Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Phys Med ; 123: 103409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38870644

RESUMEN

PURPOSE: Target positions should be acquired during beam delivery for accurate lung stereotactic body radiotherapy. We aimed to perform kilovoltage (kV) imaging during beam irradiation (intra-irradiation imaging) under phase-gated conditions and evaluate its performance. METHODS: Catphan 504 and QUASAR respiratory motion phantoms were used to evaluate image quality and target detectability, respectively. TrueBeam STx linac and the Developer Mode was used. The imaging parameters were 125 kVp and 1.2 mAs/projection. Flattened megavoltage (MV) X-ray beam energies 6, 10 and 15 MV and un-flattened beam energies 6 and 10 MV were used with field sizes of 5 × 5 and 15 × 15 cm2 and various frame rates for intra-irradiation imaging. In addition, using a QUASAR phantom, intra-irradiation imaging was performed during intensity-modulated plan delivery. The root-mean-square error (RMSE) of the CT-number for the inserted rods, image noise, visual assessment, and contrast-to-noise ratio (CNR) were evaluated. RESULTS: The RMSEs of intra-irradiation cone-beam computed tomography (CBCT) images under gated conditions were 50-230 Hounsfield Unit (HU) (static < 30 HU). The noise of the intra-irradiation CBCT images under gated conditions was 15-35 HU, whereas that of the standard CBCT images was 8.8-27.2 HU. Lower frame rates exhibited large RMSEs and noise; however, the iterative reconstruction algorithm (IR) was effective at improving these values. Approximately 7 fps with the IR showed an equivalent CNR of 15 fps without the IR. The target was visible on all the gated intra-irradiation CBCT images. CONCLUSION: Several image quality improvements are required; however, intra-irradiated CBCT images showed good visual target detection.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Fantasmas de Imagen , Tomografía Computarizada de Haz Cónico/métodos , Humanos , Radioterapia de Intensidad Modulada/métodos , Relación Señal-Ruido , Procesamiento de Imagen Asistido por Computador/métodos , Respiración , Planificación de la Radioterapia Asistida por Computador/métodos
2.
Phys Imaging Radiat Oncol ; 30: 100587, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38818304

RESUMEN

Background and purpose: Motion management techniques are important to spare the healthy tissue adequately. However, they are complex and need dedicated quality assurance. The aim of this study was to create a dynamic phantom designed for quality assurance and to replicate a patient's size, anatomy, and tissue density. Materials and methods: A computed tomography (CT) scan of a cancer patient was used to create molds for the lungs, heart, ribs, and vertebral column via additive manufacturing. A pump system and software were developed to simulate respiratory dynamics. The extent of respiratory motion was quantified using a 4DCT scan. End-to-end tests were conducted to evaluate two motion management techniques for lung stereotactic body radiotherapy (SBRT). Results: The chest wall moved between 4 mm and 13 mm anteriorly and 2 mm to 7 mm laterally during the breathing. The diaphragm exhibited superior-inferior movement ranging from 5 mm to 16 mm in the left lung and 10 mm to 36 mm in the right lung. The left lung tumor displaced ± 7 mm superior-inferiorly and anterior-posteriorly. The CT numbers were for lung: -716 ± 108 HU (phantom) and -713 ± 70 HU (patient); bone: 460 ± 20 HU (phantom) and 458 ± 206 HU (patient); soft tissue: 92 ± 9 HU (phantom) and 60 ± 25 HU (patient). The end-to-end testing showed an excellent agreement between the measured and the calculated dose for ion chamber and film dosimetry. Conclusions: The phantom is recommended for quality assurance, evaluating the institution's specific planning and motion management strategies either through end-to-end testing or as an external audit phantom.

3.
J Appl Clin Med Phys ; 25(7): e14342, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38590112

RESUMEN

BACKGROUND: Rescanning is a common technique used in proton pencil beam scanning to mitigate the interplay effect. Advances in machine operating parameters across different generations of particle therapy systems have led to improvements in beam delivery time (BDT). However, the potential impact of these improvements on the effectiveness of rescanning remains an underexplored area in the existing research. METHODS: We systematically investigated the impact of proton machine operating parameters on the effectiveness of layer rescanning in mitigating interplay effect during lung SBRT treatment, using the CIRS phantom. Focused on the Hitachi synchrotron particle therapy system, we explored machine operating parameters from our institution's current (2015) and upcoming systems (2025A and 2025B). Accumulated dynamic 4D dose were reconstructed to assess the interplay effect and layer rescanning effectiveness. RESULTS: Achieving target coverage and dose homogeneity within 2% deviation required 6, 6, and 20 times layer rescanning for the 2015, 2025A, and 2025B machine parameters, respectively. Beyond this point, further increasing the number of layer rescanning did not further improve the dose distribution. BDTs without rescanning were 50.4, 24.4, and 11.4 s for 2015, 2025A, and 2025B, respectively. However, after incorporating proper number of layer rescanning (six for 2015 and 2025A, 20 for 2025B), BDTs increased to 67.0, 39.6, and 42.3 s for 2015, 2025A, and 2025B machine parameters. Our data also demonstrated the potential problem of false negative and false positive if the randomness of the respiratory phase at which the beam is initiated is not considered in the evaluation of interplay effect. CONCLUSION: The effectiveness of layer rescanning for mitigating interplay effect is affected by machine operating parameters. Therefore, past clinical experiences may not be applicable to modern machines.


Asunto(s)
Neoplasias Pulmonares , Fantasmas de Imagen , Terapia de Protones , Radiocirugia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Humanos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Terapia de Protones/métodos , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo/efectos de la radiación
4.
Med Dosim ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38061915

RESUMEN

This study exposed the implementation of a novel technique (VMATLSL) for the planning of moving targets in lung stereotactic body radiation therapy (SBRT). This new technique has been compared to static conformal radiotherapy (3D-CRT), volumetric-modulated arc therapy (VMAT) and dynamic conformal arc (DCA). The rationale of this study was to lower geometric complexity (54.9% lower than full VMAT) and hence ensure the reproducibility of the treatment delivery by reducing the risk for interplay errors induced by respiratory motion. Dosimetry metrics were studied with a cohort of 30 patients. Our results showed that leaf speed limitation provided conformal number (CN) close to the VMAT (median CN of VMATLSL is 0.78 vs 0.82 for full VMAT) and were a significant improvement on 3D-CRT and DCA with segment-weight optimized (respectively 0.55 and 0.57). This novel technique is an alternative to VMAT or DCA for lung SBRT treatments, combining independence from the patient's breathing pattern, from the size and amplitude of the lesion, free from interplay effect and with dosimetry metrics close to the best that could be achieve with full VMAT.

5.
J Radiosurg SBRT ; 9(1): 53-62, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38029008

RESUMEN

This study presents the clinical experiences of the New York Proton Center in employing proton pencil beam scanning (PBS) for the treatment of lung stereotactic body radiation therapy. It encompasses a comprehensive examination of multiple facets, including patient simulation, delineation of target volumes and organs at risk, treatment planning, plan evaluation, quality assurance, and motion management strategies. By sharing the approaches of the New York Proton Center and providing recommendations across simulation, treatment planning, and treatment delivery, it is anticipated that the valuable experience will be provided to a broader proton therapy community, serving as a useful reference for future clinical practice and research endeavors in the field of stereotactic body proton therapy for lung tumors.

6.
J Appl Clin Med Phys ; 24(7): e14068, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37311070

RESUMEN

PURPOSE: SBRT treatment of two separate lung lesions via single-isocenter/multi-target (SIMT) plan on Halcyon RDS could improve patient comfort, compliance, patient throughput, and clinic efficiency. However, aligning two separate lung lesions synchronously via a single pre-treatment CBCT scan on Halcyon can be difficult due to rotational patient setup errors. Thus, to quantify the dosimetric impact, we simulated loss of target(s) coverage due to small, yet clinically observable rotational patient setup errors on Halcyon for SIMT treatments. METHODS: Seventeen previously treated 4D-CT based SIMT lung SBRT patients with two separate lesions (total 34 lesions, 50 Gy in five fractions to each lesion) on TrueBeam (6MV-FFF) were re-planned on Halcyon (6MV-FFF) using a similar arc geometry (except couch rotation), dose engine (AcurosXB algorithm), and treatment planning objectives. Rotational patient setup errors of [± 0.5° to ± 3.0°] on Halcyon were simulated via Velocity registration software in all three rotation axes and recalculated dose distributions in Eclipse treatment planning system. Dosimetric impact of rotational errors was evaluated for target coverage and organs at risk (OAR). RESULTS: Average PTV volume and distance to isocenter were 23.7 cc and 6.1 cm. Average change in Paddick's conformity indexes were less than -5%, -10%, and -15% for 1°, 2°, and 3°, respectively for yaw, roll, and pitch rotation directions. Maximum drop off of PTV(D100%) coverage for 2° rotation was -2.0% (yaw), -2.2% (roll), and -2.5% (pitch). With ±1° rotational error, no PTV(D100%) loss was found. Due to anatomical complexity: irregular and highly variable tumor sizes and locations, highly heterogenous dose distribution, and steep dose gradient, no trend for loss of target(s) coverage as a function of distance to isocenter and PTV size was found. Change in maximum dose to OAR were acceptable per NRG-BR001 within ±1.0° rotation, but were up to 5 Gy higher to heart with 2° in the pitch rotation axis. CONCLUSION: Our clinically realistic simulation results show that rotational patient setup errors up to 1.0° in any rotation axis could be acceptable for selected two separate lung lesions SBRT patients on Halcyon. Multivariable data analysis in large cohort is ongoing to fully characterize Halcyon RDS for synchronous SIMT lung SBRT.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radiocirugia/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Neoplasias Pulmonares/patología , Pulmón/patología
7.
Biomed Phys Eng Express ; 9(4)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140156

RESUMEN

Purpose.This dosimetric study is intended to lower the modulation factor in lung SBRT plans generated in the Eclipse TPS that could replace highly modulated plans that are prone to the interplay effect.Materials and methods.Twenty clinical lung SBRT plans with high modulation factors (≥4) were replanned in Varian Eclipse TPS version 15.5 utilizing 2 mm craniocaudal and 1 mm axial block margins followed by light optimization in order to reduce modulation. A unique plan optimization methodology, which utilizes a novel shell structure (OptiForR50) for R50%optimization in addition to five consecutive concentric 5 mm shells, was utilized to control dose falloff according to RTOG 0813 and 0915 recommendations. The prescription varied from 34-54 Gy in 1-4 fractions, and the dose objectives were PTV D95%= Rx, PTV Dmax< 140% of Rx, and minimizing the modulation factor. Plan evaluation metrics included modulation factor, CIRTOG, homogeneity index (HI), R50%, D2cm, V105%, and lung V8-12.8Gy(Timmerman Constraint). A random-intercept linear mixed effects model was used with a p ≤ 0.05 threshold to test for statistical significance.Results.The retrospectively generated plans had significantly lower modulation factors (3.65 ± 0.35 versus 4.59 ± 0.54; p < 0.001), lower CIRTOG(0.97 ± 0.02 versus 1.02 ± 0.06; p = 0.001), higher HI (1.35 ± 0.06 versus 1.14 ± 0.04; p < 0.001), lower R50%(4.09 ± 0.45 versus 4.56 ± 0.56; p < 0.001), and lower lungs V8-12.8Gy(Timmerman) (4.61% ± 3.18% versus 4.92% ± 3.37%; p < 0.001). The high dose spillage V105%was borderline significantly lower (0.44% ± 0.49% versus 1.10% ± 1.64%; p = 0.051). The D2cmwas not statistically different (46.06% ± 4.01% versus 46.19% ± 2.80%; p = 0.835).Conclusion.Lung SBRT plans with significantly lower modulation factors can be generated that meet the RTOG constraints, using our planning strategy.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Neoplasias Pulmonares/radioterapia , Radiocirugia/métodos , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo , Pulmón
8.
Med Dosim ; 48(3): 202-210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37164788

RESUMEN

The objective of this research is to investigate intrafraction motion correction on planning target volume (PTV) margin requirements and target and organ-at-risk (OAR) dosimetry in single-fraction lung stereotactic body radiation therapy (SBRT). Sixteen patients (15 with upper lobe lesions, 1 with a middle lobe lesion) were treated with single-fraction lung SBRT. Cone-beam computed tomography (CBCT) images were acquired before the treatment, between the arcs, and after the delivery of the treatment fraction. Shifts from the reference images were recorded in anterior-posterior (AP), superior-inferior (SI), and lateral (LAT) dimensions. The deviations from the reference image were calculated for 3 clinical scenarios: not applying intratreatment couch shifts and not correcting for pretreatment deviations < 3 mm ( scenario 1), not applying intratreatment couch shifts and correcting for pretreatment deviations < 3 mm ( scenario 2), and applying all pre- and intratreatment couch shifts (scenario 3). PTV margins were determined using the van Herk formalism for each scenario and maximum and average deviations were assessed. The clinical scenarios were modelled in the treatment planning system based on each patient dataset to assess target and OAR dosimetry. Calculated lower-bound PTV margins in the AP, SI, and LAT dimensions were [4.6, 3.5, 2.3] mm in scenario 1, [4.6, 2.4, 2.2] mm in scenario 2, and [1.7, 1.2, 1.0] mm in scenario 3. The margins are lower bounds because they do not include contributions from nonmotion related errors. Average and maximum intrafraction deviations were larger in the AP dimension compared to the SI and LAT dimensions for all scenarios. A unidimensional movement (several mm) in the negative AP dimension was observed in clinical scenarios 1 and 2 but not scenario 3. Average intrafraction deviation vectors were 1.2, 1.1, and 0.3 mm for scenarios 1, 2, and 3, respectively. Modelled clinical scenarios revealed that using scenario 3 yields significantly fewer treatment plan objective failures compared to scenarios 1 and 2 using a Wilcoxon signed-rank test. Intratreatment motion correction between each arc may enable reductions PTV margin requirements. It may also compensate for unidimensional negative AP movement, and improve target and OAR dosimetry.

9.
Med Dosim ; 48(2): 82-89, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36750392

RESUMEN

To evaluate the effects of arc geometry on lung stereotactic body radiation therapy (SBRT) plan quality, using collision check software to select safe beam angles. Thirty lung SBRT cases were replanned 10Gy x 5 using 4 volumetric modulated arc therapy (VMAT) geometries: coplanar lateral (cpLAT), coplanar oblique (cpOBL), noncoplanar lateral (ncpLAT) and noncoplanar oblique (ncpOBL). Lateral arcs spanned 180° on the affected side whereas the 180° oblique arcs crossed midline to spare healthy tissues. Couch angles were separated by 30° on noncoplanar plans. Clearance was verified with Radformation CollisionCheck software. Optimization objectives were the same across the four plans for each case. Planning target volume (PTV) coverage was set to 95% and then plans were evaluated for dose conformity, healthy tissue doses, and monitor units. Clinically treated plans were used to benchmark the results. The volumes of the 25%, 50% and 75% isodoses were smaller with noncoplanar than coplanar arcs. The volume of the 50% isodose line relative to the PTV (CI50%) was as follows: clinical 3.75±0.72, cpLAT 3.39 ± 0.37, cpOBL 3.36 ± 0.34, ncpLAT 3.02 ± 0.21 and ncpOBL 3.02 ± 0.22. The Wilcoxon signed rank test with Bonferroni correction showed p < 0.005 in all CI50% comparisons except between the cpLat and cpObl arcs and between the ncpLat and ncpObl arcs. The best lung sparing was achieved using ncpObl arcs, which was statistically significant (p < 0.001) compared with the other four plans at V12.5Gy, V13.5Gy and V20Gy. Chest wall V30Gy was significantly better using noncoplanar arcs in comparison to the other plan types (p < 0.001). The best heart sparing at V10Gy from the ncpOBL arcs was significant compared with the clinical and cpLat plans (p < 0.005). Arc geometry has a substantial effect on lung SBRT plan quality. Noncoplanar arcs were superior to coplanar arcs at compacting the dose distribution at the 25%, 50% and 75% isodose levels, thereby reducing the dose to healthy tissues. Further healthy tissue sparing was achieved using oblique arcs that minimize the pathlength through healthy tissues and avoid organs at risk. The dosimetric advantages of the noncoplanar and oblique arcs require careful beam angle selection during treatment planning to avoid collisions during treatment, which may be facilitated by commercial software.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radiocirugia/métodos , Radioterapia de Intensidad Modulada/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Pulmón/efectos de la radiación , Neoplasias Pulmonares/radioterapia , Programas Informáticos , Órganos en Riesgo/efectos de la radiación
10.
Biomed Phys Eng Express ; 9(3)2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36827685

RESUMEN

Objective. Dose calculation in lung stereotactic body radiation therapy (SBRT) is challenging due to the low density of the lungs and small volumes. Here we assess uncertainties associated with tissue heterogeneities using different dose calculation algorithms and quantify potential associations with local failure for lung SBRT.Approach. 164 lung SBRT plans were used. The original plans were prepared using Pencil Beam Convolution (PBC, n = 8) or Anisotropic Analytical Algorithm (AAA, n = 156). Each plan was recalculated with AcurosXB (AXB) leaving all plan parameters unchanged. A subset (n = 89) was calculated with Monte Carlo to verify accuracy. Differences were calculated for the planning target volume (PTV) and internal target volume (ITV) Dmean[Gy], D99%[Gy], D95%[Gy], D1%[Gy], and V100%[%]. Dose metrics were converted to biologically effective doses (BED) usingα/ß= 10Gy. Regression analysis was performed for AAA plans investigating the effects of various parameters on the extent of the dosimetric differences. Associations between the magnitude of the differences for all plans and outcome were investigated using sub-distribution hazards analysis.Main results. For AAA cases, higher energies increased the magnitude of the difference (ΔDmean of -3.6%, -5.9%, and -9.1% for 6X, 10X, and 15X, respectively), as did lung volume (ΔD99% of -1.6% per 500cc). Regarding outcome, significant hazard ratios (HR) were observed for the change in the PTV and ITV D1% BEDs upon univariate analysis (p = 0.042, 0.023, respectively). When adjusting for PTV volume and prescription, the HRs for the change in the ITV D1% BED remained significant (p = 0.039, 0.037, respectively).Significance. Large differences in dosimetric indices for lung SBRT can occur when transitioning to advanced algorithms. The majority of the differences were not associated with local failure, although differences in PTV and ITV D1% BEDs were associated upon univariate analysis. This shows uncertainty in near maximal tumor dose to potentially be predictive of treatment outcome.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Humanos , Neoplasias Pulmonares/radioterapia , Incertidumbre , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Pulmón
11.
Appl Radiat Isot ; 192: 110567, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36459899

RESUMEN

PURPOSE: To investigate the error detectability limitations of an EPID-based 3D in vivo dosimetry verification system for lung stereotactic body radiation therapy (SBRT). METHODS: Thirty errors were intentionally introduced, consisting of dynamic and constant machine errors, to simulate the possible errors that may occur during delivery. The dynamic errors included errors in the output, gantry angle and MLC positions related to gantry inertial and gravitational effects, while the constant errors included errors in the collimator angle, jaw positions, central leaf positions, setup shift and thickness to simulate patient weight loss. These error plans were delivered to a CIRS phantom using the SBRT technique for lung cancer. Following irradiation of these error plans, the dose distribution was reconstructed using iViewDose™ and compared with the no error plan. RESULTS: All errors caused by the central leaf positions, dynamic MLC errors, Jaw inwards movements, setup shifts and patient anatomical changes were successfully detected. However, dynamic gantry angle and collimator angle errors were not detected in the lung case due to the rotation-symmetric target shape. The results showed that the γmean and γpassrate indicators can detect 13 (81.3%) and 14 (87.5%) of the 16 errors respectively without including the gantry angle error, collimator angle error and output error. CONCLUSIONS: In summary, iViewDose™ is an appropriate approach for detecting most types of clinical errors for lung SBRT. However, the phantom results also showed some detectability limitations of the system in terms of dynamic gantry angle and constant collimator angle errors.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/métodos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Planificación de la Radioterapia Asistida por Computador , Dosificación Radioterapéutica , Radiometría
12.
Radiat Environ Biophys ; 62(1): 107-115, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36526911

RESUMEN

The aim of the present study was to investigate the effect of tumour motion on various imaging strategies as well as on treatment plan accuracy for lung stereotactic body radiotherapy treatment (SBRT) cases. The ExacTrac gating phantom and paraffin were used to investigate respiratory motion and represent a lung tumour, respectively. Four-dimensional computed tomography (4DCT) imaging was performed, while the phantom was moving sinusoidally with 4 s cycling time with three different amplitudes of 8, 16, and 24 mm. Reconstructions were done with maximum (MIP) and average intensity projection (AIP) methods. Comparisons of target density and volume were performed using two reconstruction techniques and references values. Volumetric modulated arc therapy (VMAT) and intensity modulated radiation therapy (IMRT) were planned based on reconstructed computed tomography (CT) sets, and it was examined how density variations affect the dose-volume histogram (DVH) parameters. 4D cone beam computed tomography (CBCT) was performed with the Elekta Versa HD linac imaging system before irradiation and compared with 3D CBCT. Thus, various combinations of 4DCT reconstruction methods and treatment alignment methods have been investigated. Point measurements as well as 2 and 3D dose measurements were done by optically stimulated luminescence (OSL), gafchromic films, and electronic portal imaging devices (EPIDs), respectively. The mean volume reduction was 7.8% for the AIP and 2.6% for the MIP method. The obtained Hounsfield Unit (HU) values were lower for AIP and higher for MIP when compared with the reference volume density. In DVH analysis, there were no statistical differences for D95%, D98%, and Dmean (p > 0.05). However, D2% was significantly affected by HU changes (p < 0.01). A positional variation was obtained up to 2 mm in moving direction when 4D CBCT was applied after 3D CBCT. Dosimetric measurements showed that the main part of the observed dose deviation was due to movement. In lung SBRT treatment plans, D2% doses differ significantly according to the reconstruction method. Additionally, it has been observed that setups based on 3D imaging can cause a positional error of up to 2 mm compared to setups based on 4D imaging. It is concluded that MIP has advantages over AIP in defining internal target volume (ITV) in lung SBRT applications. In addition, 4D CBCT and 3D EPID dosimetry are recommended for lung SBRT treatments.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Humanos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Pulmón/efectos de la radiación , Neoplasias Pulmonares/radioterapia , Tomografía Computarizada Cuatridimensional/métodos , Fantasmas de Imagen
13.
Med Phys ; 50(1): 397-409, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36210631

RESUMEN

BACKGROUND: Lung stereotactic body radiotherapy (SBRT) has proven an effective treatment for medically inoperable lung tumors, even for (ultra-)central tumors. Recently, there has been growing interest in radiation-induced cardiac toxicity in lung radiotherapy. More specifically, dose to cardiac (sub-)structures (CS) was found to correlate with survival after radiotherapy. PURPOSE: Our goal is first, to investigate the percentage of patients who require CS sparing in an magnetic resonance imaging guided lung SBRT workflow, and second, to quantify how successful implementation of cardiac sparing would be. METHODS: The patient cohort consists of 34 patients with stage II-IV lung cancer who were treated with SBRT between 2017 and 2020. A mid-position computed tomography (CT) image was used to create treatment plans for the 1.5 T Unity MR-linac (Elekta AB, Stockholm, Sweden) following clinical templates. Under guidance of a cardio-thoracic radiologist, 11 CS were contoured manually for each patient. Dose constraints for five CS were extracted from the literature. Patients were stratified according to their need for cardiac sparing depending on the CS dose in their non-CS constrained MR-linac treatment plans. Cardiac sparing treatment plans (CSPs) were then created and dosimetrically compared with their non-CS constrained treatment plan counterparts. CSPs complied with the departmental constraints and were considered successful when fulfilling all CS constraints, and partially successful if some CS constraints could be fulfilled. Predictors for the need for and feasibility of cardiac sparing were explored, specifically planning target volume (PTV) size, cranio-caudal (CC) distance, 3D distance, and in-field overlap volume histograms (iOVH). RESULTS: 47% of the patients (16 out of 34) were in need of cardiac sparing. A successful CSP could be created for 62.5% (10 out of 16) of these patients. Partially successful CSPs still complied with two to four CS constraints. No significant difference in dose to organs at risk (OARs) or targets was identified between CSPs and the corresponding non-CS constrained MR-linac plans. The need for cardiac sparing was found to correlate with distance in the CC direction between target and all of the individual CS (Mann-Whitney U-test p-values <10-6 ). iOVHs revealed that complying with dose constraints for CS is primarily determined by in-plane distance and secondarily by PTV size. CONCLUSION: We demonstrated that CS can be successfully spared in lung SBRT on the MR-linac for most of this patient cohort, without compromising doses to the tumor or to other OARs. CC distance between the target and CS can be used to predict the need for cardiac sparing. iOVHs, in combination with PTV size, can be used to predict if cardiac sparing will be successful for all constrained CS except the left ventricle.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Estudios de Factibilidad , Planificación de la Radioterapia Asistida por Computador/métodos , Radiocirugia/métodos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Pulmón , Imagen por Resonancia Magnética/métodos , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo
14.
Cancer Radiother ; 27(1): 69-74, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35872055

RESUMEN

We report the case of a 50-year old women with an oncological history of metastatic breast carcinoma who underwent lung stereotactic body radiation therapy (SBRT) of 60Gy in 8 fractions for a left upper lobe metastatic lesion. Seven months later, she complains about hoarseness and weakness of voice. Tumoral relapse and other frequent etiologies were excluded. The diagnosis of radiation induced left recurrent laryngeal nerve paralysis causing left vocal cord paralysis (VCP) was made. The symptomatology did not improve till the disease progression and death of the patient 29 months after SBRT. VCP after lung SBRT is a rare adverse event that has not yet been well described in the medical literature.


Asunto(s)
Radiocirugia , Parálisis de los Pliegues Vocales , Humanos , Femenino , Persona de Mediana Edad , Parálisis de los Pliegues Vocales/etiología , Parálisis de los Pliegues Vocales/diagnóstico , Radiocirugia/efectos adversos , Recurrencia Local de Neoplasia , Ronquera/complicaciones , Ronquera/diagnóstico , Pulmón
15.
Rep Pract Oncol Radiother ; 27(5): 809-820, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523803

RESUMEN

Background: We evaluated the setup error and dose absorption of an immobilization system with a shell and wooden baseplate (SW) for lung stereotactic body radiotherapy (SBRT). Materials and methods: Setup errors in 109 patients immobilized with an SW or BodyFix system (BF) were compared. Dose attenuation rates of materials for baseplates were measured with an ion-chamber. Ionization measurements were performed from 90° to 180° gantry angle in 10° increments, with the ball water equivalent phantom placed at the center of the wood and carbon baseplates whose effects on dose distribution were compared using an electron portal imaging device. Results: The ratio for the anterior-posterior, cranial-caudal, and right-left of the cases within 3-mm registered shifts in interfractional setup error were 90.9%, 89.2%, and 97.4% for the SW, and 93.2%, 91.6%, and 98.0% for the BF, respectively. For intrafractional setup error, 98.3%, 97.4%, and 99.1% for the SW and 96.6%, 95.8%, and 98.7% for the BF were within 3-mm registered shifts, respectively. In the center position, the average (minimum/maximum) dose attenuation rates from 90° to 180° for the wooden and carbon baseplates were 0.5 (0.1/2.8)% and 1.0 (-0.1/10.1)% with 6 MV, respectively. The gamma passing rates of 2%/2 mm for the wooden and carbon baseplates were 99.7% and 98.3% (p < 0.01). Conclusions: The immobilization system with an SW is effective for lung SBRT since it is comparable to the BF in setup accuracy. Moreover, the wooden baseplate had lower radiation attenuation rates and affected the dose distribution less than the carbon baseplate.

16.
Phys Med ; 104: 129-135, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36401941

RESUMEN

PURPOSE: Set up a lung SBRT end-to-end (e2e) test and perform a multicentre validation. MATERIAL AND METHODS: A group of medical physicists from four hospitals and the Italian Institute of Ionizing Radiation Metrology designed the present e2e test. One sub-group set up the test, while another tested its feasibility and ease of use. A satisfaction questionnaire was used to collect user feedback. Each participating centre (PC) received the ADAM breathing phantom, a microDiamond detector and radiochromic films. Following the e2e protocol, each PC performed its standard internal procedure for simulating, planning, and irradiating the phantom. Each PC uploaded its planning and treatment delivery data in a shared Google Drive. A single centre analyzed all the data. RESULTS: The e2e test was successfully performed by all PCs. Participants' comments indicated that ADAM was well suited to the purpose and the protocol well described. All PCs performed the test in static and dynamic modes. The ratio between measured and planned point dose obtained by PC1, PC2, PC3, PC4 was: 0.99, 0.96, 1.01 and 1.01 (static track) and 0.99, 1.02, 1.01 and 0.94 (dynamic track). The gamma passing rates (3 % global, 3 mm) between planned and measured dose maps were 98.5 %, 94.0 %, 99.1 % and 94.0 % (static track) and 99.5 %, 96.5 %, 86.0 % and 94.5 % (dynamic track) for PC1, PC2, PC3 and PC4, respectively. CONCLUSIONS: An e2e test for lung SBRT has been proposed and tested in a multicentre framework. The results and user feedback prove the validity of the proposed e2e test.


Asunto(s)
Pulmón , Humanos , Italia
17.
Phys Imaging Radiat Oncol ; 24: 76-81, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36217429

RESUMEN

Background and Purpose: Magnetic resonance-guided radiotherapy (MRgRT) with real-time intra-fraction tumor motion monitoring allows for high precision Stereotactic Ablative Radiotherapy (SABR). This study aimed to investigate the clinical feasibility, patient satisfaction and delivery accuracy of single-fraction MR-guided SABR in a single day (one-stop-shop, OSS). Methods and Materials: Ten patients with small lung tumors eligible for single fraction treatments were included. The OSS procedure consisted of consultation, treatment simulation, treatment planning and delivery. Following SABR delivery, patients completed a reported experience measure (PREM) questionnaire. Prescribed doses ranged 28-34 Gy. Median GTV was 2.2 cm3 (range 1.3-22.9 cm3). A gating boundary of 3 mm, and PTV margin of 5 mm around the GTV, were used with auto-beam delivery control. Accuracy of SABR delivery was studied by analyzing delivered MR-cines reconstructed from machine log files. Results: All 10 patients completed the OSS procedure in a single day, and all reported satisfaction with the process. Median time for the treatment planning step and the whole procedure were 2.8 h and 6.6 h, respectively. With optimization of the procedure, treatment could be completed in half a day. During beam-on, the 3 mm tracking boundary encompassed between 78.0 and 100 % of the GTV across all patients, with corresponding PTV values being 94.4-100 % (5th-95th percentiles). On average, system-latency for triggering a beam-off event comprised 5.3 % of the delivery time. Latency reduced GTV coverage by an average of -0.3 %. Duty-cycles during treatment delivery ranged from 26.1 to 64.7 %. Conclusions: An OSS procedure with MR-guided SABR for lung cancer led to good patient satisfaction. Gated treatment delivery was highly accurate with little impact of system-latency.

18.
Appl Radiat Isot ; 189: 110434, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36067722

RESUMEN

The benefits of Pinnacle's auto-planning module on clinical practice have been well documented. However, little is known regarding the efficiency of its Advanced Settings and the practicality of incorporating this module into Stereotactic Body Radiation Therapy (SBRT), which is why this research was conducted. To characterize the impact of Advanced Settings on plan quality, a total of 25 previously delivered postoperative cervical cases were re-planned and evaluated. Then a three-step automatic planning technique was developed and tested on ten lung SBRT cases based on the investigation. The differences between plans with fine-tuned Advanced Settings and the default were compared using a Wilcoxon signed-rank test with a significance threshold of 5%. The same statistical analysis was implemented to examine the quality variations in manual and automatic SBRT planning. When the Tuning Balance, Dose Fall-Off Margin, and Hot-Spot Maximum Goal were set to 100%, 1 cm, and 250%, respectively, better organ-at-risk (OAR) sparing was reached, but target quality was compromised. The OAR dose reduction and target homogeneity deterioration showed a strong correlation. The three-step methodology improved high dose spillage while saving time, with statistically significant reductions of 66.7% in V105% of non-PTV and 58.1% in planning time to the human-driven strategy. Except for urgent requirements for sparing OARs or processing SBRT plans, keeping the default is appropriate for Advanced Settings. The three-step methodology automatically searches for the available solution with purposeful Advanced Settings adjustments, demonstrating its ability to produce high-quality plans in less time. For the inexperienced or under-resourced clinics, our procedure can be introduced as a robust and handy strategy in SBRT, notably for expedited quality planning.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Técnicas de Planificación , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
19.
J Pers Med ; 12(8)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36013203

RESUMEN

Recent functional lung imaging studies have presented evidence of an "indirect effect" on perfusion damage, where regions that are unirradiated or lowly irradiated but that are supplied by highly irradiated regions observe perfusion damage post-radiation therapy (RT). The purpose of this work was to investigate this effect using a contrast-enhanced dynamic CT protocol to measure perfusion change in five novel swine subjects. A cohort of five Wisconsin Miniature Swine (WMS) were given a research course of 60 Gy in five fractions delivered locally to a vessel in the lung using an Accuray Radixact tomotherapy system with Synchrony motion tracking to increase delivery accuracy. Imaging was performed prior to delivering RT and 3 months post-RT to yield a 28−36 frame image series showing contrast flowing in and out of the vasculature. Using MIM software, contours were placed in six vessels on each animal to yield a contrast flow curve for each vessel. The contours were placed as follows: one at the point of max dose, one low-irradiated (5−20 Gy) branching from the max dose vessel, one low-irradiated (5−20 Gy) not branching from the max dose vessel, one unirradiated (<5 Gy) branching from the max dose vessel, one unirradiated (<5 Gy) not branching from the max dose vessel, and one in the contralateral lung. Seven measurements (baseline-to-baseline time and difference, slope up and down, max rise and value, and area under the curve) were acquired for each vessel's contrast flow curve in each subject. Paired Student t-tests showed statistically significant (p < 0.05) reductions in the area under the curve in the max dose, and both fed contours indicating an overall reduction in contrast in these regions. Additionally, there were statistically significant reductions observed when comparing pre- and post-RT in slope up and down in the max dose, low-dose fed, and no-dose fed contours but not the low-dose not-fed, no-dose not-fed, or contralateral contours. These findings suggest an indirect damage effect where irradiation of the vasculature causes a reduction in perfusion in irradiated regions as well as regions fed by the irradiated vasculature.

20.
J Appl Clin Med Phys ; 23(6): e13609, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35460150

RESUMEN

OBJECTIVE: To quantify the clinical performance of a machine learning (ML) algorithm for organ-at-risk (OAR) dose prediction for lung stereotactic body radiation therapy (SBRT) and estimate the treatment planning benefit from having upfront access to these dose predictions. METHODS: ML models were trained using multi-center data consisting of 209 patients previously treated with lung SBRT. Two prescription levels were investigated, 50 Gy in five fractions and 54 Gy in three fractions. Models were generated using a gradient-boosted regression tree algorithm using grid searching with fivefold cross-validation. Twenty patients not included in the training set were used to test OAR dose prediction performance, ten for each prescription. We also performed blinded re-planning based on OAR dose predictions but without access to clinically delivered plans. Differences between predicted and delivered doses were assessed by root-mean square deviation (RMSD), and statistical differences between predicted, delivered, and re-planned doses were evaluated with one-way analysis of variance (ANOVA) tests. RESULTS: ANOVA tests showed no significant differences between predicted, delivered, and replanned OAR doses (all p ≥ 0.36). The RMSD was 2.9, 3.9, 4.3, and 1.7Gy for max dose to the spinal cord, great vessels, heart, and trachea, respectively, for 50 Gy in five fractions. Average improvements of 1.0, 1.4, and 2.0 Gy were seen for spinal cord, esophagus, and trachea max doses in blinded replans compared to clinically delivered plans with 54 Gy in three fractions, and 1.8, 0.7, and 1.5 Gy, respectively, for the esophagus, heart and bronchus max doses with 50 Gy in five fractions. Target coverage was similar with an average PTV V100% of 94.7% for delivered plans compared to 97.3% for blinded re-plans for 50 Gy in five fractions, and respectively 98.4% versus 99.2% for 54 Gy in three fractions. CONCLUSION: This study validated ML-based OAR dose prediction for lung SBRT, showing potential for improved OAR dose sparing and more consistent plan quality using dose predictions for patient-specific planning guidance.


Asunto(s)
Neoplasias Pulmonares , Radiocirugia , Radioterapia de Intensidad Modulada , Algoritmos , Humanos , Pulmón , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/cirugía , Aprendizaje Automático , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA