Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Neurodegener ; 19(1): 49, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890703

RESUMEN

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of blindness in elderly people in the developed world, and the number of people affected is expected to almost double by 2040. The retina presents one of the highest metabolic demands in our bodies that is partially or fully fulfilled by mitochondria in the neuroretina and retinal pigment epithelium (RPE), respectively. Together with its post-mitotic status and constant photooxidative damage from incoming light, the retina requires a tightly-regulated housekeeping system that involves autophagy. The natural polyphenol Urolithin A (UA) has shown neuroprotective benefits in several models of aging and age-associated disorders, mostly attributed to its ability to induce mitophagy and mitochondrial biogenesis. Sodium iodate (SI) administration recapitulates the late stages of AMD, including geographic atrophy and photoreceptor cell death. METHODS: A combination of in vitro, ex vivo and in vivo models were used to test the neuroprotective potential of UA in the SI model. Functional assays (OCT, ERGs), cellular analysis (flow cytometry, qPCR) and fine confocal microscopy (immunohistochemistry, tandem selective autophagy reporters) helped address this question. RESULTS: UA alleviated neurodegeneration and preserved visual function in SI-treated mice. Simultaneously, we observed severe proteostasis defects upon SI damage induction, including autophagosome accumulation, that were resolved in animals that received UA. Treatment with UA restored autophagic flux and triggered PINK1/Parkin-dependent mitophagy, as previously reported in the literature. Autophagy blockage caused by SI was caused by severe lysosomal membrane permeabilization. While UA did not induce lysosomal biogenesis, it did restore upcycling of permeabilized lysosomes through lysophagy. Knockdown of the lysophagy adaptor SQSTM1/p62 abrogated viability rescue by UA in SI-treated cells, exacerbated lysosomal defects and inhibited lysophagy. CONCLUSIONS: Collectively, these data highlight a novel putative application of UA in the treatment of AMD whereby it bypasses lysosomal defects by promoting p62-dependent lysophagy to sustain proteostasis.


Asunto(s)
Cumarinas , Animales , Ratones , Cumarinas/farmacología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Retina/metabolismo , Retina/efectos de los fármacos , Retina/patología , Mitofagia/efectos de los fármacos , Mitofagia/fisiología , Proteína Sequestosoma-1/metabolismo , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Humanos , Modelos Animales de Enfermedad , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Yodatos/toxicidad
2.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891822

RESUMEN

In this review we examine the functionally diverse ATPase associated with various cellular activities (AAA-ATPase), valosin-containing protein (VCP/p97), its molecular functions, the mutational landscape of VCP and the phenotypic manifestation of VCP disease. VCP is crucial to a multitude of cellular functions including protein quality control, endoplasmic reticulum-associated degradation (ERAD), autophagy, mitophagy, lysophagy, stress granule formation and clearance, DNA replication and mitosis, DNA damage response including nucleotide excision repair, ATM- and ATR-mediated damage response, homologous repair and non-homologous end joining. VCP variants cause multisystem proteinopathy, and pathology can arise in several tissue types such as skeletal muscle, bone, brain, motor neurons, sensory neurons and possibly cardiac muscle, with the disease course being challenging to predict.


Asunto(s)
Fenotipo , Proteína que Contiene Valosina , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Humanos , Animales , Mutación , Autofagia/genética , Reparación del ADN
3.
Mol Pharm ; 21(6): 2993-3005, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38722865

RESUMEN

The susceptibility of lysosomal membranes in tumor cells to cationic amphiphilic drugs (CADs) enables CADs to induce lysosomal membrane permeabilization (LMP) and trigger lysosome-dependent cell death (LDCD), suggesting a potential antitumor therapeutic approach. However, the existence of intrinsic lysosomal damage response mechanisms limits the display of the pharmacological activity of CADs. In this study, we report that low concentrations of QS-21, a saponin with cationic amphiphilicity extracted from Quillaja Saponaria tree, can induce LMP but has nontoxicity to tumor cells. QS-21 and MAP30, a type I ribosome-inactivating protein, synergistically induce apoptosis in tumor cells at low concentrations of both. Mechanistically, QS-21-induced LMP helps MAP30 escape from endosomes or lysosomes and subsequently enter the endoplasmic reticulum, where MAP30 downregulates the expression of autophagy-associated LC3 proteins, thereby inhibiting lysophagy. The inhibition of lysophagy results in the impaired clearance of damaged lysosomes, leading to the leakage of massive lysosomal contents such as cathepsins into the cytoplasm, ultimately triggering LDCD. In summary, our study showed that coadministration of QS-21 and MAP30 amplified the lysosomal disruption and can be a new synergistic LDCD-based antitumor therapy.


Asunto(s)
Antineoplásicos , Apoptosis , Autofagia , Lisosomas , Proteínas Inactivadoras de Ribosomas Tipo 1 , Saponinas , Animales , Humanos , Ratones , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Sinergismo Farmacológico , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Quillaja/química , Proteínas Inactivadoras de Ribosomas Tipo 1/farmacología , Saponinas/farmacología
4.
Autophagy ; 20(7): 1471-1472, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38744436

RESUMEN

The destination of a damaged lysosome is either being repaired if the damage is small or degraded through a lysosome-specific macroautophagy/autophagy pathway named lysophagy when the damage is too extensive to repair. Even though previous studies report lumenal glycan exposure during lysosome damage as a signal to trigger lysophagy, it is possibly beneficial for cells to initiate lysophagy earlier than membrane rupture. In a recently published article, Gahlot et al. determined that SPART/SPG20 senses lipid-packing defects and recruits and activates the ubiquitin ligase ITCH, which labels damaged lysosomes with ubiquitin chains to initiate lysophagy.


Asunto(s)
Autofagia , Lisosomas , Lisosomas/metabolismo , Humanos , Autofagia/fisiología , Animales , Macroautofagia/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Modelos Biológicos , Ubiquitina/metabolismo
5.
Contact (Thousand Oaks) ; 7: 25152564241255782, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38808280

RESUMEN

One means by which cells reutilize neutral lipids stored in lipid droplets is to degrade them by autophagy. This process involves spartin, mutations of which cause the rare inherited disorder Troyer syndrome (or spastic paraplegia-20, SPG20). A recently published paper from the team led by Karin Reinsich (Yale) suggests that the molecular function of spartin and its unique highly conserved "senescence" domain is as a lipid transfer protein. Spartin binds to and transfers all lipid species found in lipid droplets, from phospholipids to triglycerides and sterol esters. This lipid transfer activity correlates with spartin's ability to sustain lipid droplet turnover. The senescence domain poses an intriguing question around the wide range of its cargoes, but intriguingly it has yet to yield up its secrets because attempts at crystallization failed and AlphaFold's prediction is unconvincing.

6.
Annu Rev Biochem ; 93(1): 367-387, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38594929

RESUMEN

Lysosomes are the degradative endpoints of material delivered by endocytosis and autophagy and are therefore particularly prone to damage. Membrane permeabilization or full rupture of lysosomal or late endosomal compartments is highly deleterious because it threatens cellular homeostasis and can elicit cell death and inflammatory signaling. Cells have developed a complex response to endo-lysosomal damage that largely consists of three branches. Initially, a number of repair pathways are activated to restore the integrity of the lysosomal membrane. If repair fails or if damage is too extensive, lysosomes are isolated and degraded by a form of selective autophagy termed lysophagy. Meanwhile, an mTORC1-governed signaling cascade drives biogenesis and regeneration of new lysosomal components to reestablish the full lysosomal capacity of the cell. This damage response is vital to counteract the effects of various conditions, including neurodegeneration and infection, and can constitute a critical vulnerability in cancer cells.


Asunto(s)
Autofagia , Endosomas , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Transducción de Señal , Lisosomas/metabolismo , Humanos , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Endosomas/metabolismo , Endocitosis , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética
7.
Mol Cell ; 84(8): 1556-1569.e10, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38503285

RESUMEN

Cells respond to lysosomal membrane permeabilization by membrane repair or selective macroautophagy of damaged lysosomes, termed lysophagy, but it is not fully understood how this decision is made. Here, we uncover a pathway in human cells that detects lipid bilayer perturbations in the limiting membrane of compromised lysosomes, which fail to be repaired, and then initiates ubiquitin-triggered lysophagy. We find that SPG20 binds the repair factor IST1 on damaged lysosomes and, importantly, integrates that with the detection of damage-associated lipid-packing defects of the lysosomal membrane. Detection occurs via sensory amphipathic helices in SPG20 before rupture of the membrane. If lipid-packing defects are extensive, such as during lipid peroxidation, SPG20 recruits and activates ITCH, which marks the damaged lysosome with lysine-63-linked ubiquitin chains to initiate lysophagy and thus triages the lysosome for destruction. With SPG20 being linked to neurodegeneration, these findings highlight the relevance of a coordinated lysosomal damage response for cellular homeostasis.


Asunto(s)
Lisosomas , Macroautofagia , Humanos , Autofagia/fisiología , Membranas Intracelulares/metabolismo , Lípidos , Lisosomas/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo
8.
Environ Toxicol ; 39(7): 3779-3789, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38488668

RESUMEN

Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer with known neurotoxic effects. However, the specific mechanism underlying this neurotoxicity remains unclear. This study aimed to investigate the role of lysosomal function and lysophagy in DEHP-induced neurotoxicity, with a particular focus on the regulatory role of Transcription factor EB (TFEB). To achieve this, we utilized in vitro models of DEHP-exposed SH-SY5Y cells and HT22 cells. Our findings revealed that DEHP exposure led to lysosomal damage and dysfunction. Moreover, we observed impaired autophagic degradation, characterized by elevated levels of LC3II and p62. DEHP treatment downregulated the expression of TFEB, GAL3, and TRIM16, while upregulating the expression of PARP. This led to the inhibition of GAL3/TRIM16 axis dependent lysophagy and ultimately excessive apoptosis in neuronal cells. Importantly, TFEB overexpression alleviated lysosomal dysfunction, activated lysophagy, and mitigated DEHP-induced apoptosis. Overall, our results suggest that DEHP induces not only lysosomal dysfunction, but also inhibits lysophagy through the suppression of GAL3/TRIM16 axis. Consequently, impaired clearance of damaged lysosomes occurs, culminating in neuronal apoptosis. Taken together, our findings highlight the critical role of TFEB in regulating lysophagy and lysosomal function. Furthermore, TFEB may serve as a potential therapeutic target for mitigating DEHP-induced neuronal toxicity.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Dietilhexil Ftalato , Lisosomas , Ubiquitina-Proteína Ligasas , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Humanos , Dietilhexil Ftalato/toxicidad , Autofagia/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Apoptosis/efectos de los fármacos , Neuronas/efectos de los fármacos , Animales , Ratones , Plastificantes/toxicidad , Línea Celular Tumoral , Línea Celular
9.
Stem Cell Reports ; 19(3): 366-382, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38335961

RESUMEN

Mutations in the AAA+ ATPase p97 cause multisystem proteinopathy 1, which includes amyotrophic lateral sclerosis; however, the pathogenic mechanisms that contribute to motor neuron loss remain obscure. Here, we use two induced pluripotent stem cell models differentiated into spinal motor neurons to investigate how p97 mutations perturb the motor neuron proteome. Using quantitative proteomics, we find that motor neurons harboring the p97 R155H mutation have deficits in the selective autophagy of lysosomes (lysophagy). p97 R155H motor neurons are unable to clear damaged lysosomes and have reduced viability. Lysosomes in mutant motor neurons have increased pH compared with wild-type cells. The clearance of damaged lysosomes involves UBXD1-p97 interaction, which is disrupted in mutant motor neurons. Finally, inhibition of the ATPase activity of p97 using the inhibitor CB-5083 rescues lysophagy defects in mutant motor neurons. These results add to the evidence that endo-lysosomal dysfunction is a key aspect of disease pathogenesis in p97-related disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Humanos , Esclerosis Amiotrófica Lateral/genética , Macroautofagia , Neuronas Motoras , Mutación
10.
Autophagy ; 20(2): 443-444, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37872727

RESUMEN

ATG16L1 is an essential component of the Atg8-family protein conjugation machinery, providing membrane targeting for the ATG12-ATG5 conjugate. Recently, we identified an alternative E3-like complex that functions independently of ATG16L1. This complex utilizes the autophagosome-lysosome tethering factor TECPR1 for membrane targeting. TECPR1 is recruited to damaged lysosomal membranes via a direct interaction with sphingomyelin. At the damaged membrane, TECPR1 assembles into an E3-like complex with ATG12-ATG5 to regulate unconventional LC3 lipidation and promote efficient lysosomal repair.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Proteína 5 Relacionada con la Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína 12 Relacionada con la Autofagia , Lisosomas/metabolismo , Proteínas Relacionadas con la Autofagia
11.
Proc Natl Acad Sci U S A ; 121(1): e2312306120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147546

RESUMEN

The neuron-to-neuron propagation of misfolded α-synuclein (αSyn) aggregates is thought to be key to the pathogenesis of synucleinopathies. Recent studies have shown that extracellular αSyn aggregates taken up by the endosomal-lysosomal system can rupture the lysosomal vesicular membrane; however, it remains unclear whether lysosomal rupture leads to the transmission of αSyn aggregation. Here, we applied cell-based αSyn propagation models to show that ruptured lysosomes are the pathway through which exogenous αSyn aggregates transmit aggregation, and furthermore, this process was prevented by lysophagy, i.e., selective autophagy of damaged lysosomes. αSyn aggregates accumulated predominantly in lysosomes, causing their rupture, and seeded the aggregation of endogenous αSyn, initially around damaged lysosomes. Exogenous αSyn aggregates induced the accumulation of LC3 on lysosomes. This LC3 accumulation was not observed in cells in which a key regulator of autophagy, RB1CC1/FIP200, was knocked out and was confirmed as lysophagy by transmission electron microscopy. Importantly, RB1CC1/FIP200-deficient cells treated with αSyn aggregates had increased numbers of ruptured lysosomes and enhanced propagation of αSyn aggregation. Furthermore, various types of lysosomal damage induced using lysosomotropic reagents, depletion of lysosomal enzymes, or more toxic species of αSyn fibrils also exacerbated the propagation of αSyn aggregation, and impaired lysophagy and lysosomal membrane damage synergistically enhanced propagation. These results indicate that lysophagy prevents exogenous αSyn aggregates from escaping the endosomal-lysosomal system and transmitting aggregation to endogenous cytosolic αSyn via ruptured lysosomal vesicles. Our findings suggest that the progression and severity of synucleinopathies are associated with damage to lysosomal membranes and impaired lysophagy.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína/metabolismo , Macroautofagia , Sinucleinopatías/metabolismo , Enfermedad de Parkinson/metabolismo , Lisosomas/metabolismo
12.
Cancer Lett ; 584: 216599, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38135207

RESUMEN

In the era of personalized therapy, precise targeting of subcellular organelles holds great promise for cancer modality. Taking into consideration that lysosome represents the intersection site in numerous endosomal trafficking pathways and their modulation in cancer growth, progression, and resistance against cancer therapies, the lysosome is proposed as an attractive therapeutic target for cancer treatment. Based on the recent advances, the current review provides a comprehensive understanding of molecular mechanisms of lysosome homeostasis under 3R responses: Repair, Removal (lysophagy) and Regeneration of lysosomes. These arms of 3R responses have distinct role in lysosome homeostasis although their interdependency along with switching between the pathways still remain elusive. Recent advances underpinning the crucial role of (1) ESCRT complex dependent/independent repair of lysosome, (2) various Galectins-based sensing and ubiquitination in lysophagy and (3) TFEB/TFE proteins in lysosome regeneration/biogenesis of lysosome are outlined. Later, we also emphasised how these recent advancements may aid in development of phytochemicals and pharmacological agents for targeting lysosomes for efficient cancer therapy. Some of these lysosome targeting agents, which are now at various stages of clinical trials and patents, are also highlighted in this review.


Asunto(s)
Macroautofagia , Neoplasias , Humanos , Lisosomas/metabolismo , Proteínas/metabolismo , Ubiquitinación , Homeostasis , Autofagia/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
13.
EMBO Rep ; 24(10): e56948, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37672005

RESUMEN

The maintenance of lysosome homeostasis is crucial for cell growth. Lysosome-dependent degradation and metabolism sustain tumor cell survival. Here, we demonstrate that CCDC50 serves as a lysophagy receptor, promoting tumor progression and invasion by controlling lysosomal integrity and renewal. CCDC50 monitors lysosomal damage, recognizes galectin-3 and K63-linked polyubiquitination on damaged lysosomes, and specifically targets them for autophagy-dependent degradation. CCDC50 deficiency causes the accumulation of ruptured lysosomes, impaired autophagic flux, and superfluous reactive oxygen species, consequently leading to cell death and tumor suppression. CCDC50 expression is associated with malignancy, progression to metastasis, and poor overall survival in human melanoma. Targeting CCDC50 suppresses tumor growth and lung metastasis, and enhances the effect of BRAFV600E inhibition. Thus, we demonstrate critical roles of CCDC50-mediated clearance of damaged lysosomes in supporting tumor growth, hereby identifying a potential therapeutic target of melanoma.

14.
Autophagy ; 19(12): 3132-3150, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37471054

RESUMEN

Colorectal cancer (CRC) is one of the most common malignancies worldwide and remains a major clinical challenge. Periplocin, a major bioactive component of the traditional Chinese herb Cortex periplocae, has recently been reported to be a potential anticancer drug. However, the mechanism of action is poorly understood. Here, we show that periplocin exhibits promising anticancer activity against CRC both in vitro and in vivo. Mechanistically, periplocin promotes lysosomal damage and induces apoptosis in CRC cells. Notably, periplocin upregulates LGALS3 (galectin 3) by binding and preventing LGALS3 from Lys210 ubiquitination-mediated proteasomal degradation, leading to the induction of excessive lysophagy and resultant exacerbation of lysosomal damage. Inhibition of LGALS3-mediated lysophagy attenuates periplocin-induced lysosomal damage and growth inhibition in CRC cells, suggesting a critical role of lysophagy in the anticancer effects of periplocin. Taken together, our results reveal a novel link between periplocin and the lysophagy machinery, and indicate periplocin as a potential therapeutic option for the treatment of CRC.Abbreviations: 3-MA: 3-methyladenine; ACACA/ACC1: acetyl-CoA carboxylase alpha; AMPK: adenosine monophosphate-activated protein kinase; AO: Acridine orange; ATG5: autophagy related 5; ATG7: autophagy related 7; CALM: calmodulin; CHX: cycloheximide; CRC: colorectal cancer; CQ: chloroquine; CTSB: cathepsin B; CTSD: cathepsin D; ESCRT: endosomal sorting complex required for transport; LAMP1: lysosomal associated membrane protein 1; LMP: lysosomal membrane permeabilization; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MKI67/Ki-67: marker of proliferation Ki-67; MTOR: mechanistic target of rapamycin kinase; P2RX4/P2X4: purinergic receptor P2X 4; PARP1/PARP: poly(ADP-ribose) polymerase 1; PRKAA/AMPKα: protein kinase AMP-activated catalytic subunit alpha; SQSTM1/p62: sequestosome 1; TFEB: transcription factor EB; TRIM16: tripartite motif containing 16.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Galectina 3/metabolismo , Autofagia , Macroautofagia , Antígeno Ki-67/metabolismo , Lisosomas/metabolismo , Antineoplásicos/farmacología , Proteínas Quinasas/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
15.
EMBO Rep ; 24(9): e56841, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37381828

RESUMEN

Lysosomal membrane damage represents a threat to cell viability. As such, cells have evolved sophisticated mechanisms to maintain lysosomal integrity. Small membrane lesions are detected and repaired by the endosomal sorting complex required for transport (ESCRT) machinery while more extensively damaged lysosomes are cleared by a galectin-dependent selective macroautophagic pathway (lysophagy). In this study, we identify a novel role for the autophagosome-lysosome tethering factor, TECPR1, in lysosomal membrane repair. Lysosomal damage promotes TECPR1 recruitment to damaged membranes via its N-terminal dysferlin domain. This recruitment occurs upstream of galectin and precedes the induction of lysophagy. At the damaged membrane, TECPR1 forms an alternative E3-like conjugation complex with the ATG12-ATG5 conjugate to regulate ATG16L1-independent unconventional LC3 lipidation. Abolishment of LC3 lipidation via ATG16L1/TECPR1 double knockout impairs lysosomal recovery following damage.


Asunto(s)
Autofagia , Proteínas Asociadas a Microtúbulos , Proteínas Asociadas a Microtúbulos/metabolismo , Macroautofagia , Galectinas/metabolismo , Lisosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo
16.
Mol Ther ; 31(7): 2169-2187, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37211762

RESUMEN

Hypertrophic lysosomes are critical for tumor progression and drug resistance; however, effective and specific lysosome-targeting compounds for cancer therapy are lacking. Here we conducted a lysosomotropic pharmacophore-based in silico screen in a natural product library (2,212 compounds), and identified polyphyllin D (PD) as a novel lysosome-targeted compound. PD treatment was found to cause lysosomal damage, as evidenced by the blockade of autophagic flux, loss of lysophagy, and the release of lysosomal contents, thus exhibiting anticancer effects on hepatocellular carcinoma (HCC) cell both in vitro and in vivo. Closer mechanistic examination revealed that PD suppressed the activity of acid sphingomyelinase (SMPD1), a lysosomal phosphodieserase that catalyzes the hydrolysis of sphingomyelin to produce ceramide and phosphocholine, by directly occupying its surface groove, with Trp148 in SMPD1 acting as a major binding residue; this suppression of SMPD1 activity irreversibly triggers lysosomal injury and initiates lysosome-dependent cell death. Furthermore, PD-enhanced lysosomal membrane permeabilization to release sorafenib, augmenting the anticancer effect of sorafenib both in vivo and in vitro. Overall, our study suggests that PD can potentially be further developed as a novel autophagy inhibitor, and a combination of PD with classical chemotherapeutic anticancer drugs could represent a novel therapeutic strategy for HCC intervention.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Esfingomielina Fosfodiesterasa/farmacología , Neoplasias Hepáticas/metabolismo , Lisosomas/metabolismo , Autofagia , Resistencia a Medicamentos , Punciones
17.
Autophagy ; 19(11): 3029-3030, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37194327

RESUMEN

ABBREVIATIONS: SQSTM1/p62: Sequestosome-1; HSP27: Heat shock protein 27; LLPS: liquid-liquid phase separation; iPSC: induced pluripotent stem cell; PB1: Phox and Bem1p; FRAP: fluorescence recovery after photo-bleaching; ATG: autophagy-related; ALS: amyotrophic lateral sclerosis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Choque Térmico HSP27 , Humanos , Proteína Sequestosoma-1/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Macroautofagia , Autofagia , Esclerosis Amiotrófica Lateral/metabolismo
18.
Trends Cell Biol ; 33(9): 749-764, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36717330

RESUMEN

Lysosomes are essential catabolic organelles with an acidic lumen and dozens of hydrolytic enzymes. The detrimental consequences of lysosomal leakage have been well known since lysosomes were discovered during the 1950s. However, detailed knowledge of lysosomal quality control mechanisms has only emerged relatively recently. It is now clear that lysosomal leakage triggers multiple lysosomal quality control pathways that replace, remove, or directly repair damaged lysosomes. Here, we review how lysosomal damage is sensed and resolved in mammalian cells, with a focus on the molecular mechanisms underlying different lysosomal quality control pathways. We also discuss the clinical implications and therapeutic potential of these pathways.


Asunto(s)
Autofagia , Lisosomas , Animales , Lisosomas/metabolismo , Mamíferos , Orgánulos
19.
Cell Rep ; 42(2): 112037, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36701233

RESUMEN

In response to lysosomal damage, cells engage several quality-control mechanisms, including the selective isolation and degradation of damaged lysosomes by lysophagy. Here, we report that the selective autophagy adaptor SQSTM1/p62 is recruited to damaged lysosomes in both HeLa cells and neurons and is required for lysophagic flux. The Phox and Bem1p (PB1) domain of p62 mediates oligomerization and is specifically required for lysophagy. Consistent with this observation, we find that p62 forms condensates on damaged lysosomes. These condensates are precisely tuned by the small heat shock protein HSP27, which is phosphorylated in response to lysosomal injury and maintains the liquidity of p62 condensates, facilitating autophagosome formation. Mutations in p62 have been identified in patients with amyotrophic lateral sclerosis (ALS); ALS-associated mutations in p62 impair lysophagy, suggesting that deficits in this pathway may contribute to neurodegeneration. Thus, p62 condensates regulated by HSP27 promote lysophagy by forming platforms for autophagosome biogenesis at damaged lysosomes.


Asunto(s)
Lisosomas , Macroautofagia , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Autofagia , Células HeLa , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Lisosomas/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo
20.
Autophagy ; 19(6): 1869-1871, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36368338

RESUMEN

Macroautophagy (hereafter autophagy) is a highly conserved intracellular degradation system to maintain cellular homeostasis by degrading cellular components such as misfolded proteins, nonfunctional organelles, pathogens, and cytosol. Conversely, selective autophagy targets and degrades specific cargo, such as organelles, bacteria, etc. We previously reported that damaged lysosomes are autophagy targets, via a process called lysophagy. However, how cells target damaged lysosomes through autophagy is not known. We performed proteomics analysis followed by siRNA screening to identify genes involved in targeting damaged lysosomes and identified a new E3 ligase complex, involving CUL4A (cullin 4A), as a regulatory complex in lysophagy. We also found that this complex mediates K48-linked poly-ubiquitination on lysosome protein LAMP2 during lysosomal damage; particularly, the lumenal side of LAMP2 is important to recruit the complex to damaged lysosomes. This protein modification is thus critical to initiate the clearance of damaged lysosomes.


Asunto(s)
Autofagia , Lisosomas , Lisosomas/metabolismo , Macroautofagia , Ubiquitinación , Orgánulos/metabolismo , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA