Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxicol Appl Pharmacol ; 490: 117040, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032800

RESUMEN

Morphine is a widely used opioid for the treatment of pain. Differences in drug transporter expression and activity may contribute to variability in morphine pharmacokinetics and response. Using appropriate mouse models, we investigated the impact of the efflux transporters ABCB1 and ABCG2 and the OATP uptake transporters on the pharmacokinetics of morphine, morphine-3-glucuronide (M3G), and M6G. Upon subcutaneous administration of morphine, its plasma exposure in Abcb1a/1b-/-;Abcg2-/--, Abcb1a/1b-/-;Abcg2-/-;Oatp1a/1b-/-;Oatp2b1-/- (Bab12), and Oatp1a/1b-/-;Oatp2b1-/- mice was similar to that found in wild-type mice. Forty minutes after dosing, morphine brain accumulation increased by 2-fold when mouse (m)Abcb1 and mAbcg2 were ablated. Relative recovery of morphine in small intestinal content was significantly reduced in all the knockout strains. In the absence of mOatp1a/1b and mOatp2b1, plasma levels of M3G were markedly increased, suggesting a lower elimination rate. Moreover, Oatp-deficient mice displayed reduced hepatic and intestinal M3G accumulation. Mouse Oatps similarly affected plasma and tissue disposition of subcutaneously administered M6G. Human OATP1B1/1B3 transporters modestly contribute to the liver accumulation of M6G. In summary, mAbcb1, in combination with mAbcg2, limits morphine brain penetration and its net intestinal absorption. Variation in ABCB1 activity due to genetic polymorphisms/mutations and/or environmental factors might, therefore, partially affect morphine tissue exposure in patients. The ablation of mOatp1a/1b increases plasma exposure and decreases the liver and small intestinal disposition of M3G and M6G. Since the contribution of human OATP1B1/1B3 to M6G liver uptake was quite modest, the risks of undesirable drug interactions or interindividual variation related to OATP activity are likely negligible.


Asunto(s)
Ratones Noqueados , Derivados de la Morfina , Morfina , Animales , Morfina/farmacocinética , Morfina/metabolismo , Derivados de la Morfina/metabolismo , Derivados de la Morfina/sangre , Ratones , Distribución Tisular , Masculino , Encéfalo/metabolismo , Analgésicos Opioides/farmacocinética , Analgésicos Opioides/metabolismo , Analgésicos Opioides/sangre , Ratones Endogámicos C57BL , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Hígado/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética
2.
Br J Pharmacol ; 180(7): 843-861, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-34986502

RESUMEN

BACKGROUND AND PURPOSE: In rodents, morphine antinociception is influenced by sex. However, conflicting results have been reported regarding the interaction between sex and morphine antinociceptive tolerance. Morphine is metabolised in the liver and brain into morphine-3-glucuronide (M3G). Sex differences in morphine metabolism and differential metabolic adaptations during tolerance development might contribute to behavioural discrepancies. This article investigates the differences in peripheral and central morphine metabolism after acute and chronic morphine treatment in male and female mice. EXPERIMENTAL APPROACH: Sex differences in morphine antinociception and tolerance were assessed using the tail-immersion test. After acute and chronic morphine treatment, morphine and M3G metabolic kinetics in the blood were evaluated using LC-MS/MS. They were also quantified in several CNS regions. Finally, the blood-brain barrier (BBB) permeability of M3G was assessed in male and female mice. KEY RESULTS: This study demonstrated that female mice showed weaker morphine antinociception and faster induction of tolerance than males. Additionally, female mice showed higher levels of M3G in the blood and in several pain-related CNS regions than male mice, whereas lower levels of morphine were observed in these regions. M3G brain/blood ratios after injection of M3G indicated no sex differences in M3G BBB permeability, and these ratios were lower than those obtained after injection of morphine. CONCLUSION: These differences are attributable mainly to morphine central metabolism, which differed between males and females in pain-related CNS regions, consistent with weaker morphine antinociceptive effects in females. However, the role of morphine metabolism in antinociceptive tolerance seemed limited. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.


Asunto(s)
Morfina , Espectrometría de Masas en Tándem , Ratones , Masculino , Femenino , Animales , Cromatografía Liquida , Derivados de la Morfina/farmacología , Derivados de la Morfina/uso terapéutico , Analgésicos Opioides/farmacología , Dolor/tratamiento farmacológico
3.
Front Mol Neurosci ; 15: 882443, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645730

RESUMEN

Morphine remains the gold standard painkiller available to date to relieve severe pain. Morphine metabolism leads to the production of two predominant metabolites, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). This metabolism involves uridine 5'-diphospho-glucuronosyltransferases (UGTs), which catalyze the addition of a glucuronide moiety onto the C3 or C6 position of morphine. Interestingly, M3G and M6G have been shown to be biologically active. On the one hand, M6G produces potent analgesia in rodents and humans. On the other hand, M3G provokes a state of strong excitation in rodents, characterized by thermal hyperalgesia and tactile allodynia. Its coadministration with morphine or M6G also reduces the resulting analgesia. Although these behavioral effects show quite consistency in rodents, M3G effects are much more debated in humans and the identity of the receptor(s) on which M3G acts remains unclear. Indeed, M3G has little affinity for mu opioid receptor (MOR) (on which morphine binds) and its effects are retained in the presence of naloxone or naltrexone, two non-selective MOR antagonists. Paradoxically, MOR seems to be essential to M3G effects. In contrast, several studies proposed that TLR4 could mediate M3G effects since this receptor also appears to be essential to M3G-induced hyperalgesia. This review summarizes M3G's behavioral effects and potential targets in the central nervous system, as well as the mechanisms by which it might oppose analgesia.

4.
J Neurosci Res ; 100(1): 220-236, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-32954564

RESUMEN

Tolerance and hyperalgesia associated with chronic exposure to morphine are major limitations in the clinical management of chronic pain. At a cellular level, neuronal signaling can in part account for these undesired side effects, but unknown mechanisms mediated by central nervous system glial cells are likely also involved. Here we applied data-independent acquisition mass spectrometry to perform a deep proteome and phosphoproteome analysis of how human astrocytes responds to opioid stimulation. We unveil time- and dose-dependent effects induced by morphine and its major active metabolites morphine-3-glucuronide (M3G) and morphine-6-glucuronide that converging on activation of mitogen-activated protein kinase and mammalian target of rapamycin signaling pathways. We also find that especially longer exposure to M3G leads to significant dysregulation of biological pathways linked to extracellular matrix organization, antigen presentation, cell adhesion, and glutamate homeostasis, which are crucial for neuron- and leukocyte-astrocyte interactions.


Asunto(s)
Astrocitos , Morfina , Astrocitos/metabolismo , Humanos , Morfina/farmacología , Derivados de la Morfina/metabolismo , Derivados de la Morfina/farmacología , Proteómica
5.
Mol Neurobiol ; 57(2): 964-975, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31646464

RESUMEN

Polysialic acid (polySia), a long homopolymer of 2,8-linked sialic acids, is abundant in the embryonic brain and is restricted largely in adult brain to regions that exhibit neurogenesis and structural plasticity. In the central nervous system (CNS), polySia is highly important for cell-cell interactions, differentiation, migration and cytokine responses, which are critical neuronal functions regulating intercellular interactions that underlie immune signalling in the CNS. In recent reports, a metabolite of morphine, morphine-3-glucuronide (M3G), has been shown to cause immune signalling in the CNS. In this study, we compared the effects of neurite growth factor (NGF), lipopolysaccharide (LPS) and M3G exposure on the expression of polySia in PC12 cells using immunocytochemistry and Western blot analysis. PolySia was also extracted from stimulated cell proteins by endo-neuraminidase digestion and quantitated using fluorescent labelling followed by HPLC analysis. PolySia expression was significantly increased following NGF, M3G or LPS stimulation when compared with unstimulated cells or cells exposed to the TLR4 antagonist LPS-RS. Additionally, we analyzed the effects of test agent exposure on cell migration and the oxidative stress response of these cells in the presence and absence of polySia expression on their cell surface. We observed an increase in oxidative stress in cells without polySia as well as following M3G or LPS stimulation. Our study provides evidence that polySia expression in neuronal-like PC12 cells is influenced by M3G and LPS exposure alike, suggestive of a role of TLR4 in triggering these events.


Asunto(s)
Lipopolisacáridos/farmacología , Derivados de la Morfina/farmacología , Ácidos Siálicos/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/metabolismo , Derivados de la Morfina/metabolismo , Neuraminidasa/metabolismo , Células PC12 , Ratas , Transducción de Señal/inmunología
6.
Magn Reson Chem ; 57(8): 489-498, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31013546

RESUMEN

Nuclear shieldings and chemical shifts of 5-fluorocytosine (5FC) were predicted in the gas phase and DMSO solution modeled by polarizable continuum model using B3LYP density functional and revised STO(1M)-3G basis set. For comparison, eight arbitrary selected basis sets including STO-3G and medium-size Pople-type and larger dedicated Jensen-type ones were applied. The former basis sets were significantly smaller, but the calculated structural parameters, harmonic vibrational frequencies, were very accurate and close to those obtained with larger, polarization-consistent ones. The predicted 13 C and 1 H chemical shieldings of 5FC and cytosine, selected as parent molecule, were acceptable (root mean square for 13 C chemical shifts in DMSO of about 5 ppm and less) though less accurate than those calculated with large basis sets, dedicated for prediction of nuclear magnetic resonance parameters.

7.
Physiol Behav ; 187: 32-41, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29199028

RESUMEN

Preclinical studies report that the effective dose for morphine is approximately 2-fold higher in females than males. Following systemic administration, morphine is metabolized via Phase II glucuronidation in the liver and brain into two active metabolites: morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), each possessing distinct pharmacological profiles. M6G binds to µ opioid receptors and acts as a potent analgesic. In contrast, M3G binds to toll-like receptor 4 (TLR4), initiating a neuroinflammatory response that directly opposes the analgesic effects of morphine and M6G. M3G serum concentrations are 2-fold higher in females than males, however, sex-specific effects of morphine metabolites on analgesia and glial activation in vivo remain unknown. The present studies test the hypothesis that increased M3G, and subsequent TLR4-mediated activation of glia, is a primary mechanism driving the attenuated response to morphine in females. We demonstrate that intra-PAG M6G results in a greater analgesic response in females than morphine alone. M6G analgesia was reversed with co-administration of (-)-naloxone, but not (+)-naloxone, suggesting that this effect is µ opioid receptor mediated. In contrast, intra-PAG administration of M3G significantly attenuated the analgesic effects of systemic morphine in males only, increasing the 50% effective dose of morphine two-fold (5.0 vs 10.3mg/kg) and eliminating the previously observed sex difference. An increase in IL-1ß, IL-6 and TNF was observed in females following intra-PAG morphine or M6G. In males, only IL-1ß levels increased following morphine. Changes in cytokine levels following M3G were limited to TNF in females. Together, these data implicate sex differences in morphine metabolism, specifically M3G, as a contributing factor in the attenuated response to morphine observed in females.


Asunto(s)
Analgésicos Opioides/farmacología , Morfina/farmacología , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Caracteres Sexuales , Animales , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Masculino , Derivados de la Morfina/metabolismo , Naloxona/farmacología , Antagonistas de Narcóticos/farmacología , Nocicepción/efectos de los fármacos , Sustancia Gris Periacueductal/efectos de los fármacos , Sustancia Gris Periacueductal/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Receptor Toll-Like 4/metabolismo
8.
Pharmacol Biochem Behav ; 140: 68-74, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26476133

RESUMEN

Intrathecal (i.t.) injection of morphine-3-glucuronide (M3G), a major metabolite of morphine without analgesic actions, produces severe hindlimb scratching followed by biting and licking in mice. The M3G-induced behavioral response was inhibited dose-dependently by pretreatment with an antisera against dynorphin. However, the selective κ-opioid receptor antagonist, nor-BNI did not prevent the M3G-induced behavioral response. Dynorphin is rapidly degraded by a dynorphin-converting enzyme (cystein protease), to leucine-enkephalin (Leu-ENK). The M3G-induced behavioral response was inhibited dose-dependently by pretreatment with the antisera against Leu-ENK. We also showed that M3G co-administered with Leu-ENK-converting enzyme inhibitors, phosphoramidon and bestatin produced much stronger behavioral responses than M3G alone. Furthermore, the M3G-induced behavioral responses were inhibited dose-dependently by i.t. co-administration of the non-selective δ-opioid receptor antagonist, naltrindole or the selective δ2-opioid receptor antagonist, naltriben, whereas the selective δ1-opioid receptor antagonist, BNTX had no effect. An i.t. injection of M3G also produced a definite activation of ERK in the lumbar dorsal spinal cord. Western blotting analysis revealed that antisera against dynorphin, antisera against Leu-ENK, naltrindole or naltriben resulted in a significant blockade of ERK activation induced by M3G in the spinal cord. Taken together, these results suggest that M3G-induced nociceptive responses and ERK activation may be triggered via δ2-opioid receptors activated by Leu-ENK, which is formed from dynorphin in the spinal cord.


Asunto(s)
Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Derivados de la Morfina/farmacología , Nocicepción/efectos de los fármacos , Receptores Opioides delta/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Animales , Estimulantes del Sistema Nervioso Central/administración & dosificación , Relación Dosis-Respuesta a Droga , Dinorfinas/metabolismo , Dinorfinas/farmacología , Encefalina Leucina/antagonistas & inhibidores , Encefalina Leucina/metabolismo , Inyecciones Espinales , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Derivados de la Morfina/administración & dosificación , Naltrexona/análogos & derivados , Naltrexona/farmacología , Antagonistas de Narcóticos/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-25589256

RESUMEN

The determination of morphine and its isobaric metabolites morphine-3-beta-d-glucuronide (M3G) and morphine-6-beta-d-glucuronide (M6G) is useful for therapeutic drug monitoring and forensic identification of drug use. In particular, capillary electrophoresis with mass spectrometry (CE-MS) represents an attractive tool for opioid analysis. Whereas volatile background electrolytes in CE often improve electrospray ionization for coupled MS detection, such electrolytes may reduce CE separation efficiency and resolution. To better understand the effects of background electrolyte (BGE) composition on separation efficiency and detection sensitivity, this work compares and contrasts method development for both volatile (ammonium formate and acetate) and nonvolatile (ammonium phosphate and borate) buffers. Peak efficiencies and migration times for morphine and morphine metabolites were optimal with a 25mM ammonium borate buffer (pH=9.5) although greater sensitivities were achieved in the ammonium formate buffer. Optimized CE methods allowed for the resolution of the isobaric morphine metabolites prior to high mass accuracy, electrospray ionization quadrupole time-of-flight (ESI-QTOF) MS detection applicable to the analysis of urine samples in under seven minutes. Urine sample preparation required only a 10-fold dilution with BGE prior to analysis. Limits of detection (LOD) in normal human urine were found to be 1.0µg/mL for morphine and 2.5µg/mL for each of M3G and M6G by CE-ESI-QTOF-MS. These LODs were comparable to those for CE-UV analysis of opioid standards in buffer, whereas CE-ESI-QTOF-MS analysis of opioid standards in buffer yielded LODs an order of magnitude lower. Patient urine samples (N=12) were analyzed by this new CE-ESI-QTOF-MS method and no significant difference in total morphine content relative to prior liquid chromatography-mass spectrometry (LC-MS) results was found as per a paired-t test at the 99% confidence level. Whereas the LC-MS method applied to these samples determined only total morphine content, this new CE-ESI-QTOF-MS method allowed for species differentiation in addition to total morphine determination. By this method, it was found that M3G and M6G metabolites were present in a 5:1 concentration ratio, on average, in patient samples. Therefore, the CE-ESI-QTOF-MS method not only allows for total morphine concentration determination comparable to established LC-MS methods, but also allows for differentiation between morphine and its trace glucuronides, yielding additional biochemical information about drug metabolism.


Asunto(s)
Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Morfina/análisis , Humanos , Morfina/orina , Derivados de la Morfina/análisis , Derivados de la Morfina/orina
10.
Neuroscience ; 280: 299-317, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25241065

RESUMEN

CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at toll-like receptor 4 (TLR4), presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu opioid receptor (MOR)-inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated nuclear factor kappaB (NF-κB), increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 (PGE2) from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and PGE2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequelae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by presumptive glial inhibitors, as well as TLR4-mediated phenomena more broadly.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Derivados de la Morfina/farmacología , Morfina/farmacología , Narcóticos/farmacología , Receptor Toll-Like 4/metabolismo , Animales , Sistema Nervioso Central/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclooxigenasa 2/metabolismo , Dinoprostona/metabolismo , Células Endoteliales/fisiología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/fisiopatología , Masculino , FN-kappa B/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/fisiología , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/fisiología , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Receptores Opioides mu/antagonistas & inhibidores , Receptores Opioides mu/metabolismo , Receptor Toll-Like 4/agonistas , Factor de Necrosis Tumoral alfa/metabolismo , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología
11.
Bioorg Med Chem ; 21(24): 7921-8, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24184216

RESUMEN

Increased efficiency in splice-correction (splice-switching) has been shown by use of a synthetic RNA 5'-end nuclear localization signal composed of an m3G-CAP. Use of the m3G-CAP as an NLS signal for therapeutic compounds in vivo is likely to require additional stability towards enzymatic degradation. For this reason introduction of stabilizing modifications into the triphosphate bridge may be beneficial. Here we report on synthesis of three m3G-CAP derivatives with a 'native' (m3GpppAOMe) as well as with a methylenephosphonate stabilized triphosphate bridge (m3GpCH2ppAOMe, m3GppCH2pAOMe) and the investigation of the enzymatic stability of these compounds in 10% (v/v) fetal bovine serum (FBS) and cytosolic extract from HeLa cells, thus mimicking in vivo conditions. Our results indicate that introduction of methylene group between the ß and γ phosphates in m3GpCH2ppAOMe improves to some extent stability of this analogue in 10% serum but does not prolong life of this compound in the cytosolic extract. In contrast the stabilization introduced between α and ß phosphates in m3GppCH2pAOMe offers threefold longer life in 10% serum and almost complete protection in cytosolic extract.


Asunto(s)
Extractos Celulares/química , Medios de Cultivo/química , Citosol/química , Caperuzas de ARN/química , Caperuzas de ARN/metabolismo , Animales , Bovinos , Células HeLa , Humanos , Conformación de Ácido Nucleico , Caperuzas de ARN/síntesis química
12.
Peptides ; 50: 55-95, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24126281

RESUMEN

This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).


Asunto(s)
Trastornos Mentales/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Péptidos Opioides/metabolismo , Receptores Opioides/metabolismo , Afecto/efectos de los fármacos , Afecto/fisiología , Animales , Conducta Animal/efectos de los fármacos , Humanos , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Memoria/efectos de los fármacos , Memoria/fisiología , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/fisiopatología , Antagonistas de Narcóticos/farmacología , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/fisiopatología , Péptidos Opioides/farmacología , Dolor/tratamiento farmacológico , Dolor/metabolismo , Dolor/fisiopatología , Receptores Opioides/agonistas , Respiración/efectos de los fármacos , Conducta Sexual/efectos de los fármacos , Conducta Sexual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA