Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1431585, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39072315

RESUMEN

Purkinje cell cytoplasmic antibody type 2 (PCA-2), identified in 2000, targets the widely distributed microtubule-associated protein 1B in the central and peripheral nervous systems, leading to diverse clinical phenotypes of neurological disorders. We report two cases of PCA-2-associated encephalitis, each presenting with distinct onset forms and clinical manifestations, thereby illustrating the phenotypic variability of PCA-2-related diseases. The first patient was diagnosed with PCA-2-associated autoimmune cerebellitis and undifferentiated small cell carcinoma with metastasis in mediastinal lymph nodes of unknown primary origin. The second patient was diagnosed with PCA-2-associated limbic encephalitis. Our findings underscore the superior sensitivity of positron emission tomography-computed tomography over brain magnetic resonance imaging in the early detection of PCA-2-associated encephalitis. Given the high risk of relapse and suboptimal response to traditional immunotherapy in PCA-2-related neurological disorders, this study highlights the need for a deeper understanding of their pathogenesis to develop more effective treatments to control symptoms and improve patient prognosis.


Asunto(s)
Fenotipo , Humanos , Masculino , Persona de Mediana Edad , Autoanticuerpos/inmunología , Autoanticuerpos/sangre , Femenino , Encefalitis/diagnóstico , Encefalitis/inmunología , Tomografía Computarizada por Tomografía de Emisión de Positrones , Imagen por Resonancia Magnética , Anciano , Encefalitis Límbica/diagnóstico , Encefalitis Límbica/inmunología , Antígenos de Neoplasias/inmunología
2.
Elife ; 122024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38757694

RESUMEN

The fragile X syndrome (FXS) represents the most prevalent form of inherited intellectual disability and is the first monogenic cause of autism spectrum disorder. FXS results from the absence of the RNA-binding protein FMRP (fragile X messenger ribonucleoprotein). Neuronal migration is an essential step of brain development allowing displacement of neurons from their germinal niches to their final integration site. The precise role of FMRP in neuronal migration remains largely unexplored. Using live imaging of postnatal rostral migratory stream (RMS) neurons in Fmr1-null mice, we observed that the absence of FMRP leads to delayed neuronal migration and altered trajectory, associated with defects of centrosomal movement. RNA-interference-induced knockdown of Fmr1 shows that these migratory defects are cell-autonomous. Notably, the primary Fmrp mRNA target implicated in these migratory defects is microtubule-associated protein 1B (MAP1B). Knocking down MAP1B expression effectively rescued most of the observed migratory defects. Finally, we elucidate the molecular mechanisms at play by demonstrating that the absence of FMRP induces defects in the cage of microtubules surrounding the nucleus of migrating neurons, which is rescued by MAP1B knockdown. Our findings reveal a novel neurodevelopmental role for FMRP in collaboration with MAP1B, jointly orchestrating neuronal migration by influencing the microtubular cytoskeleton.


Asunto(s)
Movimiento Celular , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Proteínas Asociadas a Microtúbulos , Neuronas , Animales , Ratones , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Técnicas de Silenciamiento del Gen , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Neuronas/metabolismo
3.
Bone ; 181: 117038, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38316337

RESUMEN

Osteoblast polarity, proliferation, differentiation, and migration are essential for maintaining normal bone structure and function. While the microtubule-associated protein Map1b has been extensively studied in nerve cells, its role in bone cells is less known. We investigated the functional significance of Map1b in mouse bone marrow stromal cells (ST2) and elucidated its relationship and influence on cytoskeletal polarity and Golgi organization. Our results suggest that Map1b, as a microtubule regulatory protein, can also regulate the expression of cyclin PCNA, p-H3(S10) and migration-related protein integrin ß1, thereby affecting the proliferation and migration of osteoblasts. The downstream target gene Rgc32 was screened by RNA sequencing. Furthermore, Map1b, as a downstream mediator, regulates the Wnt5a signaling pathway. This study expands our understanding of the involvement of Map1b in bone biology and highlights its crucial role in governing osteoblast polarity, proliferation, and migration, thereby providing a basis for developing novel therapeutic strategies targeting Map1b in orthopedic medicine and promoting precision treatment modalities. Further investigations on the precise mechanisms underlying Map1b's influence on bone cell function and disease progression are needed.


Asunto(s)
Huesos , Proteínas Asociadas a Microtúbulos , Ratones , Animales , Proteínas Asociadas a Microtúbulos/metabolismo , Diferenciación Celular , Huesos/metabolismo , Osteoblastos/metabolismo , Proliferación Celular
4.
MedComm (2020) ; 4(6): e429, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38020716

RESUMEN

Mutations in LRRK2 (encoding leucine-rich repeat kinase 2 protein, LRRK2) are the most common genetic risk factors for Parkinson's disease (PD), and increased LRRK2 kinase activity was observed in sporadic PD. Therefore, inhibition of LRRK2 has been tested as a disease-modifying therapeutic strategy using the LRRK2 mutant mice and sporadic PD. Here, we report a newly designed molecule, FL090, as a LRRK2 kinase inhibitor, verified in cell culture and animal models of PD. Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice and SNCA A53T transgenic mice, FL090 ameliorated motor dysfunctions, reduced LRRK2 kinase activity, and rescued loss in the dopaminergic neurons in the substantia nigra. Notably, by RNA-Seq analysis, we identified microtubule-associated protein 1 (MAP1B) as a crucial mediator of FL090's neuroprotective effects and found that MAP1B and LRRK2 co-localize. Overexpression of MAP1B rescued 1-methyl-4-phenylpyridinium induced cytotoxicity through rescuing the lysosomal function, and the protective effect of FL090 was lost in MAP1B knockout cells. Further studies may be focused on the in vivo mechanisms of MAP1B and microtubule function in PD. Collectively, these findings highlight the potential of FL090 as a therapeutic agent for sporadic PD and familial PD without LRRK2 mutations.

5.
Front Oncol ; 13: 1096882, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081981

RESUMEN

Background: For several decades, Black patients have carried a higher burden of laryngeal cancer among all races. Even when accounting for sociodemographics, a disparity remains. Differentially expressed microRNAs have been linked to racially disparate clinical outcomes in breast and prostate cancers, yet an association in laryngeal cancer has not been addressed. In this study, we present our computational analysis of differentially expressed miRNAs in Black compared with White laryngeal cancer and further validate microRNA-9-5p (miR-9-5p) as a potential mediator of cancer phenotype and chemoresistance. Methods: Bioinformatic analysis of 111 (92 Whites, 19 Black) laryngeal squamous cell carcinoma (LSCC) specimens from the TCGA revealed miRNAs were significantly differentially expressed in Black compared with White LSCC. We focused on miR-9-5 p which had a significant 4-fold lower expression in Black compared with White LSCC (p<0.05). After transient transfection with either miR-9 mimic or inhibitor in cell lines derived from Black (UM-SCC-12) or White LSCC patients (UM-SCC-10A), cellular migration and cell proliferation was assessed. Alterations in cisplatin sensitivity was evaluated in transient transfected cells via IC50 analysis. qPCR was performed on transfected cells to evaluate miR-9 targets and chemoresistance predictors, ABCC1 and MAP1B. Results: Northern blot analysis revealed mature miR-9-5p was inherently lower in cell line UM-SCC-12 compared with UM-SCC-10A. UM -SCC-12 had baseline increase in cellular migration (p < 0.01), proliferation (p < 0.0001) and chemosensitivity (p < 0.01) compared to UM-SCC-10A. Increasing miR-9 in UM-SCC-12 cells resulted in decreased cellular migration (p < 0.05), decreased proliferation (p < 0.0001) and increased sensitivity to cisplatin (p < 0.001). Reducing miR-9 in UM-SCC-10A cells resulted in increased cellular migration (p < 0.05), increased proliferation (p < 0.05) and decreased sensitivity to cisplatin (p < 0.01). A significant inverse relationship in ABCC1 and MAP1B gene expression was observed when miR-9 levels were transiently elevated or reduced in either UM-SCC-12 or UM-SCC-10A cell lines, respectively, suggesting modulation by miR-9. Conclusion: Collectively, these studies introduce differential miRNA expression in LSCC cancer health disparities and propose a role for low miR-9-5p as a mediator in LSCC tumorigenesis and chemoresistance.

6.
Biomedicines ; 10(12)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36551785

RESUMEN

Autism spectrum disorders (ASD) are neurodevelopmental diseases characterised by deficits in social communication, restricted interests, and repetitive behaviours. The growing body of evidence points to a role for cerebellar changes in ASD pathology. Some of the findings suggest that not only motor problems but also social deficits, repetitive behaviours, and mental inflexibility associated with ASD are connected with damage to the cerebellum. However, the understanding of this brain structure's functions in ASD pathology needs future investigations. Therefore, in this study, we generated a rodent model of ASD through a single prenatal administration of valproic acid (VPA) into pregnant rats, followed by cerebellar morphological studies of the offspring, focusing on the alterations of key cytoskeletal elements. The expression (Western blot) of α/ß-tubulin and the major neuronal MT-associated proteins (MAP) such as MAP-Tau and MAP1B, MAP2, MAP6 (STOP) along with actin-crosslinking αII-spectrin and neurofilament light polypeptide (NF-L) was investigated. We found that maternal exposure to VPA induces a significant decrease in the protein levels of α/ß-tubulin, MAP-Tau, MAP1B, MAP2, and αII-spectrin. Moreover, excessive MAP-Tau phosphorylation at (Ser396) along with key Tau-kinases activation was indicated. Immunohistochemical staining showed chromatolysis in the cerebellum of autistic-like rats and loss of Purkinje cells shedding light on one of the possible molecular mechanisms underpinning neuroplasticity alterations in the ASD brain.

7.
Biomolecules ; 12(10)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36291733

RESUMEN

Survival motor neuron (SMN) is an essential and ubiquitously expressed protein that participates in several aspects of RNA metabolism. SMN deficiency causes a devastating motor neuron disease called spinal muscular atrophy (SMA). SMN forms the core of a protein complex localized at the cytoplasm and nuclear gems and that catalyzes spliceosomal snRNP particle synthesis. In cultured motor neurons, SMN is also present in dendrites and axons, and forms part of the ribonucleoprotein transport granules implicated in mRNA trafficking and local translation. Nevertheless, the distribution, regulation, and role of SMN at the axons and presynaptic motor terminals in vivo are still unclear. By using conventional confocal microscopy and STED super-resolution nanoscopy, we found that SMN appears in the form of granules distributed along motor axons at nerve terminals. Our fluorescence in situ hybridization and electron microscopy studies also confirmed the presence of ß-actin mRNA, ribosomes, and polysomes in the presynaptic motor terminal, key elements of the protein synthesis machinery involved in local translation in this compartment. SMN granules co-localize with the microtubule-associated protein 1B (MAP1B) and neurofilaments, suggesting that the cytoskeleton participates in transporting and positioning the granules. We also found that, while SMN granules are physiologically downregulated at the presynaptic element during the period of postnatal maturation in wild-type (non-transgenic) mice, they accumulate in areas of neurofilament aggregation in SMA mice, suggesting that the high expression of SMN at the NMJ, together with the cytoskeletal defects, contribute to impairing the bi-directional traffic of proteins and organelles between the axon and the presynaptic terminal.


Asunto(s)
Filamentos Intermedios , Atrofia Muscular Espinal , Animales , Ratones , Actinas/metabolismo , Modelos Animales de Enfermedad , Hibridación Fluorescente in Situ , Filamentos Intermedios/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas del Complejo SMN/genética , Proteínas del Complejo SMN/metabolismo
8.
Cells ; 11(10)2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35626746

RESUMEN

Recently, we have shown that the physiological roles of a multifunctional protein fructose 1,6-bisphosphatase 2 (FBP2, also called muscle FBP) depend on the oligomeric state of the protein. Here, we present several lines of evidence that in HL-1 cardiomyocytes, a forced, chemically induced reduction in the FBP2 dimer-tetramer ratio that imitates AMP and NAD+ action and restricts FBP2-mitochondria interaction, results in an increase in Tau phosphorylation, augmentation of FBP2-Tau and FBP2-MAP1B interactions, disturbance of tubulin network, marked reduction in the speed of mitochondrial trafficking and increase in mitophagy. These results not only highlight the significance of oligomerization for the regulation of FBP2 physiological role in the cell, but they also demonstrate a novel, important cellular function of this multitasking protein-a function that might be crucial for processes that take place during physiological and pathological cardiac remodeling, and during the onset of diseases which are rooted in the destabilization of MT and/or mitochondrial network dynamics.


Asunto(s)
Mitocondrias , Miocitos Cardíacos , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitofagia , Miocitos Cardíacos/metabolismo , Tubulina (Proteína)/metabolismo
9.
Cerebellum ; 21(2): 328-331, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34176072

RESUMEN

Immune check point inhibitors (ICIs) are a group of anti-cancer pharmacological agents which modify T cell activity in order to potentiate an effective immune response against tumor cells. While these drugs prove extremely potent against several types of malignancies, they may be associated with significant autoimmune adverse events. We report a patient who developed a subacute cerebellar syndrome shortly after starting treatment with nivolumab, a PD-1 inhibitor, for renal clear cell carcinoma, with detectable paraneoplastic PCA-2 antibodies. The tumor specimen stained positively for MAP1B, the antigen of PCA-2. The patient responded well to treatment with glucocorticosteroids. This is the first case to our knowledge of PCA-2 paraneoplastic cerebellar degeneration associated with ICI use, which presents in a patient with a malignancy not typically associated with neurological paraneoplastic phenomena. Treatment with immune checkpoint inhibitors (ICIs) is extremely effective in potentiating an immune response against tumor cells, but bears a substantial risk for the development of autoimmune phenomena, including paraneoplastic neurological syndromes. Increasing use of ICIs is leading to increasing numbers of patients with new-onset neurological symptoms. Awareness of these novel entities will aid in early diagnosis and proper treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Autoanticuerpos , Autoinmunidad , Carcinoma de Células Renales/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Renales/tratamiento farmacológico , Proteínas Asociadas a Microtúbulos , Receptor de Muerte Celular Programada 1
10.
Bone ; 154: 116238, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34700040

RESUMEN

RATIONALE: The migration of osteoblastic cells to bone formation surface is an essential step for bone development and growth. However, whether the migration capacity of osteoblastic cells is compromised during osteoporosis occurrence and how it contributes to bone formation reduction remain unexplored so far. In this work, we found, as a positive regulator of cell migration, microtubule actin crosslinking factor 1 (MACF1) enhanced osteoblastic cells migration. We also examined whether MACF1 could facilitate osteoblastic cells' migration to bone formation surface to promote bone formation through another cytoskeleton protein, microtubule associated protein 1 (MAP1B). METHODS: Preosteoblast cell line MC3T3-E1 with different MACF1 level was used for in vitro and in vivo cell migration assay; Primary cortical bone derived mesenchymal stem cells (C-MSCs) from bone tissue of MACF1 conditional knock out (cKO) mice was used for in vitro cell migration assay. Cell migration ability in vitro was evaluated by wound healing assay and transwell assay and in vivo by bone marrow cavity injection. Small interfering RNA (siRNA) was used for knocking down Map1b in MC3T3-E1 cell. Lithium chloride (LiCl) and Wortmannin (Wort) were used for inhibiting/activating GSK3ß pathway activity. Luciferase report assay was performed for detection of transcriptional activity of TCF7 for Map1b; Chromatin immunoprecipitation (ChIP) was engaged for the binding of TCF7 to Map1b promoter region. RESULTS: We found MACF1 enhanced MC3T3-E1 cell and C-MSCs migration in vitro through promoting microtubule (MT) stability and dynamics, and increased the injected MC3T3-E1 cell number on bone formation surface, which indicated a promoted bone formation. We further authenticated that MAP1B had a similar function to MACF1 and was regulated by MACF1 in osteogenic cell, and silencing map1b repressed MC3T3-E1 cell migration in vitro. Mechanistically, by adopting MC3T3-E1 cell with different MACF1 level or treated with LiCl/Wort, we discovered that MACF1 decreased the levels of 1265 threonine phosphorylated MAP1B (p[T1265] MAP1B) through inhibiting GSK3ß activity. Additionally, total MAP1B mRNA expression level was upregulated by MACF1 through strengthening the binding of TCF7 to the map1b promoter sequence. CONCLUSION: Our study uncovered a novel role of MACF1 in bone formation and MAP1B regulation, which suggested that MACF1 could be a potential therapeutic target for osteoporosis.


Asunto(s)
Proteínas Asociadas a Microtúbulos , Osteoblastos , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Proteínas de Microfilamentos , Proteínas Asociadas a Microtúbulos/metabolismo , Osteoblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA