast agents for magnetic resonance imaging (MRI). In this study, Gd3+/ZnO (ZnOGd) were conjugated with Qdots composed of a gadolinium-copper-indium-sulphur core covered with a ZnS shell (GCIS/ZnS Qdots). This conjugation is an innovation that has not yet been described in the literature, and which aims to improve Qdot photoluminescent properties. Structural and morphological Qdots features were obtained by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analyses (TGA). The photoluminescent properties were examined by emission (PL) and excitation (PLE) spectra. A new ZnOGd and GCIS/ZnS (ZnOGd-GCIS/ZnS) nanomaterial was synthesized with tunable optical properties depending on the ratio between the two native Qdots. A hydrophilic or lipophilic coating, using 3-glycidyloxypropyltrimethoxysilane (GPTMS) or hexadecyltrimethoxysilane (HTMS) on the surface of ZnOGd-GCIS/ZnS Qdots, was carried out before assessing their efficiency as magnetic resonance contrast agents. ZnOGd-GCIS/ZnS had excellent luminescence and MRI properties. The new Qdots developed ZnOGd-GCIS/ZnS, mostly constituted of ZnOGd (75%), which had less cytotoxicity when compared to ZnOGd, as well as greater cellular uptake.

13.
Molecules ; 26(10)2021 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-34068050

RESUMEN

Luminescent inorganic materials are used in several technological applications such as light-emitting displays, white LEDs for illumination, bioimaging, and photodynamic therapy. Usually, inorganic phosphors (e.g., complex oxides, silicates) need high temperatures and, in some cases, specific atmospheres to be formed or to obtain a homogeneous composition. Low ionic diffusion and high melting points of the precursors lead to long processing times in these solid-state syntheses with a cost in energy consumption when conventional heating methods are applied. Microwave-assisted synthesis relies on selective, volumetric heating attributed to the electromagnetic radiation interaction with the matter. The microwave heating allows for rapid heating rates and small temperature gradients yielding homogeneous, well-formed materials swiftly. Luminescent inorganic materials can benefit significantly from the microwave-assisted synthesis for high homogeneity, diverse morphology, and rapid screening of different compositions. The rapid screening allows for fast material investigation, whereas the benefits of enhanced homogeneity include improvement in the optical properties such as quantum yields and storage capacity.

14.
J Inorg Biochem ; 215: 111314, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33261934

RESUMEN

Neurotoxicity of amyloid beta (Aß) species generated in early stages of aggregation has been associated with development of Alzheimer's disease (AD). Consequently, the field of action of compounds that can identify and inhibit the formation of these species has enlarged considerably. This study investigates the effect and influence of the luminescent, water soluble metal complex cis-[Ru(phen)2(3,4Apy)2]2+ (RuApy, 3,4Apy = 3,4-diaminopyridine, phen = 1,10-phenanthroline) on the aggregation process and toxicity of Aß1-40 and its Aß1-28, Aß11-22 and Aß29-40 fragments since their early stages. The absence of correlation between the conformations generated by Aß fragments and the full length 1-40 peptide during aggregation and the absence of toxicity of Aß fragments to PC12 cells in all stages of aggregation indicated that the aggregation pathway and toxicity found to the full-length Aß1-40 depends on specific interactions between the three fragments. The toxicity of Aß1-40 was dependent on the aggregation step investigated: species generated at the beginning (15 min) of aggregation were toxic, whereas mature (120 min) fibrils were not. The RuApy complex is not toxic to PC12 cells up to 60 µM, and does not interfere with the aggregation pathway of the Aß fragments, but interferes with the aggregation of Aß1-40 and protects the PC12 cells, maintaining 100% of cell viability against the toxicity of Aß1-40 species generated in early stages of aggregation.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Complejos de Coordinación/farmacología , Agregación Patológica de Proteínas/metabolismo , Rutenio/farmacología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Microscopía Electrónica de Transmisión , Células PC12 , Fragmentos de Péptidos/efectos de los fármacos , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas/patología , Ratas , Rutenio/química , Solubilidad , Agua/química
15.
Materials (Basel) ; 13(23)2020 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-33276560

RESUMEN

Luminescent organic-inorganic hybrids containing lanthanides (Ln3+) have been prominent for applications such as luminescent bio-probes in biological assays. In this sense, a luminescent hybrid based on dense silica (SiO2) nanospheres decorated with Eu3+ ß-diketonate complexes using dibenzoylmethane (Hdbm) as a luminescent antenna was developed by using a hierarchical organization in four steps: (i) anchoring of 3-aminopropyltriethoxysilane (APTES) organosilane on the SiO2 surface, (ii) formation of a carboxylic acid ligand, (iii) coordination of Eu3+ to the carboxylate groups and (iv) coordination of dbm- to Eu3+. The hybrid structure was elucidated through the correlation of thermogravimetry, silicon nuclear magnetic resonance and photoluminescence. Results indicate that the carboxylic acid-Eu3+-dbm hybrid was formed on the surface of the particles with no detectable changes on their size or shape after all the four steps (average size of 32 ± 7 nm). A surface charge of -27.8 mV was achieved for the hybrid, assuring a stable suspension in aqueous media. The Eu3+ complex provides intense red luminescence, characteristic of Eu3+5D0→7FJ electronic transitions, with an intrinsic emission quantum yield of 38%, even in an aqueous suspension. Therefore, the correlation of luminescence, structure, particle morphology and fluorescence microscopy images make the hybrid promising for application in bioimaging.

16.
Electron. j. biotechnol ; Electron. j. biotechnol;47: 36-42, sept. 2020. tab, ilus, graf
Artículo en Español | LILACS | ID: biblio-1253018

RESUMEN

BACKGROUND: For more than a decade, water-soluble, eco-friendly, biocompatible, and low-toxicity fluorescent nanomaterials have received considerable attention for their numerous in vivo and in vitro applications in biomedical imaging, disease diagnostics, and environmental monitoring. Owing to their tunable photoluminescence properties, carbon-based luminescent nanomaterials have shown great potential in bioimaging, photocatalysis, and biosensing among other applications. RESULTS: Marine environments provide excellent resources for the fabrication of these nanomaterials, because many marine organisms contain interesting trigger organic compounds that can be used as precursors. Herein, we synthesize multi-color emissive carbon dots (CDs) with an intrinsic photoluminescence quantum yield of 20.46%. These nanostructures were achieved through the one-step hydrothermal treatment of marine polysaccharide chondroitin sulfate, obtained from shark cartilage, in aqueous solution. CONCLUSIONS: We successfully demonstrate the low toxicity of our marine resource-derived CDs in zebrafish, and provide an initial assessment of their possible use as a bioimaging agent. Notably, the newly synthesized CDs localize in the intestines of zebrafish larvae, thereby indicating their biocompatibility and potential use as in vivo dyes.


Asunto(s)
Animales , Polisacáridos/química , Tiburones , Carbono/química , Puntos Cuánticos/química , Pez Cebra , Carbono/toxicidad , Cartílago , Puntos Cuánticos/toxicidad , Luminiscencia , Nanoestructuras , Colorantes/toxicidad , Colorantes/química
17.
J Fluoresc ; 30(4): 827-837, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32435971

RESUMEN

The spectroscopic properties of lanthanide ions stem from absorption and emission radiation in the solar spectrum range, which promotes numerous applications in areas such as white light emission, bio-imaging, biological markers, and photovoltaic cells, among others. To intensify these properties, several matrixes have been studied, particularly the yttrium vanadate matrix due to its structural, mechanic, and physicochemical properties. The non-hydrolytic sol-gel process is a versatile way to prepare inorganic oxides doped with lanthanide ions. In this work, we describe the synthesis of yttrium vanadate matrixes doped with Eu3+, Er3+, and/or Yb3+ ions (containing 1% lanthanide ions with respect to Y3+ (molar ratio)) by the non-hydrolytic sol-gel, annealed at 800 °C for 4 h, and their characterization by X-ray diffraction and photoluminescence spectroscopy. The X-ray diffraction patterns display the peaks corresponding to the yttrium vanadate tetragonal phase. Laser excitation at 980 nm elicits Er3+ emission bands in the green and red regions and Eu3+ emission at 620 nm. Laser excitation at 322 nm; i.e., the charge transfer band, provides emission in the same regions, as well as infrared emission. This system is a promising candidate for applications in solar cells, optical amplifiers, and biomarkers because it can be excited at different wavelengths. Graphical Abstract Schematic diagram of the energy level of lanthanides and vanadate ions, and energy transfer.

18.
Methods Mol Biol ; 2135: 37-51, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32246327

RESUMEN

Optical spectroscopy techniques are crucial for the evaluation and use of quantum dots (QDs) in life and materials science. In that context, the fluorescence quantum yield (Φf) is an essential parameter in the assessment of the luminescent features of QDs. The fluorescence quantum yield can be defined as the ratio of the number of emitted photons to the number of absorbed photons by a luminescent material. In this chapter, we describe absolute and relative methods to measure the fluorescence quantum yield of QDs in solution phase. The advantages and limitations of the techniques are reviewed.


Asunto(s)
Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Fluorescencia , Luminiscencia
19.
J Forensic Sci ; 65(1): 67-72, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31373685

RESUMEN

The collection of gunshot residue on fabric can be an arduous task due to the microscopic size of particles (blind collection) and sheddability of some fabrics. The introduction of luminescent markers and consequent formation of luminescent gunshot residue (LGSR) can facilitate this analysis. In this study, different fabrics were analyzed in order to verify the persistence of the LGSR on them, the possibility of collecting and analyzing particles by video spectral comparator (VSC) and SEM/EDS. Also, different colored fabrics were used as targets in order to investigate influence of fabric color on LGSR visualization. Furthermore, the influence of the fabric type in the distribution of the LGSR deposited around the projectile´s hole entrance was evaluated. The fabric sheddability did not alter collection of the particles or analysis. It was possible to observe and collect LGSR on all tested fabrics, even after the fabric had been shaken, or in colored fabrics.

20.
ACS Appl Bio Mater ; 3(5): 3049-3056, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35025351

RESUMEN

The metal-organic framework (MOF) [Eu(DPA)(HDPA)] (where DPA is dipicolinic acid) has been previously reported as an efficient marker for gunshot residues (GSRs). Since this marker will be in contact with various shooters, industrial workers, and the environment, however, it is important to identify its toxicity. In this work, the oral and the inhalation acute toxicities of the MOF [Eu(DPA)(HDPA)] (also called R-Marker) were evaluated in young Wistar rats using Guidelines 423 (oral) and 436 (inhalation) from the Organisation for Economic Co-operation and Development (OECD). Animal behavior; body weight, water, and food intake; and organ weight, as well as biochemical parameters were evaluated in both evaluations. For the inhalation test, a concentration of 1 mg·Lair-1·(4 h-1) was reached in a whole-body inhalation chamber. When the respiratory tract was analyzed, it was observed that part of the marker had been swallowed instead of inhaled by the animal. For the oral test, the highest administrated dose was 2000 mg/kg with no sign of toxicity. This marker has been classified in the least toxic category of the Globally Harmonized System (GHS; category 5), with an oral median lethal dose (LD50) of 5000 mg/kg. After the oral administration, the feces of the animals were collected using a metabolic cage. Luminescent feces were present up to 24 h after administration, indicating that the marker had been excreted by the organism without causing intoxication. This study has opened perspectives for drug delivery and toxicity studies, since it enables visual detection of the marker.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA