Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Biol Sci ; 19(6): 1875-1893, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063430

RESUMEN

Silica-induced lung epithelial injury and fibrosis are vital pathogeneses of silicosis. Although the NOD-like receptor protein 3 (NLRP3) inflammasome contributes to silica-induced chronic lung inflammation, its role in epithelial injury and regeneration remains unclear. Here, using mouse lung stem/progenitor cell-derived organotypic systems, including 2D air-liquid interface and 3D organoid cultures, we investigated the effects of the NLRP3 inflammasome on airway epithelial phenotype and function, cellular injury and regeneration, and the potential mechanisms. Our data showed that silica-induced NLRP3 inflammasome activation disrupted the epithelial architecture, impaired mucociliary clearance, induced cellular hyperplasia and the epithelial-mesenchymal transition in 2D culture, and inhibited organoid development in 3D system. Moreover, abnormal expression of the stem/progenitor cell markers SOX2 and SOX9 was observed in the 2D and 3D organotypic models after sustained silica stimulation. Notably, these silica-induced structural and functional abnormalities were ameliorated by MCC950, a selective NLRP3 inflammasome inhibitor. Further studies indicated that the NF-κB, Shh-Gli and Wnt/ß-catenin pathways were involved in NLRP3 inflammasome-mediated abnormal differentiation and dysfunction of the airway epithelium. Thus, prolonged NLRP3 inflammasome activation caused injury and aberrant lung epithelial regeneration, suggesting that the NLRP3 inflammasome is a pivotal target for regulating tissue repair in chronic inflammatory lung diseases.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Dióxido de Silicio/toxicidad , Proteínas NLR/metabolismo , Sistemas Microfisiológicos , Pulmón/metabolismo , Células Madre/metabolismo
2.
Int J Mol Sci ; 23(6)2022 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-35328508

RESUMEN

The lungs have a remarkable ability to regenerate damaged tissues caused by acute injury. Many lung diseases, especially chronic lung diseases, are associated with a reduced or disrupted regeneration potential of the lungs. Therefore, understanding the underlying mechanisms of the regenerative capacity of the lungs offers the potential to identify novel therapeutic targets for these diseases. R-spondin2, a co-activator of WNT/ß-catenin signaling, plays an important role in embryonic murine lung development. However, the role of Rspo2 in adult lung homeostasis and regeneration remains unknown. The aim of this study is to determine Rspo2 function in distal lung stem/progenitor cells and adult lung regeneration. In this study, we found that robust Rspo2 expression was detected in different epithelial cells, including airway club cells and alveolar type 2 (AT2) cells in the adult lungs. However, Rspo2 expression significantly decreased during the first week after naphthalene-induced airway injury and was restored by day 14 post-injury. In ex vivo 3D organoid culture, recombinant RSPO2 promoted the colony formation and differentiation of both club and AT2 cells through the activation of canonical WNT signaling. In contrast, Rspo2 ablation in club and AT2 cells significantly disrupted their expansion capacity in the ex vivo 3D organoid culture. Furthermore, mice lacking Rspo2 showed significant defects in airway regeneration after naphthalene-induced injury. Our results strongly suggest that RSPO2 plays a key role in the adult lung epithelial stem/progenitor cells during homeostasis and regeneration, and therefore, it may be a potential therapeutic target for chronic lung diseases with reduced regenerative capability.


Asunto(s)
Enfermedades Pulmonares , Vía de Señalización Wnt , Animales , Células Epiteliales/metabolismo , Pulmón/metabolismo , Enfermedades Pulmonares/genética , Ratones , Células Madre/metabolismo , beta Catenina/metabolismo
3.
Clin Sci (Lond) ; 134(20): 2665-2679, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-33000862

RESUMEN

There is a growing appreciation of the role of lung stem/progenitor cells in the development and perpetuation of chronic lung disease including idiopathic pulmonary fibrosis. Human amniotic epithelial cells (hAECs) were previously shown to improve lung architecture in bleomycin-induced lung injury, with the further suggestion that hAECs obtained from term pregnancies possessed superior anti-fibrotic properties compared with their preterm counterparts. In the present study, we aimed to elucidate the differential effects of hAECs from term and preterm pregnancies on lung stem/progenitor cells involved in the repair. Here we showed that term hAECs were better able to activate bronchioalveolar stem cells (BASCs) and type 2 alveolar epithelial cells (AT2s) compared with preterm hAECs following bleomycin challenge. Further, we observed that term hAECs restored TGIF1 and TGFß2 expression levels, while increasing c-MYC expression despite an absence of significant changes to Wnt/ß-catenin signaling. In vitro, term hAECs increased the average size and numbers of BASC and AT2 colonies. The gene expression levels of Wnt ligands were higher in term hAECs, and the expression levels of BMP4, CCND1 and CDC42 were only increased in the BASC and AT2 organoids co-cultured with hAECs from term pregnancies but not preterm pregnancies. In conclusion, term hAECs were more efficient at activating the BASC niche compared with preterm hAECs. The impact of gestational age and/or complications leading to preterm delivery should be considered when applying hAECs and other gestational tissue-derived stem and stem-like cells therapeutically.


Asunto(s)
Amnios/citología , Células Epiteliales/citología , Pulmón/fisiología , Nacimiento Prematuro/patología , Regeneración , Células Epiteliales Alveolares/citología , Animales , Bleomicina , Femenino , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Vía de Señalización Hippo , Humanos , Ligandos , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Organoides/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Células Madre/citología , Transcripción Genética , Vía de Señalización Wnt/genética , beta Catenina/metabolismo
4.
Mol Cells ; 43(9): 774-783, 2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-32807748

RESUMEN

The lung has a vital function in gas exchange between the blood and the external atmosphere. It also has a critical role in the immune defense against external pathogens and environmental factors. While the lung is classified as a relatively quiescent organ with little homeostatic turnover, it shows robust regenerative capacity in response to injury, mediated by the resident stem/progenitor cells. During regeneration, regionally distinct epithelial cell populations with specific functions are generated from several different types of stem/progenitor cells localized within four histologically distinguished regions: trachea, bronchi, bronchioles, and alveoli. WNT signaling is one of the key signaling pathways involved in regulating many types of stem/progenitor cells in various organs. In addition to its developmental role in the embryonic and fetal lung, WNT signaling is critical for lung homeostasis and regeneration. In this minireview, we summarize and discuss recent advances in the understanding of the role of WNT signaling in lung regeneration with an emphasis on stem/progenitor cells.


Asunto(s)
Pulmón/patología , Regeneración/genética , Vía de Señalización Wnt/genética , Animales , Ratones
5.
Stem Cell Res Ther ; 11(1): 192, 2020 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-32448377

RESUMEN

Acute lung injury (ALI), an increasingly devastating human disorder, is characterized by a multitude of lung changes arising from a wide variety of lung injuries. Viral infection is the main cause of morbidity and mortality in ALI and acute respiratory distress syndrome (ARDS) patients. In particular, influenza virus, coronavirus, and other respiratory viruses circulate in nature in various animal species and can cause severe and rapidly spread human infections. Although scientific advancements have allowed for rapid progress to be made to understand the pathogenesis and develop therapeutics after each viral pandemic, few effective methods to treat virus-induced ALI have been described. Recently, stem cell therapy has been widely used in the treatment of various diseases, including ALI. In this review, we detail the present stem cell-based therapeutics for lung injury caused by influenza virus and the outlook for the future state of stem cell therapy to deal with emerging influenza and coronaviruses.


Asunto(s)
Lesión Pulmonar Aguda/terapia , Coronavirus/patogenicidad , Orthomyxoviridae/patogenicidad , Trasplante de Células Madre , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/virología , Betacoronavirus/patogenicidad , Tratamiento Basado en Trasplante de Células y Tejidos , Citocinas/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , SARS-CoV-2
6.
Acta Biochim Biophys Sin (Shanghai) ; 52(7): 716-722, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32445469

RESUMEN

The renewal of lung epithelial cells is normally slow unless the lung is injured. The resident epithelial stem cells rapidly proliferate and differentiate to maintain lung structure and function when the lung is damaged. The alveolar epithelium is characterized by alveolar type 1 (AT1) and alveolar type 2 (AT2) cells. AT2 cells are the stem cells for alveoli, as they can both self-renew and generate AT1 cells. Abnormal proliferation and regulation of AT2 cells will lead to serious lung diseases including cancers. In this review, we focused on the alveolar stem/progenitor cells, the key physiological function of AT2 cells in lung homeostasis and the complicated regulation of AT2 cells in the repairing processes after lung injury.


Asunto(s)
Células Epiteliales Alveolares/fisiología , Diferenciación Celular , Lesión Pulmonar/metabolismo , Neoplasias Pulmonares/metabolismo , Regeneración , Células Madre/metabolismo , Células Epiteliales Alveolares/patología , Animales , Humanos , Lesión Pulmonar/patología , Neoplasias Pulmonares/patología , Células Madre/patología
7.
Cancer Lett ; 475: 129-135, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32032677

RESUMEN

Improper regeneration is associated with lung diseases including lung cancer. Lung cancer is one of the leading causes of death worldwide, with nearly 2 million new cases diagnosed each year. The diagnosis is often too late for successful therapeutic intervention. Lung cancer shows substantial phenotypic and genetic heterogeneity between individuals, making it difficult to model in animals. Organoids, derived from regional stem/progenitor cells in lung epithelia, have attracted extensive interest in both research studies and the clinic, because of their great potential for use in cancer treatment. Various lung cancer organoids have been established to recapitulate the tissue architecture of primary lung tumors and maintain the genomic alterations of the original tumors during long-term expansion in vitro. In this review, we summarize the current data on lung epithelial regeneration by regional endogenous stem/progenitor cells, describe the development of organoid technology, and present its applications in lung cancer research. Furthermore, recent challenges and future directions to improve organoid technologies for lung cancer treatment are discussed.


Asunto(s)
Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Pulmón/citología , Organoides/citología , Regeneración , Animales , Humanos , Medicina de Precisión
8.
Ann Am Thorac Soc ; 16(6): 657-668, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30917290

RESUMEN

Respiratory diseases, such as chronic obstructive pulmonary disease and pulmonary fibrosis, result in severely impaired quality of life and impose significant burdens on healthcare systems worldwide. Current disease management involves pharmacologic interventions, oxygen administration, reduction of infections, and lung transplantation in advanced disease stages. An increasing understanding of mechanisms of respiratory epithelial and pulmonary vascular endothelial maintenance and repair and the underlying stem/progenitor cell populations, including but not limited to airway basal cells and type II alveolar epithelial cells, has opened the possibility of cell replacement-based regenerative approaches for treatment of lung diseases. Further potential for personalized therapies, including in vitro drug screening, has been underscored by the recent derivation of various lung epithelial, endothelial, and immune cell types from human induced pluripotent stem cells. In parallel, immunomodulatory treatments using allogeneic or autologous mesenchymal stromal cells have shown a good safety profile in clinical investigations for acute inflammatory conditions, such as acute respiratory distress syndrome and septic shock. However, as yet, no cell-based therapy has been shown to be both safe and effective for any lung disease. Despite the investigational status of cell-based interventions for lung diseases, businesses that market unproven, unlicensed and potentially harmful cell-based interventions for respiratory diseases have proliferated in the United States and worldwide. The current status of various cell-based regenerative approaches for lung disease as well as the effect of the regulatory environment on clinical translation of such approaches are presented and critically discussed in this review.


Asunto(s)
Enfermedades Pulmonares/terapia , Medicina Regenerativa/métodos , Trasplante de Células Madre/métodos , Investigación Biomédica Traslacional , Animales , Ensayos Clínicos como Asunto , Humanos , Células Madre Pluripotentes Inducidas/citología , Enfermedades Pulmonares/patología , Células Madre Mesenquimatosas/citología , Ingeniería de Tejidos , Trasplante Homólogo
9.
Clin Transl Med ; 3: 15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24995122

RESUMEN

Lung possesses very limited regenerative capacity. Failure to maintain homeostasis of lung epithelial cell populations has been implicated in the development of many life-threatening pulmonary diseases leading to substantial morbidity and mortality worldwide, and currently there is no known cure for these end-stage pulmonary diseases. Embryonic stem cells (ESCs) and somatic cell-derived induced pluripotent stem cells (iPSCs) possess unlimited self-renewal capacity and great potential to differentiate to various cell types of three embryonic germ layers (ectodermal, mesodermal, and endodermal). Therapeutic use of human ESC/iPSC-derived lung progenitor cells for regeneration of injured or diseased lungs will have an enormous clinical impact. This article provides an overview of recent advances in research on pluripotent stem cells in lung tissue regeneration and discusses technical challenges that must be overcome for their clinical applications in the future.

10.
Biomaterials ; 35(22): 5660-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24746968

RESUMEN

The inability to adequately vascularize tissues in vitro or in vivo is a major challenge in lung tissue engineering. A method that integrates stem cell research with 3D-scaffold engineering may provide a solution. We have successfully isolated mouse pulmonary stem/progenitor cells (mPSCs) by a two-step procedure and fabricated mPSC-compatible gelatin/microbubble-scaffolds using a 2-channel fluid jacket microfluidic device. We then integrated the cells and the scaffold to construct alveoli-like structures. The mPSCs expressed pro-angiogenic factors (e.g., b-FGF and VEGF) and induced angiogenesis in vitro in an endothelial cell tube formation assay. In addition, the mPSCs were able to proliferate along the inside of the scaffolds and differentiate into type-II and type-I pneumocytes The mPSC-seeded microbubble-scaffolds showed the potential for blood vessel formation in both a chick chorioallantoic membrane (CAM) assay and in experiments for subcutaneous implantation in severe combined immunodeficient (SCID) mice. Our results demonstrate that lung stem/progenitor cells together with gelatin microbubble-scaffolds promote angiogenesis as well as the differentiation of alveolar pneumocytes, resulting in an alveoli-like structure. These findings may help advance lung tissue engineering.


Asunto(s)
Células Epiteliales Alveolares/citología , Gelatina/química , Pulmón/citología , Neovascularización Fisiológica , Células Madre/citología , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Pollo , Ratones , Ratones SCID , Microburbujas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA