Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Front Med (Lausanne) ; 10: 1260375, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37828950

RESUMEN

Background: It has been amply described that levels of IgM antibodies against Mycobacterium leprae (M. leprae) phenolic glycolipid I (PGL-I) correlate strongly with the bacterial load in an infected individual. These findings have generated the concept of using seropositivity for antibodies against M. leprae PGL-I as an indicator of the proportion of the population that has been infected. Although anti-PGL-I IgM levels provide information on whether an individual has ever been infected, their presence cannot discriminate between recent and past infections. Since infection in (young) children by definition indicates recent transmission, we piloted the feasibility of assessment of anti-PGL-I IgM seroprevalence among children in a leprosy endemic area in India as a proxy for recent M. leprae transmission. Material and methods: A serosurvey for anti-PGL-I IgM antibodies among children in highly leprosy endemic villages in Bihar, India, was performed, applying the quantitative anti-PGL-I UCP-LFA cassette combined with low-invasive, small-volume fingerstick blood (FSB). Results: Local staff obtained FSB of 1,857 children (age 3-11 years) living in 12 leprosy endemic villages in Bihar; of these, 215 children (11.58%) were seropositive for anti-PGL-I IgM. Conclusion: The anti-PGL-I seroprevalence level of 11.58% among children corresponds with the seroprevalence levels described in studies in other leprosy endemic areas over the past decades where no prophylactic interventions have taken place. The anti-PGL-I UCP-LFA was found to be a low-complexity tool that could be practically combined with serosurveys and was well-accepted by both healthcare staff and the population. On route to leprosy elimination, quantitative anti-PGL-I serology in young children holds promise as a strategy to monitor recent M. leprae transmission in an area.

2.
Int J Mol Sci ; 24(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37240073

RESUMEN

Peripheral nerves and Schwann cells (SCs) are privileged and protected sites for initial colonization, survival, and spread of leprosy bacillus. Mycobacterium leprae strains that survive multidrug therapy show a metabolic inactivation that subsequently induces the recurrence of typical clinical manifestations of leprosy. Furthermore, the role of the cell wall phenolic glycolipid I (PGL-I) in the M. leprae internalization in SCs and the pathogenicity of M. leprae have been extensively known. This study assessed the infectivity in SCs of recurrent and non-recurrent M. leprae and their possible correlation with the genes involved in the PGL-I biosynthesis. The initial infectivity of non-recurrent strains in SCs was greater (27%) than a recurrent strain (6.5%). In addition, as the trials progressed, the infectivity of the recurrent and non-recurrent strains increased 2.5- and 2.0-fold, respectively; however, the maximum infectivity was displayed by non-recurrent strains at 12 days post-infection. On the other hand, qRT-PCR experiments showed that the transcription of key genes involved in PGL-I biosynthesis in non-recurrent strains was higher and faster (Day 3) than observed in the recurrent strain (Day 7). Thus, the results indicate that the capacity of PGL-I production is diminished in the recurrent strain, possibly affecting the infective capacity of these strains previously subjected to multidrug therapy. The present work opens the need to address more extensive and in-depth studies of the analysis of markers in the clinical isolates that indicate a possible future recurrence.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Quimioterapia Combinada , Leprostáticos/metabolismo , Lepra/genética , Glucolípidos/metabolismo , Anticuerpos/metabolismo , Células de Schwann/metabolismo , Antígenos Bacterianos/metabolismo
3.
J Neurochem ; 164(2): 158-171, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349509

RESUMEN

Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell-conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial 14 C-labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid-1 (PGL-1) is a specific M. leprae cell wall antigen proposed to mediate bacterial-Schwann cell interaction. Therefore, we assessed the role of the PGL-1 on Schwann cell phenotype by using transgenic M. bovis (BCG)-expressing the M. leprae PGL-1. We observed that BCG-PGL-1 was able to induce a phenotype similar to M. leprae, unlike the wild-type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL-1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae- and BCG-PGL-1-infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL-1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Animales , Ratones , Mycobacterium leprae/genética , Mycobacterium leprae/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Glucolípidos/metabolismo , Vacuna BCG/metabolismo , Lepra/microbiología , Células de Schwann/metabolismo
4.
Eur J Clin Microbiol Infect Dis ; 41(11): 1295-1304, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36114431

RESUMEN

To establish a biological profile and disease aetiologies for one of four burials recovered during a Time Team dig at the St. Mary Magdalen leprosarium, Winchester, UK in AD 2000. Osteological techniques were applied to estimate age at death, biological sex, stature and pathology. Visual assessment of the material was supplemented by radiographic examination. Evidence for leprosy DNA was sought using ancient DNA (aDNA) analysis. The remains are those of a male individual excavated from a west-east aligned grave. The skeleton shows signs of two pathologies. Remodelling of the rhino-maxillary area and degenerative changes to small bones of the feet and reactive bone on the distal lower limbs suggest a multibacillary form of leprosy, whereas the right tibia and fibula show the presence of a primary neoplasm identified as an osteosarcoma. The aDNA study confirmed presence of Mycobacterium leprae in several skeletal elements, and the strain was genotyped to the 3I lineage, one of two main SNP types present in mediaeval Britain and ancestral to extant strains in America. This is a rare documentation of leprosy in association with a primary neoplasm.


Asunto(s)
Lepra Lepromatosa , Lepra , Osteosarcoma , Huesos , ADN Antiguo , Humanos , Lepra/diagnóstico , Lepra Lepromatosa/microbiología , Masculino , Mycobacterium leprae/genética , Osteosarcoma/genética , Reino Unido
5.
Int J Mol Sci ; 23(17)2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36076909

RESUMEN

In humans, mitochondria play key roles in the regulation of cellular functions, such as the regulation of the innate immune response and are targets of several pathogenic viruses and bacteria. Mycobacteria are intracellular pathogens that infect cells important to the immune system of organisms and target mitochondria to meet their energy demands. In this review, we discuss the main mechanisms by which mitochondria regulate the innate immune response of humans to mycobacterial infection, especially those that cause tuberculosis and leprosy. Notably, the importance of mitochondrial haplogroups and ancestry studies for mycobacterial diseases is also discussed.


Asunto(s)
Lepra , Mycobacterium , Tuberculosis , Humanos , Sistema Inmunológico , Lepra/genética , Mitocondrias/genética , Mycobacterium/genética , Mycobacterium leprae , Tuberculosis/genética , Tuberculosis/microbiología
6.
Infect Drug Resist ; 15: 4029-4036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35924023

RESUMEN

Purpose: Reports on antimicrobial resistance (AMR) of Mycobacterium leprae (M. leprae) in Zhejiang Province are limited. Thus, this study aimed to investigate the drug resistance of new leprosy cases within several years and analyse the emergence of AMR mutations from Zhejiang Province. Methods: This study enrolled 34 leprosy cases in Zhejiang Province, China, from 2018 to 2021. Gene mutation of WHO-recommended DRDRs (folP1, rpoB and gyrA) and genes of compensatory AMR-associated DRDRs, including nth, rpoA, rpoC, gyrB and 23S rRNA, were detected by amplification. Clinical data analysis was performed to investigate the epidemiological association of leprosy. Results: Of the 34 samples, 2 (5.9%) strains showed drug resistance, which were mutated to dapsone and ofloxacin, separately. Two single mutations in gyrB were detected in different strains (5.9%), whereas one of the rpoC mutation was also detected in one strain each (2.9%), which were proved to be polymorphs. No correlation of drug resistance proportion was identified in male vs female, nerve vs no nerve involvement, deformity vs no deformity and reaction vs non-reaction cases. Conclusion: Results showed well control of leprosy patients in Zhejiang Province. Gene mutations of WHO-recommended DRDRs folP1 and gyrA confirmed the resistance to dapsone and ofloxacin. Compensatory AMR-associated mutations confirmed to be polymorphs still require further study to determine their phenotypic outcomes in M. leprae. The results demonstrated that drug-resistant strains are not epidemic in this area. Given the few cases of leprosy, analysing the AMR of M. leprae in Zhejiang Province more comprehensively is difficult. However, regular MDT treatment and population management in the early stage may contribute to the low prevalence of leprosy.

7.
Antimicrob Agents Chemother ; 66(5): e0217021, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35435708

RESUMEN

Brazil ranks second among countries for new cases and first for relapse cases of leprosy worldwide. The Mycobacterium leprae Resistance Surveillance Plan was established. We aimed to present the results of a 2-year follow-up of the National Surveillance Plan in Brazil. A cross-sectional study of leprosy cases was performed to investigate antimicrobial resistance (AMR) in Brazil from October 2018 to September 2020. Molecular screening targeting genes related to dapsone (folP1), rifampin (rpoB), and ofloxacin resistance (gyrA) was performed. During the referral period, 63,520 active leprosy patients were registered in Brazil, and 1,183 fulfilled the inclusion criteria for molecular AMR investigation. In total, only 16 (1.4%) patients had genetic polymorphisms associated with AMR. Of these, 8 (50%) had cases of leprosy relapse, 7 (43.8%) had cases of suspected therapeutic failure with standard treatment, and 1 (6.2%) was a case of new leprosy presentation. M. leprae strains with AMR-associated mutations were found for all three genes screened. Isolates from two patients showed simultaneous resistance to dapsone and rifampin, indicating multidrug resistance (MDR). No significant relationship between clinical variables and the presence of AMR was identified. Our study revealed a low frequency of AMR in Brazil. Isolates were resistant mainly to dapsone, and a very low number of isolates were resistant to rifampin, the main bactericidal agent for leprosy, or presented MDR, reinforcing the importance of the standard World Health Organization multidrug therapy. The greater frequency of AMR among relapsed patients supports the need to constantly monitor this group.


Asunto(s)
Leprostáticos , Lepra , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Brasil/epidemiología , Estudios Transversales , Dapsona/uso terapéutico , Farmacorresistencia Bacteriana/genética , Quimioterapia Combinada , Humanos , Leprostáticos/farmacología , Leprostáticos/uso terapéutico , Lepra/tratamiento farmacológico , Lepra/epidemiología , Lepra/microbiología , Pruebas de Sensibilidad Microbiana , Mycobacterium leprae/genética , Recurrencia , Rifampin/farmacología , Rifampin/uso terapéutico
8.
Microb Pathog ; 166: 105511, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35398215

RESUMEN

Leprosy is a chronic granulomatous disease that remains a serious public health problem in developing countries. According to the Madrid classification, leprosy presents in four clinical forms: two immunologically unstable forms (indeterminate and borderline) and two stable polar forms (tuberculoid and lepromatous). In leprosy, the relationship of cell death to clinical disease outcome remains unclear. Therefore, we investigated the extent of autophagy and different cell death mechanisms-such as apoptosis, necroptosis, and pyroptosis-in cutaneous lesions of patients with leprosy, as well as the role of these mechanisms in clinical disease progression. This cross-sectional analytical study included 30 patients with a confirmed diagnosis of leprosy, with 10 patients in each of the following groups: lepromatous (LL), tuberculoid (TT), and indeterminate (II) leprosy groups. For histopathological analysis, skin samples were subjected to haematoxylin-eosin staining and immunostaining for apoptotic and necroptotic markers. The results indicated that FasL expression was much higher in the LL form than in the TT and II forms. Similar results (higher expression in the LL form than in the TT and II forms) were observed for caspase 8, RIP1, and RIP3 expressions. MLKL, BAX, and caspase 3 expression levels were highest in the LL form, especially in globular foamy macrophages. Beclin-1 expression was highest in the TT form but was low in LL and II forms. Caspase 1 expression was highest in the LL form, followed by that in the TT and II forms. In conclusion, our study elucidates the role of different cell death mechanisms in the pathophysiology of various forms of leprosy and suggests measures that may be used to control the host response to infection and disease progression.


Asunto(s)
Lepra Lepromatosa , Lepra , Apoptosis , Estudios Transversales , Progresión de la Enfermedad , Humanos , Lepra/patología , Mycobacterium leprae
9.
Vaccines (Basel) ; 10(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35335022

RESUMEN

The genus mycobacterium includes several species that are known to cause infections in humans. The microorganisms are classified into tuberculous and non-tuberculous based on their morphological characteristics, defined by the dynamic relationship between the host defenses and the infectious agent. Non-tuberculous mycobacteria (NTM) include all the species of mycobacterium other than the ones that cause tuberculosis (TB). The group of NTM contains almost 200 different species and they are found in soil, water, animals-both domestic and wild-milk and food products, and from plumbed water resources such as sewers and showerhead sprays. A systematic review of Medline between 1946 and 2014 showed an 81% decline in TB incidence rates with a simultaneous 94% increase in infections caused by NTM. Prevalence of infections due to NTM has increased relative to infections caused by TB owing to the stringent prevention and control programs in Western countries such as the USA and Canada. While the spread of typical mycobacterial infections such as TB and leprosy involves human contact, NTM seem to spread easily from the environment without the risk of acquiring from a human contact except in the case of M. abscessus in patients with cystic fibrosis, where human transmission as well as transmission through fomites and aerosols has been recorded. NTM are opportunistic in their infectious processes, making immunocompromised individuals such as those with other systemic infections such as HIV, immunodeficiencies, pulmonary disease, or usage of medications such as long-term corticosteroids/TNF-α inhibitors more susceptible. This review provides insight on pathogenesis, treatment, and BCG vaccine efficacy against M. leprae and some important NTM infections.

10.
Washington; s.n; 2022. 9 p. tab, mapa.
No convencional en Inglés | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1402124

RESUMEN

Brazil ranks second among countries for new cases and first for relapse cases of leprosy worldwide. The Mycobacterium leprae Resistance Surveillance Plan was established. We aimed to present the results of a 2-year follow-up of the National Surveillance Plan in Brazil. A cross-sectional study of leprosy cases was performed to investigate antimicrobial resistance (AMR) in Brazil from October 2018 to September 2020. Molecular screening targeting genes related to dapsone (folP1), rifampin (rpoB), and ofloxacin resistance (gyrA) was performed. During the referral period, 63,520 active leprosy patients were registered in Brazil, and 1,183 fulfilled the inclusion criteria for molecular AMR investigation. In total, only 16 (1.4%) patients had genetic polymorphisms associated with AMR. Of these, 8 (50%) had cases of leprosy relapse, 7 (43.8%) had cases of suspected therapeutic failure with standard treatment, and 1 (6.2%) was a case of new leprosy presentation. M. leprae strains with AMR-associated mutations were found for all three genes screened. Isolates from two patients showed simultaneous resistance to dapsone and rifampin, indicating multidrug resistance (MDR). No significant relation ship between clinical variables and the presence of AMR was identified. Our study revealed a low frequency of AMR in Brazil. Isolates were resistant mainly to dapsone, and a very low number of isolates were resistant to rifampin, the main bactericidal agent for leprosy, or presented MDR, reinforcing the importance of the standard World Health Organization multidrug therapy. The greater frequency of AMR among relapsed patients supports the need to constantly monitor this group


Asunto(s)
Humanos , Rifampin , Brasil/epidemiología , Pruebas de Sensibilidad Microbiana , Estudios Transversales , Farmacorresistencia Bacteriana/genética , Dapsona/uso terapéutico , Quimioterapia Combinada , Leprostáticos , Lepra , Lepra/microbiología , Lepra/tratamiento farmacológico , Antibacterianos/uso terapéutico , Antibacterianos/farmacología
11.
s.l; s.n; 2022. 14 p. ilus, graf.
No convencional en Inglés | Sec. Est. Saúde SP, HANSEN, Hanseníase, SESSP-ILSLPROD, Sec. Est. Saúde SP, SESSP-ILSLACERVO, Sec. Est. Saúde SP | ID: biblio-1414836

RESUMEN

Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell-conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial 14C-labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid-1 (PGL-1) is a specific M. leprae cell wall antigen proposed to mediate bacterial­Schwann cell interaction. Therefore, we assessed the role of the PGL-1 on Schwann cell phenotype by using transgenic M. bovis (BCG)-expressing the M. leprae PGL-1. We observed that BCG-PGL-1 was able to induce a phenotype similar to M. leprae, unlike the wild-type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL-1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae- and BCG-PGL-1-infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL-1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy. (AU)


Asunto(s)
Humanos , Animales , Ratas , Vacuna BCG/metabolismo , Glucolípidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Mycobacterium leprae/metabolismo , Células de Schwann/metabolismo , Lepra/microbiología , Mycobacterium leprae/genética
12.
Front Microbiol ; 12: 786921, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925294

RESUMEN

In 1926, a mycobacterial skin disease was observed in water buffaloes by researchers in Indonesia. The disease was designated as skin tuberculosis, though it was hypothesized that it might be a form of leprosy or a leprosy-like disease. In a follow-up study (Ph.D. thesis Lobel, 1934, Utrecht University, Netherlands) a similar nodular skin disease was described in Indonesian water buffaloes and named "lepra bubalorum" or "nodular leprosy." Two decades later Kraneveld and Roza (1954) reported that, so far, the diagnosis lepra bubalorum had been made in 146 cases in Indonesia. After a final series of research reports by Indonesian veterinarians in 1961, no subsequent cases were published. Based on information from these reports, it can be concluded that, even though evidence of nerve involvement in buffaloes was not reported, similarities exist between lepra bubalorum and Hansen's disease (leprosy), i.e., nodular skin lesions with a chronic course and microscopically granulomatous reactions with AFB in globi in vacuoles. This raises the question as to whether these historical cases might indeed have been caused by Mycobacterium leprae, Mycobacterium lepromatosis or another representative of the M. leprae complex. The future use of state-of-the-art molecular techniques may answer this question and may also help to answer the question whether water buffaloes should be considered as a potential natural reservoir of the causative pathogen of Hansen's disease.

13.
Front Microbiol ; 12: 763289, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777319

RESUMEN

Leprosy is an infectious disease caused by Mycobacterium leprae with tropism for skin and peripheral nerves. Incessant transmission in endemic areas is still impeding elimination of leprosy. Although detection of M. leprae infection remains a challenge in asymptomatic individuals, the presence of antibodies specific for phenolglycolipid-I (PGL-I) correlate with bacterial load. Therefore, serosurveillance utilizing field-friendly tests detecting anti-PGL-I antibodies, can be applied to identify those who may transmit bacteria and to study (reduction of) M. leprae transmission. However, serology based on antibody detection cannot discriminate between past and present M. leprae infection in humans, nor can it detect individuals carrying low bacillary loads. In humans, anti-PGL-I IgM levels are long-lasting and usually detected in more individuals than anti-PGL-I IgG levels. Inherent to the characteristically long incubation time of leprosy, IgM/IgG relations (antibody kinetics) in leprosy patients and infected individuals are not completely clear. To investigate the antibody response directly after infection, we have measured antibody levels by ELISA, in longitudinal samples of experimentally M. leprae infected, susceptible nine-banded armadillos (Dasypus novemcinctus). In addition, we assessed the user- and field-friendly, low-cost lateral flow assay (LFA) utilizing upconverting reporter particles (UCP), developed for quantitative detection of human anti-PGL-I IgM (UCP-LFA), to detect treatment- or vaccination-induced changes in viable bacterial load. Our results show that serum levels of anti-PGL-I IgM, and to a lesser extent IgG, significantly increase soon after experimental M. leprae infection in armadillos. In view of leprosy phenotypes in armadillos, this animal model can provide useful insight into antibody kinetics in early infection in the various spectral forms of human leprosy. The UCP-LFA for quantitative detection of anti-PGL-I IgM allows monitoring the efficacy of vaccination and rifampin-treatment in the armadillo leprosy model, thereby providing a convenient tool to evaluate the effects of drugs and vaccines and new diagnostics.

14.
Neurotherapeutics ; 18(4): 2337-2350, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34799845

RESUMEN

Neuropathy and related disabilities are the major medical consequences of leprosy, which remains a global medical concern. Despite major advances in understanding the mechanisms of M. leprae entry into peripheral nerves, most aspects of the pathogenesis of leprosy neuropathy remain poorly understood. Sensory loss is characteristic of leprosy, but neuropathic pain is sometimes observed. Effective anti-microbial therapy is available, but neuropathy remains a problem especially if diagnosis and treatment are delayed. Currently there is intense interest in post-exposure prophylaxis with single-dose rifampin in endemic areas, as well as with enhanced prophylactic regimens in some situations. Some degree of nerve involvement is seen in all cases and neuritis may occur in the absence of leprosy reactions, but acute neuritis commonly accompanies both Type 1 and Type 2 leprosy reactions and may be difficult to manage. A variety of established as well as new methods for the early diagnosis and assessment of leprosy neuropathy are reviewed. Corticosteroids offer the primary treatment for neuritis and for subclinical neuropathy in leprosy, but success is limited if nerve function impairment is present at the time of diagnosis. A candidate vaccine has shown apparent benefit in preventing nerve injury in the armadillo model. The development of new therapeutics for leprosy neuropathy is greatly needed.


Asunto(s)
Lepra , Neuritis , Enfermedades del Sistema Nervioso Periférico , Animales , Armadillos , Lepra/complicaciones , Lepra/diagnóstico , Lepra/terapia , Mycobacterium leprae , Neuritis/complicaciones , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Enfermedades del Sistema Nervioso Periférico/etiología , Enfermedades del Sistema Nervioso Periférico/terapia
15.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34299217

RESUMEN

The mycobacterial cell wall is composed of large amounts of lipids with varying moieties. Some mycobacteria species hijack host cells and promote lipid droplet accumulation to build the cellular environment essential for their intracellular survival. Thus, lipids are thought to be important for mycobacteria survival as well as for the invasion, parasitization, and proliferation within host cells. However, their physiological roles have not been fully elucidated. Recent studies have revealed that mycobacteria modulate the peroxisome proliferator-activated receptor (PPAR) signaling and utilize host-derived triacylglycerol (TAG) and cholesterol as both nutrient sources and evasion from the host immune system. In this review, we discuss recent findings that describe the activation of PPARs by mycobacterial infections and their role in determining the fate of bacilli by inducing lipid metabolism, anti-inflammatory function, and autophagy.


Asunto(s)
Infecciones por Mycobacterium/microbiología , Mycobacterium/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Animales , Autofagia/fisiología , Colesterol/metabolismo , Humanos , Metabolismo de los Lípidos , Mycobacterium/crecimiento & desarrollo , Mycobacterium/inmunología , Infecciones por Mycobacterium/inmunología , Infecciones por Mycobacterium/metabolismo , Receptores Activados del Proliferador del Peroxisoma/genética , Transducción de Señal
16.
Immunol Rev ; 301(1): 157-174, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33660297

RESUMEN

Leprosy is a chronic granulomatous infectious disease caused by the pathogen, Mycobacterium leprae, and the more recently discovered, M. lepromatosis. Described in 1873, M. leprae was among the first microorganisms to be proposed as a cause of a human infectious disease. As an obligate intracellular bacterium, it has still not thus far been reproducibly cultivated in axenic medium or cell cultures. Shepard's mouse footpad assay, therefore, was truly a breakthrough in leprosy research. The generation of immunosuppressed and genetically engineered mice, along with advances in molecular and cellular techniques, has since offered more tools for the study of the M. leprae-induced granuloma. While far from perfect, these new mouse models have provided insights into the immunoregulatory mechanisms responsible for the spectrum of this complex disease.


Asunto(s)
Lepra , Animales , Modelos Animales de Enfermedad , Ratones , Mycobacterium leprae , Piel
17.
Microorganisms ; 8(11)2020 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-33143390

RESUMEN

Mycobacterium uberis (M. uberis) is a recently described non-tuberculous mycobacterium phylogenetically close to Mycobacterium leprae (M. leprae) and Mycobacterium lepromatosis (M. lepromatosis). This pathogen classically causes nodular thelitis in cattle and goats. Here, we discuss what seems to be the first described case of M. uberis infection in a novel anatomical site, in the proximal or distal position (information not available) of the radius/ulna area of a cow. As this case was discovered in the framework of bovine tuberculosis (bTB) surveillance program in France, this type of infection could interfere with the screening and diagnostic tools employed for bTB.

18.
Vaccine ; 38(48): 7629-7637, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33071000

RESUMEN

This work demonstrates the presence of immune regulatory cells in the cervical lymph nodes draining Bacillus Calmette-Guérin (BCG) vaccinated site on the dorsum of the ear in guinea pigs. It is shown that whole cervical lymph node cells did not proliferate in vitro in the presence of soluble mycobacterial antigens (PPD or leprosin) despite being responsive to whole mycobacteria. Besides, T cells from these lymph nodes separated as a non-adherent fraction on a nylon wool column, proliferated to PPD in the presence of autologous antigen presenting cells. Interestingly, addition of as low as 20% nylon wool adherent cells to these, sharply decreased the proliferation by 83%. Looking into what cells in the adherent fraction suppressed the proliferation, it was found that neither the T cell nor the macrophage enriched cell fractions of this population individually showed suppressive effect, indicating that their co-presence was necessary for the suppression. Since BCG induced granulomas resolve much faster than granulomas induced by other mycobacteria such as Mycobacterium leprae the present experimental findings add to the existing evidence that intradermal BCG vaccination influences subsequent immune responses in the host and may further stress upon its beneficial role seen in Covid-19 patients.


Asunto(s)
Antígenos Bacterianos/farmacología , Vacuna BCG/farmacología , Granuloma/inmunología , Ganglios Linfáticos/inmunología , Linfocitos T/inmunología , Animales , Células Presentadoras de Antígenos/efectos de los fármacos , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/microbiología , COVID-19 , Adhesión Celular , Proliferación Celular , Infecciones por Coronavirus/prevención & control , Oído , Femenino , Granuloma/microbiología , Cobayas , Humanos , Inyecciones Intradérmicas , Ganglios Linfáticos/microbiología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Masculino , Mycobacterium bovis/inmunología , Mycobacterium leprae/inmunología , Pandemias/prevención & control , Neumonía Viral/prevención & control , Remisión Espontánea , Linfocitos T/clasificación , Linfocitos T/efectos de los fármacos , Linfocitos T/microbiología
19.
Res Rep Trop Med ; 11: 97-117, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117053

RESUMEN

OBJECTIVE: Annually, over 200,000 people are diagnosed with leprosy, also called Hansen's disease. This number has been relatively stable over the past years. Progress has been made in the fields of chemoprophylaxis and immunoprophylaxis to prevent leprosy, with a primary focus on close contacts of patients. In this descriptive meta-analysis, we summarize the evidence and identify knowledge gaps regarding post-exposure prophylaxis against leprosy. METHODS: A systematic literature search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology was conducted by searching the medical scientific databases Cochrane, Embase, Pubmed/MEDLINE, Research Gate, Scopus and Web of Science on Jan. 22, 2020, using a combination of synonyms for index terms in four languages: "leprosy" and "population" or "contacts" and "prevention" or "prophylaxis." Subsequently, Infolep.org and Google Scholar were searched and the "snowball method" was used to retrieve other potentially relevant literature. The found articles were screened for eligibility using predetermined inclusion and exclusion criteria. RESULTS: After deduplication, 1,515 articles were screened, and 125 articles were included in this descriptive meta-analysis. Immunoprophylaxis by bacillus Calmette-Guérin (BCG) vaccination is known to provide protection against leprosy. The protection it offers is higher in household contacts of leprosy patients compared with the general population and is seen to decline over time. Contact follow-up screening is important in the first period after BCG administration, as a substantial number of new leprosy patients presents three months post-vaccination. Evidence for the benefit of re-vaccination is conflicting. The World Health Organization (WHO) included BCG in its Guidelines for the Diagnosis, Treatment and Prevention of Leprosy by stating that BCG at birth should be maintained in at least all leprosy high-burden regions. Literature shows that several vaccination interventions with other immunoprophylactic agents demonstrate similar or slightly less efficacy in leprosy risk reduction compared with BCG. However, most of these studies do not exclusively focus on post-exposure prophylaxis. Two vaccines are considered future candidates for leprosy prophylaxis: Mycobacterium indicus pranii (MiP) and LepVax. For chemoprophylaxis, trials were performed with dapsone/acedapsone, rifampicin, and ROM, a combination of rifampicin, ofloxacin, and minocycline. Single-dose rifampicin is favored as post-exposure prophylaxis, abbreviated as SDR-PEP. It demonstrated a protective effect of 57% in the first two years after administration to contacts of leprosy patients. It is inexpensive, and adverse events are rare. The risk of SDR-PEP inducing rifampicin resistance is considered negligible, but continuous monitoring in accordance with WHO policies should be encouraged. The integration of contact screening and SDR-PEP administration into different leprosy control programs was found to be feasible and well accepted. Since 2018, SDR-PEP is included in the WHO Guidelines for the Diagnosis, Treatment and Prevention of Leprosy. CONCLUSION: Progress has been made in the areas of chemoprophylaxis and immunoprophylaxis to prevent leprosy in contacts of patients. Investing in vaccine studies, like LepVax and MiP, and increasing harmonization between tuberculosis (TB) and leprosy research groups is important. SDR-PEP is promising as a chemoprophylactic agent, and further implementation should be promoted. More chemoprophylaxis research is needed on: enhanced medication regimens; interventions in varying (epidemiological) settings, including focal mass drug administration (fMDA); specific approaches per contact type; combinations with screening variations and field-friendly rapid tests, if available in the future; community and health staff education; ongoing antibiotic resistance surveillance; and administering chemoprophylaxis with SDR-PEP prior to BCG administration. Additionally, both leprosy prophylactic drug registration nationally and prophylactic drug availability globally at low or no cost are important for the implementation and further upscaling of preventive measures against leprosy, such as SDR-PEP and new vaccines.

20.
Microb Pathog ; 149: 104475, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32931893

RESUMEN

Mycobacterium leprae is known to cause leprosy, a neurological and dermatological disease. In the past 20 years, 16 million leprosy cases have been recorded and more than 200,000 new cases were registered each year, indicating that the disease is still progressing without hindrance. M. leprae, an intracellular bacterium, infects the Schwann cells of the peripheral nervous system. Several types of leprosy have been described, including indeterminate, tuberculoid, borderline tuberculoid, mid-borderline, borderline lepromatous and lepromatous, and three different forms of leprosy reactions, namely type 1, 2 and 3, have been designated. Microscopic detection, serological diagnostic test, polymerase chain reaction and flow tests are employed in the diagnosis of leprosy. The recommended treatment for leprosy consists of rifampicin, dapsone, clofazimine, ofloxacin and minocycline and vaccines are also available. However, relapse may occur after treatment has been halted and hence patients must be educated on the signs of relapse to allow proper treatment and reduce severity. In this review, we depict the current understanding of M. leprae pathogenicity, clinical aspects and manifestations. Transmission of leprosy, diagnosis and treatment are also discussed.


Asunto(s)
Lepra , Mycobacterium leprae , Humanos , Lepra/diagnóstico , Lepra/tratamiento farmacológico , Mycobacterium leprae/genética , Reacción en Cadena de la Polimerasa , Rifampin , Pruebas Serológicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...