Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Pharm Sci ; 18(3): 326-335, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593163

RESUMEN

Background and purpose: Neonates of pregnant women with epilepsy may compromise normal neurodevelopment and hippocampal morphology. Memory and learning disorders and a decrease in verbal IQ scores are seen in these children later in life. In the previous study, we suggested that the central muscarinic cholinergic receptors had an important role in learning and memory deficits induced by prenatal pentylenetetrazol-kindling in pups born to kindled mothers. This study aimed to investigate the effects of kindling during pregnancy on long-term potentiation (LTP) induction and the role of M1 muscarinic acetylcholine receptors in the hippocampus of male offspring. Experimental approach: Twenty female Wistar rats were divided into two groups on the 13th day of their gestation (kindled and control; n = 10). Animals in the first group were kindled by i.p. injections of 25 mg/kg body weight pentylenetetrazol every 15 min until seizures occurred and the control group received normal saline. The effect of maternal seizures and perfusion of specific M1 muscarinic receptors antagonist (telenzepine at doses of 0.01, 0.1, and 1 nmol) on the LTP induction of 80 pups were tested at 12 weeks of age by field potential recordings. Findings/Results: The results of the electrophysiological study revealed that recurrent seizures during pregnancy impaired field excitatory postsynaptic potentials (fEPSP)-LTP induction and normal development of M1 muscarinic receptors in the hippocampus of male offspring. Also, the results demonstrated that maternal seizure did not significantly affect the paired-pulse indexes and population spike-LTP in the hippocampus of male offspring. Conclusion and implications: Our study showed that recurrent seizures during pregnancy cause impaired fEPSP-LTP induction and abnormal development of the M1 muscarinic receptor in the hippocampus.

2.
Int J Mol Sci ; 24(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37108518

RESUMEN

The selectivity of drugs for G protein-coupled receptor (GPCR) signaling pathways is crucial for their therapeutic efficacy. Different agonists can cause receptors to recruit effector proteins at varying levels, thus inducing different signaling responses, called signaling bias. Although several GPCR-biased drugs are currently being developed, only a limited number of biased ligands have been identified regarding their signaling bias for the M1 muscarinic acetylcholine receptor (M1mAChR), and the mechanism is not yet well understood. In this study, we utilized bioluminescence resonance energy transfer (BRET) assays to compare the efficacy of six agonists in inducing Gαq and ß-arrestin2 binding to M1mAChR. Our findings reveal notable variations in agonist efficacy in the recruitment of Gαq and ß-arrestin2. Pilocarpine preferentially promoted the recruitment of ß-arrestin2 (∆∆RAi = -0.5), while McN-A-343 (∆∆RAi = 1.5), Xanomeline (∆∆RAi = 0.6), and Iperoxo (∆∆RAi = 0.3) exhibited a preference for the recruitment of Gαq. We also used commercial methods to verify the agonists and obtained consistent results. Molecular docking revealed that certain residues (e.g., Y404, located in TM7 of M1mAChR) could play crucial roles in Gαq signaling bias by interacting with McN-A-343, Xanomeline, and Iperoxo, whereas other residues (e.g., W378 and Y381, located in TM6) contributed to ß-arrestin recruitment by interacting with Pilocarpine. The preference of activated M1mAChR for different effectors may be due to significant conformational changes induced by biased agonists. By characterizing bias towards Gαq and ß-arrestin2 recruitment, our study provides insights into M1mAChR signaling bias.


Asunto(s)
Acetilcolina , Receptor Muscarínico M1 , Humanos , beta-Arrestinas/metabolismo , Simulación del Acoplamiento Molecular , Receptor Muscarínico M1/metabolismo , Cloruro de (4-(m-Clorofenilcarbamoiloxi)-2-butinil)trimetilamonio , Pilocarpina/farmacología , Proteínas de Unión al GTP/metabolismo , Arrestina beta 2/metabolismo , beta-Arrestina 1/metabolismo , Transferencia de Energía , Células HEK293
3.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34893539

RESUMEN

There are currently no treatments that can slow the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). There is, however, a growing body of evidence that activation of the M1 muscarinic acetylcholine receptor (M1-receptor) can not only restore memory loss in AD patients but in preclinical animal models can also slow neurodegenerative disease progression. The generation of an effective medicine targeting the M1-receptor has however been severely hampered by associated cholinergic adverse responses. By using genetically engineered mouse models that express a G protein-biased M1-receptor, we recently established that M1-receptor mediated adverse responses can be minimized by ensuring activating ligands maintain receptor phosphorylation/arrestin-dependent signaling. Here, we use these same genetic models in concert with murine prion disease, a terminal neurodegenerative disease showing key hallmarks of AD, to establish that phosphorylation/arrestin-dependent signaling delivers neuroprotection that both extends normal animal behavior and prolongs the life span of prion-diseased mice. Our data point to an important neuroprotective property inherent to the M1-receptor and indicate that next generation M1-receptor ligands designed to drive receptor phosphorylation/arrestin-dependent signaling would potentially show low adverse responses while delivering neuroprotection that will slow disease progression.


Asunto(s)
Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Receptor Muscarínico M1/metabolismo , Animales , Células Cultivadas , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Regulación de la Expresión Génica/fisiología , Ratones , Ratones Noqueados , Neuronas/metabolismo , Enfermedades por Prión/genética , Receptor Muscarínico M1/genética , Transducción de Señal
4.
Cell ; 184(24): 5886-5901.e22, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34822784

RESUMEN

Current therapies for Alzheimer's disease seek to correct for defective cholinergic transmission by preventing the breakdown of acetylcholine through inhibition of acetylcholinesterase, these however have limited clinical efficacy. An alternative approach is to directly activate cholinergic receptors responsible for learning and memory. The M1-muscarinic acetylcholine (M1) receptor is the target of choice but has been hampered by adverse effects. Here we aimed to design the drug properties needed for a well-tolerated M1-agonist with the potential to alleviate cognitive loss by taking a stepwise translational approach from atomic structure, cell/tissue-based assays, evaluation in preclinical species, clinical safety testing, and finally establishing activity in memory centers in humans. Through this approach, we rationally designed the optimal properties, including selectivity and partial agonism, into HTL9936-a potential candidate for the treatment of memory loss in Alzheimer's disease. More broadly, this demonstrates a strategy for targeting difficult GPCR targets from structure to clinic.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Diseño de Fármacos , Receptor Muscarínico M1/agonistas , Anciano , Anciano de 80 o más Años , Envejecimiento/patología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Animales , Presión Sanguínea/efectos de los fármacos , Células CHO , Inhibidores de la Colinesterasa/farmacología , Cricetulus , Cristalización , Modelos Animales de Enfermedad , Perros , Donepezilo/farmacología , Electroencefalografía , Femenino , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Moleculares , Simulación de Dinámica Molecular , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/patología , Primates , Ratas , Receptor Muscarínico M1/química , Transducción de Señal , Homología Estructural de Proteína
5.
Eur J Pharmacol ; 913: 174645, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34800467

RESUMEN

Diabetes associated oxidative stress and impaired cholinergic neurotransmission causes cognitive deficits. Although phloridzin shows antioxidant- and insulin sensitizing-activities, its ameliorative potential in diabetes-induced memory dysfunction remains unexplored. In the present study, type 2 diabetes (T2D) was induced by streptozotocin (35 mg/kg, intraperitoneal) in rats on ad libitum high-fat diet. Diabetic animals were treated orally with phloridzin (10 and 20 mg/kg) for four weeks. Memory functions were evaluated by passive avoidance test (PAT) and novel object recognition (NOR) test. Brains of rats were subjected to biochemical analysis of glutathione (GSH), brain-derived neurotrophic factor (BDNF), malonaldehyde (MDA) and acetylcholinesterase (AChE). Role of cholinergic system in the effects of phloridzin was evaluated by scopolamine pre-treatment in behavioral studies. While diabetic rats showed a significant decrease in step through latency in PAT, and exploration time and discrimination index in NOR test; a substantial increase in all parameters was observed following phloridzin treatment. Phloridzin reversed abnormal levels of GSH, BDNF, MDA and AChE in the brain of diabetic animals. Moreover, in silico molecular docking study revealed that phloridzin acts as a potent agonist at M1 receptor as compared to acetylcholine. Viewed collectively, reversal of T2D-induced memory impairment by phloridzin might be attributed to upregulation of neurotrophic factors, reduced oxidative stress and increased cholinergic signaling in the brain. Therefore, phloridzin may be a promising molecule in the management of cognitive impairment comorbid with T2D.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Trastornos de la Memoria/tratamiento farmacológico , Florizina/farmacología , Acetilcolina/agonistas , Acetilcolina/metabolismo , Animales , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Trastornos de la Memoria/diagnóstico , Trastornos de la Memoria/etiología , Simulación del Acoplamiento Molecular , Factores de Crecimiento Nervioso/agonistas , Factores de Crecimiento Nervioso/metabolismo , Estrés Oxidativo/efectos de los fármacos , Florizina/uso terapéutico , Ratas , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M1/ultraestructura , Escopolamina/farmacología , Estreptozocina/administración & dosificación , Estreptozocina/toxicidad , Transmisión Sináptica/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
6.
ACS Chem Neurosci ; 11(24): 4270-4279, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33196174

RESUMEN

Designer receptors exclusively activated by designer drugs (DREADDs) have been successfully employed to activate signaling pathways associated with specific muscarinic acetylcholine receptor (mAChR) subtypes. The M1 DREADD mAChR displays minimal responsiveness to the endogenous agonist acetylcholine (ACh) but responds to clozapine-N-oxide (CNO), an otherwise pharmacologically inert ligand. We have previously shown that benzyl quinolone carboxylic acid (BQCA), an M1 mAChR positive allosteric modulator (PAM), can rescue ACh responsiveness at these receptors. However, whether this effect is chemotype specific or applies to next-generation M1 PAMs with distinct scaffolds is unknown. Here, we reveal that new M1 PAMs restore ACh function at the M1 DREADD while modulating ACh binding at the M1 wild-type mAChR. Importantly, we demonstrate that the modulation of ACh function by M1 PAMs is translated in vivo using transgenic M1 DREADD mice. Our data provide important insights into mechanisms that define allosteric ligand modulation of agonist affinity vs efficacy and how these effects play out in the regulation of in vivo responses.


Asunto(s)
Acetilcolina , Receptor Muscarínico M1 , Regulación Alostérica , Animales , Células CHO , Cricetinae , Cricetulus , Ratones , Receptor Muscarínico M1/genética
7.
Brain Commun ; 2(2): fcaa058, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32766549

RESUMEN

Aggregation of amyloid beta and loss of cholinergic innervation in the brain are predominant components of Alzheimer's disease pathology and likely underlie cognitive impairment. Acetylcholinesterase inhibitors are one of the few treatment options for Alzheimer's disease, where levels of available acetylcholine are enhanced to counteract the cholinergic loss. However, these inhibitors show limited clinical efficacy. One potential explanation for this is a concomitant dysregulation of cholinergic receptors themselves as a consequence of the amyloid beta pathology. We tested this hypothesis by examining levels of M1 muscarinic acetylcholine receptors in the temporal cortex from seven Alzheimer's disease and seven non-disease age-matched control brain tissue samples (control: 85 ± 2.63 years old, moderate Alzheimer's disease: 84 ± 2.32 years old, P-value = 0.721; eight female and six male patients). The samples were categorized into two groups: 'control' (Consortium to Establish a Registry for Alzheimer's Disease diagnosis of 'No Alzheimer's disease', and Braak staging pathology of I-II) and 'moderate Alzheimer's disease' (Consortium to Establish a Registry for Alzheimer's Disease diagnosis of 'possible/probable Alzheimer's disease', and Braak staging pathology of IV). We find that in comparison to age-matched controls, there is a loss of M1 muscarinic acetylcholine receptors in moderate Alzheimer's disease tissue (control: 2.17 ± 0.27 arbitrary units, n = 7, Mod-AD: 0.83 ± 0.16 arbitrary units, n = 7, two-tailed t-test, t = 4.248, P = 0.00113). Using a functional rat cortical brain slice model, we find that postsynaptic muscarinic acetylcholine receptor function is dysregulated by aberrant amyloid beta-mediated activation of metabotropic glutamate receptor 5. Crucially, blocking metabotropic glutamate receptor 5 restores muscarinic acetylcholine receptor function and object recognition memory in 5XFAD transgenic mice. This indicates that the amyloid beta-mediated activation of metabotropic glutamate receptor 5 negatively regulates muscarinic acetylcholine receptor and illustrates the importance of muscarinic acetylcholine receptors as a potential disease-modifying target in the moderate pathological stages of Alzheimer's disease.

8.
Bioorg Chem ; 96: 103633, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32032848

RESUMEN

We synthesized a set of new hybrid derivatives (7-C8, 7-C10, 7-C12 and 8-C8, 8-C10, 8-C12), in which a polymethylene spacer chain of variable length connected the pharmacophoric moiety of xanomeline, an M1/M4-preferring orthosteric muscarinic agonist, with that of tacrine, a well-known acetylcholinesterase (AChE) inhibitor able to allosterically modulate muscarinic acetylcholine receptors (mAChRs). When tested in vitro in a colorimetric assay for their ability to inhibit AChE, the new compounds showed higher or similar potency compared to that of tacrine. Docking analyses were performed on the most potent inhibitors in the series (8-C8, 8-C10, 8-C12) to rationalize their experimental inhibitory power against AChE. Next, we evaluated the signaling cascade at M1 mAChRs by exploring the interaction of Gαq-PLC-ß3 proteins through split luciferase assays and the myo-Inositol 1 phosphate (IP1) accumulation in cells. The results were compared with those obtained on the known derivatives 6-C7 and 6-C10, two quite potent AChE inhibitors in which tacrine is linked to iperoxo, an exceptionally potent muscarinic orthosteric activator. Interestingly, we found that 6-C7 and 6-C10 behaved as partial agonists of the M1 mAChR, at variance with hybrids 7-Cn and 8-Cn containing xanomeline as the orthosteric molecular fragment, which were all unable to activate the receptor subtype response.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Isoxazoles/farmacología , Piridinas/farmacología , Compuestos de Amonio Cuaternario/farmacología , Receptor Muscarínico M1/metabolismo , Tacrina/farmacología , Tiadiazoles/farmacología , Acetilcolinesterasa/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Células CHO , Inhibidores de la Colinesterasa/química , Cricetulus , Electrophorus , Humanos , Isoxazoles/síntesis química , Isoxazoles/química , Ligandos , Simulación del Acoplamiento Molecular , Piridinas/síntesis química , Piridinas/química , Compuestos de Amonio Cuaternario/síntesis química , Compuestos de Amonio Cuaternario/química , Receptor Muscarínico M1/agonistas , Tacrina/análogos & derivados , Tacrina/síntesis química , Tiadiazoles/síntesis química , Tiadiazoles/química
9.
Pharmacol Res Perspect ; 8(1): e00560, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31990455

RESUMEN

M1 muscarinic acetylcholine receptor (M1 R) activation can be a new therapeutic approach for the treatment of cognitive deficits associated with cholinergic hypofunction. However, M1 R activation causes gastrointestinal (GI) side effects in animals. We previously found that an M1 R positive allosteric modulator (PAM) with lower cooperativity (α-value) has a limited impact on ileum contraction and can produce a wider margin between cognitive improvement and GI side effects. In fact, TAK-071, a novel M1 R PAM with low cooperativity (α-value of 199), improved scopolamine-induced cognitive deficits with a wider margin against GI side effects than a high cooperative M1 R PAM, T-662 (α-value of 1786), in rats. Here, we describe the pharmacological characteristics of a novel low cooperative M1 R PAM T-495 (α-value of 170), using the clinically tested higher cooperative M1 R PAM MK-7622 (α-value of 511) as a control. In rats, T-495 caused diarrhea at a 100-fold higher dose than that required for the improvement of scopolamine-induced memory deficits. Contrastingly, MK-7622 showed memory improvement and induction of diarrhea at an equal dose. Combination of T-495, but not of MK-7622, and donepezil at each sub-effective dose improved scopolamine-induced memory deficits. Additionally, in mice with reduced acetylcholine levels in the forebrain via overexpression of A53T α-synuclein (ie, a mouse model of dementia with Lewy bodies and Parkinson's disease with dementia), T-495, like donepezil, reversed the memory deficits in the contextual fear conditioning test and Y-maze task. Thus, low cooperative M1 R PAMs are promising agents for the treatment of memory deficits associated with cholinergic dysfunction.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Colinérgicos/administración & dosificación , Diarrea/inducido químicamente , Trastornos de la Memoria/tratamiento farmacológico , Receptor Muscarínico M1/antagonistas & inhibidores , Animales , Células CHO , Colinérgicos/efectos adversos , Colinérgicos/química , Colinérgicos/farmacología , Cricetulus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Masculino , Trastornos de la Memoria/inducido químicamente , Ratones , Ratas , Escopolamina/efectos adversos
10.
Behav Brain Res ; 373: 112109, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31340175

RESUMEN

The neurodegenerative diseases have a complex pathogenetic mechanism comprising oxidative stress and receptor system dysfunction caused by various damaging factors such as, for example, brain hypoxia. The purpose of this study was to elucidate the influence of hexahydropyrimidine derivatives on learning, memory, and orientation and locomotor activities in the passive avoidance (PA) and open field (OF) tests and to evaluate these compounds for their potential antihypoxic and antioxidant action on normobaric hypercapnic hypoxia and toxic hypoxia models. We demonstrated that compounds 1a and 1e administered as a single 100 mg/kg dose (p.o.) one hour before the tests increased the latency time to enter the dark compartment for the first time and reduced the time spent in the dark compartment on the 2nd, 7th, and 14th days of PAT and increased the number of squares crossed and hole-pokings in the OF test. It was also shown that single administration of compounds 1a and 1e (in 100 mg/kg dose, p.o.) one hour before generation of hypoxia increased the life span of mice under normobaric hypoxia by 30% (P < 0.05) and, after injection of sodium nitroprusside, they decreased the malondialdehyde (MDA) level and increased the catalase level in the brain of mice. According to molecular docking results, compounds 1а and 1е are bound in the orthosteric active site of M1 muscarinic receptor via supramolecular interactions with a number of functional amino acids. The results indicate that hexahydropyrimidine derivatives have a beneficial effect on the memory, learning processes, and orientation and locomotor activities of rats in an unfamiliar environment and exhibit antihypoxic and antioxidant activities under hypoxia in mice. The cognitive enhancement can be mediated by the effect of lead compounds on the M1 muscarinic acetylcholine receptor.


Asunto(s)
Cognición/efectos de los fármacos , Piridazinas/farmacología , Receptor Muscarínico M1/efectos de los fármacos , Animales , Reacción de Prevención/efectos de los fármacos , Cognición/fisiología , Femenino , Hipoxia/metabolismo , Hipoxia Encefálica/metabolismo , Hipoxia Encefálica/fisiopatología , Ligandos , Memoria/efectos de los fármacos , Simulación del Acoplamiento Molecular/métodos , Estrés Oxidativo/efectos de los fármacos , Piridazinas/química , Ratas , Ratas Wistar , Receptor Muscarínico M1/metabolismo
11.
Neuroscience ; 414: 60-76, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31299348

RESUMEN

Activation of the M1 muscarinic acetylcholine receptor (M1R) may be an effective therapeutic approach for Alzheimer's disease (AD), dementia with Lewy bodies, and schizophrenia. Previously, the M1R/M4R agonist xanomeline was shown to improve cognitive function and exert antipsychotic effects in patients with AD and schizophrenia. However, its clinical development was discontinued because of its cholinomimetic side effects. We compared in vivo pharmacological profiles of a novel M1R-selective positive allosteric modulator, TAK-071, and xanomeline in rodents. Xanomeline suppressed both methamphetamine- and MK-801-induced hyperlocomotion in mice, whereas TAK-071 suppressed only MK-801-induced hyperlocomotion. In a previous study, we showed that TAK-071 improved scopolamine-induced cognitive deficits in a rat novel object recognition task (NORT) with 33-fold margins versus cholinergic side effects (diarrhea). Xanomeline also improved scopolamine-induced cognitive impairments in a NORT; however, it had no margin versus cholinergic side effects (e.g., diarrhea, salivation, and hypoactivity) in rats. These side effects were observed even in M1R knockout mice. Evaluation of c-Fos expression as a marker of neural activation revealed that xanomeline increased the number of c-Fos-positive cells in several cortical areas, the hippocampal formation, amygdala, and nucleus accumbens. Other than in the orbital cortex and claustrum, TAK-071 induced similar c-Fos expression patterns. When donepezil was co-administered to increase the levels of acetylcholine, the number of TAK-071-induced c-Fos-positive cells in these brain regions was increased. TAK-071, through induction of similar neural activation as that seen with xanomeline, may produce procognitive and antipsychotic effects with improved cholinergic side effects.


Asunto(s)
Actividad Motora/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Piridinas/farmacología , Reconocimiento en Psicología/efectos de los fármacos , Tiadiazoles/farmacología , Regulación Alostérica , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Cognición/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Agonistas Muscarínicos/uso terapéutico , Proteínas Proto-Oncogénicas c-fos/metabolismo , Piridinas/uso terapéutico , Ratas , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M4/agonistas , Escopolamina , Tiadiazoles/uso terapéutico
12.
ACS Chem Neurosci ; 10(3): 1099-1114, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30547573

RESUMEN

Targeting allosteric sites of the M1 muscarinic acetylcholine receptor (mAChR) is an enticing approach to overcome the lack of receptor subtype selectivity observed with orthosteric ligands. This is a promising strategy for obtaining novel therapeutics to treat cognitive deficits observed in Alzheimer's disease and schizophrenia, while reducing the peripheral side effects such as seen in the current treatment regimes, which are non-subtype selective. We previously described compound 2, the first positive allosteric modulator (PAM) of the M1 mAChR based on a 6-phenylpyrimidin-4-one scaffold, which has been further developed in this study. Herein, we present the synthesis, characterization, and pharmacological evaluation of a series of 6-phenylpyrimidin-4-ones with modifications to the 4-(1-methylpyrazol-4-yl)benzyl pendant. Selected compounds, BQCA, 1, 2, 9i, 13, 14b, 15c, and 15d, were further profiled in terms of their allosteric affinity, cooperativity with acetylcholine (ACh), and intrinsic efficacy. Additionally, 2 and 9i were tested in mouse primary cortical neurons, displaying various degrees of intrinsic agonism and potentiation of the acetylcholine response. Overall, the results suggest that the pendant moiety is important for allosteric binding affinity and the direct agonistic efficacy of the 6-phenylpyrimidin-4-one based M1 mAChR PAMs.


Asunto(s)
Pirimidinas/síntesis química , Pirimidinas/farmacología , Quinolinas/síntesis química , Quinolinas/farmacología , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/fisiología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Cristalografía por Rayos X/métodos , Ratones
13.
Neurochem Int ; 116: 63-76, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29572053

RESUMEN

We demonstrated that activation of protein kinase Cδ (PKCδ) and inactivation of the glutathione peroxidase-1 (GPx-1)-dependent systems are critical for methamphetamine (MA)-induced recognition memory impairment. We also demonstrated that exposure to far-infrared rays (FIR) causes induction of the glutathione (GSH)-dependent system, including induction of the GPx-1 gene. Here, we investigated whether exposure to FIR rays affects MA-induced recognition memory impairment and whether it modulates PKC, cholinergic receptors, and the GSH-dependent system. Because the PKC activator bryostatin-1 mainly induces PKCα, PKCε, and PKCδ, we assessed expression of these proteins after MA treatment. MA treatment selectively increased PKCδ expression and its phosphorylation. Exposure to FIR rays significantly attenuated MA-induced increases in PKCδ phosphorylation. Importantly, bryostatin-1 potentiated MA-induced phosphorylation of PKCδ. MA treatment significantly decreased M1, M3, and M4 muscarinic acetylcholine receptors (mAChRs) and ß2 nicotinic acetylcholine receptor expression. Of these, the decrease was most pronounced in M1 mAChR. Exposure to FIR significantly attenuated MA-induced decreases in the M1 mAChR and phospho-ERK1/2, while it facilitated Nrf2-dependent GSH induction. Dicyclomine, an M1 mAChR antagonist, and l-buthionine-(S, R)-sulfoximine (BSO), an inhibitor of GSH synthesis, counteracted against the protective potentials mediated by FIR. More importantly, the memory-enhancing potential of FIR rays was significantly counteracted by bryostatin-1, dicyclomine, and BSO. Our results suggest that exposure to FIR rays attenuates MA-induced impairment in recognition memory via up-regulation of M1 mAChR, Nrf2-dependent GSH induction, and ERK1/2 phosphorylation by inhibiting PKCδ phosphorylation by bryostatin-1.


Asunto(s)
Trastornos de la Memoria/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Proteína Quinasa C-delta/efectos de los fármacos , Receptor Muscarínico M1/efectos de los fármacos , Animales , Glutatión Peroxidasa , Trastornos de la Memoria/inducido químicamente , Metanfetamina/farmacología , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Proteína Quinasa C-delta/metabolismo , Regulación hacia Arriba , Glutatión Peroxidasa GPX1
14.
ACS Chem Neurosci ; 7(5): 647-61, 2016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-26891194

RESUMEN

Benzoquinazolinone 1 is a positive allosteric modulator (PAM) of the M1 muscarinic acetylcholine receptor (mAChR), which is significantly more potent than the prototypical PAM, 1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (BQCA). In this study, we explored the structural determinants that underlie the activity of 1 as a PAM of the M1 mAChR. We paid particular attention to the importance of the tricyclic scaffold of compound 1, for the activity of the molecule. Complete deletion of the peripheral fused benzene ring caused a significant decrease in affinity and binding cooperativity with acetylcholine (ACh). This loss of affinity was rescued with the addition of either one or two methyl groups in the 7- and/or 8-position of the quinazolin-4(3H)-one core. These results demonstrate that the tricyclic benzo[h]quinazolin-4(3H)-one core could be replaced with a quinazolin-4(3H)-one core and maintain functional affinity. As such, the quinazolin-4(3H)-one core represents a novel scaffold to further explore M1 mAChR PAMs with improved physicochemical properties.


Asunto(s)
Pirimidinonas/química , Pirimidinonas/metabolismo , Receptor Muscarínico M1/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Células CHO , Cricetinae , Cricetulus , Unión Proteica/fisiología , Pirimidinonas/farmacología
15.
Fitoterapia ; 108: 9-12, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26586621

RESUMEN

Scopolia tangutica Maxim (S. tangutica) extracts have been traditionally used as antispasmodic, sedative, and analgesic agents in Tibet and in the Qinghai province of China. Their active compositions are however poorly understood. We have recently isolated five new hydroxycinnamic acid (HCA) amides along with two known HCA amides, one cinnamic acid amide from these extracts. In this study, we evaluate their abilities to inhibit carbacol-induced activity of M1 muscarinic acetylcholine receptor along with the crude extracts. Chinese hamster ovary cells stably expressing the recombinant human M1 receptor (CHO-M1 cells) were employed to evaluate the anticholinergic potentials. Intracellular Ca(2+) changes were monitored using the FLIPR system. Five HCA amides as well as the crude S. tangutica extract displayed dose-dependent inhibitory effects against M1 receptor. These findings demonstrate that HCA amides are part of the M1 receptor-inhibiting principles of S. tangutica. Since blockade of parasympathetic nerve impulse transmission through the inhibition of the M1 receptor lessens smooth muscle spasms, our findings provided a molecular explanation for the traditional use of S. tangutica against spasm.


Asunto(s)
Ácidos Cumáricos/farmacología , Antagonistas Muscarínicos/farmacología , Extractos Vegetales/química , Receptor Muscarínico M1/antagonistas & inhibidores , Scopolia/química , Animales , Células CHO , Cricetulus , Medicamentos Herbarios Chinos/química , Humanos , Estructura Molecular , Raíces de Plantas/química , Proteínas Recombinantes
16.
Front Cell Neurosci ; 9: 457, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26648844

RESUMEN

Cholinergic inputs into the prefrontal cortex (PFC) are associated with attention and cognition; however there is evidence that acetylcholine also has a role in PFC dependent learning and memory. Muscarinic acetylcholine receptors (mAChR) in the PFC can induce synaptic plasticity, but the underlying mechanisms remain either opaque or unresolved. We have characterized a form of mAChR mediated long-term depression (LTD) at glutamatergic synapses of layer 5 principal neurons in the adult medial PFC. This mAChR LTD is induced with the mAChR agonist carbachol and inhibited by selective M1 mAChR antagonists. In contrast to other cortical regions, we find that this M1 mAChR mediated LTD is coupled to endogenous cannabinoid (eCB) signaling. Inhibition of the principal eCB CB1 receptor blocked carbachol induced LTD in both rats and mice. Furthermore, when challenged with a sub-threshold carbachol application, LTD was induced in slices pretreated with the monoacylglycerol lipase (MAGL) inhibitor JZL184, suggesting that the eCB 2-arachidonylglyerol (2-AG) mediates M1 mAChR LTD. Yet, when endogenous acetylcholine was released from local cholinergic afferents in the PFC using optogenetics, it failed to trigger eCB-LTD. However coupling patterned optical and electrical stimulation to generate local synaptic signaling allowed the reliable induction of LTD. The light-electrical pairing induced LTD was M1 mAChR and CB1 receptor mediated. This shows for the first time that connecting excitatory synaptic activity with coincident endogenously released acetylcholine controls synaptic gain via eCB signaling. Together these results shed new light on the mechanisms of synaptic plasticity in the adult PFC and expand on the actions of endogenous cholinergic signaling.

17.
Bioorg Med Chem Lett ; 25(22): 5357-61, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26428869

RESUMEN

We designed and synthesized a series of dihydroquinazolinone derivatives as selective M1 and M4 muscarinic acetylcholine receptors agonists. Introduction of the N-carbethoxy piperidine unit into a HTS hit compound followed by optimization of the amine linker and the carbamoyl moiety led to the identification of compound 1 as a potential candidate. The identified compound 1 showed high selectivity for M1 and M4 muscarinic acetylcholine receptors with M4 partial agonistic activity. In addition, compound 1 showed good brain penetration and reversed methamphetamine-induced hyperlocomotion in rats (ED50=3.0 mg/kg, sc).


Asunto(s)
Descubrimiento de Drogas , Agonistas Muscarínicos/farmacocinética , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M4/agonistas , Animales , Antipsicóticos/síntesis química , Antipsicóticos/química , Antipsicóticos/farmacocinética , Antipsicóticos/farmacología , Encéfalo/efectos de los fármacos , Estructura Molecular , Agonistas Muscarínicos/síntesis química , Agonistas Muscarínicos/farmacología , Unión Proteica/efectos de los fármacos , Ratas
18.
Neurosci Lett ; 590: 161-5, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25676809

RESUMEN

The expression of galanin and galanin receptors are up-regulated in the brains from patients with Alzheimer's disease (AD). However, the role of galanin in the progress of AD is still controversial. Here we demonstrated that galanin increased the protein expression of M1 muscarinic acetylcholine receptor (M1) in the primary cultured prefrontal cortical neurons by ELISA and Western Blot. Moreover, we showed that the mRNA expression of M1 was also up-regulated by galanin treatment. We further explored the mechanism of the galanin induced up-regulation of M1. We found that galanin activated the ERK signaling pathway in the primary cultured prefrontal cortical neurons. In addition, our results showed that the up-regulation of M1 mRNA was blocked by an ERK inhibitor, U0126. Taken together, our results demonstrated that the ERK signaling pathway mediated the galanin induced up-regulation of M1 in the primary cultured prefrontal cortical neurons, supporting the hypothesis that galanin plays a beneficial role in the development of AD.


Asunto(s)
Galanina/metabolismo , Neuronas/metabolismo , Corteza Prefrontal/metabolismo , Receptor Muscarínico M1/metabolismo , Animales , Animales Recién Nacidos , Butadienos/farmacología , Células Cultivadas , Galanina/farmacología , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Nitrilos/farmacología , Corteza Prefrontal/citología , Cultivo Primario de Células , Ratas
19.
Bioorg Med Chem Lett ; 24(14): 3189-93, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24856064

RESUMEN

We designed and synthesized novel N-substituted 7-azaindoline derivatives as selective M1 and M4 muscarinic acetylcholine receptors (mAChRs) agonists. Hybridization of compound 2 with the HTS hit compound 5 followed by optimization of the N-substituents of 7-azaindoline led to identification of compound 1, which showed highly selective M1 and M4 mAChRs agonistic activity, weak human ether-a-go-go related gene inhibition, and good bioavailability in multiple animal species.


Asunto(s)
Descubrimiento de Drogas , Indoles/farmacología , Piperidinas/farmacología , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M4/agonistas , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Haplorrinos , Humanos , Indoles/administración & dosificación , Indoles/química , Estructura Molecular , Piperidinas/administración & dosificación , Piperidinas/química , Ratas , Relación Estructura-Actividad
20.
J Neuroimmunol ; 269(1-2): 68-75, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24636402

RESUMEN

Schizophrenia is a severe debilitating brain disorder with a poorly understood aetiology. Among the diverse aetiological clues lies evidence for immune abnormalities in some individuals. The aim of this study was to investigate the frequency and specificity of autoantibodies directed against the brain in people with schizophrenia. Sera were screened for reactivity against human brain tissue (hippocampus and prefrontal cortex). Neuronal cell body and filamentous patterns of brain tissue staining were observed significantly more frequently in sera from schizophrenia patients (n=30) compared to controls (n=24). Sera that showed a neuronal cell body pattern of staining on hippocampus reacted strongly to an extracellular epitope of the M1 muscarinic acetylcholine receptor (m1AChR) in ELISA. Both cell body staining and elevated m1AChR reactivity correlated with higher symptom scores for poverty of speech. Sera showing a filamentous staining pattern predominantly targeted microfilaments, intermediate filaments or neurofilaments, particularly neurofilament medium (NFM), which is a dopamine receptor interacting protein. By ELISA, there was strongly elevated reactivity against NFM in a subset (15%) of schizophrenia patients (n=101) compared to healthy controls (n=55) or patients with multiple sclerosis (n=32). These results support the hypothesis that neurotransmitter receptors or molecules involved in regulation of neurotransmission are targets of autoantibodies in some people with schizophrenia.


Asunto(s)
Autoanticuerpos/sangre , Proteínas de Neurofilamentos/sangre , Receptor Muscarínico M1/sangre , Esquizofrenia/sangre , Adulto , Anciano , Secuencia de Aminoácidos , Biomarcadores/sangre , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Proteínas de Neurofilamentos/genética , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Receptor Muscarínico M1/genética , Esquizofrenia/diagnóstico , Esquizofrenia/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...