Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Cells ; 13(15)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39120267

RESUMEN

The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor (GPCR) that is expressed in several brain locations encompassing the hypothalamus and the brainstem, where the receptor controls several body functions, including metabolism. In a well-defined pathway to decrease appetite, hypothalamic proopiomelanocortin (POMC) neurons localized in the arcuate nucleus (Arc) project to MC4R neurons in the paraventricular nuclei (PVN) to release the natural MC4R agonist α-melanocyte-stimulating hormone (α-MSH). Arc neurons also project excitatory glutamatergic fibers to the MC4R neurons in the PVN for a fast synaptic transmission to regulate a satiety pathway potentiated by α-MSH. By using super-resolution microscopy, we found that in hypothalamic neurons in a primary culture, postsynaptic density protein 95 (PSD95) colocalizes with GluN1, a subunit of the ionotropic N-methyl-D-aspartate receptor (NMDAR). Thus, hypothalamic neurons form excitatory postsynaptic specializations. To study the MC4R distribution at these sites, tagged HA-MC4R under the synapsin promoter was expressed in neurons by adeno-associated virus (AAV) gene transduction. HA-MC4R immunofluorescence peaked at the center and in proximity to the PSD95- and NMDAR-expressing sites. These data provide morphological evidence that MC4R localizes together with glutamate receptors at postsynaptic and peri-postsynaptic sites.


Asunto(s)
Hipotálamo , Neuronas , Receptor de Melanocortina Tipo 4 , Animales , Receptor de Melanocortina Tipo 4/metabolismo , Receptor de Melanocortina Tipo 4/genética , Neuronas/metabolismo , Hipotálamo/metabolismo , Hipotálamo/citología , Ratones , Sinapsis/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Células Cultivadas , Receptores de N-Metil-D-Aspartato/metabolismo
2.
Animals (Basel) ; 14(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39123733

RESUMEN

The melanocortin 4 receptor (MC4R) gene plays a central role in regulating energy homeostasis and food intake in livestock, thereby affecting their economic worth and growth. In a previous study, the p.T117M mutation in the sheep MC4R gene, which leads to the transition of threonine to methionine, was found to affect the body weight at six months and the average daily gain in Hu sheep. However, there are still limited studies on the frequency of the sheep p.T117M missense mutation globally, and the underlying cellular mechanism remains elusive. Therefore, this study first used WGS to investigate the distribution of the MC4R gene p.T117M mutation in 652 individuals across 22 breeds worldwide. The results showed that the mutation frequency was higher in European breeds compared with Chinese sheep breeds, particularly in Poll Dorset sheep (mutation frequency > 0.5). The p.T117M mutation occurs in the first extracellular loop of MC4R. Mechanistically, the basal activity of the mutated receptor is significantly increased. Specifically, upon treatment with α-MSH and ACTH ligands, the cAMP and MAPK/ERK signaling activation of M117 MC4R is enhanced. These results indicate that the T117M mutation may change the function of the gene by increasing the constitutive activity and signaling activation of cAMP and MAPK/ERK, and, thus, may regulate the growth traits of sheep. In conclusion, this study delved into the global distribution and underlying cellular mechanisms of the T117M mutation of the MC4R gene, establishing a scientific foundation for breeding sheep with superior growth, thereby contributing to the advancement of the sheep industry.

3.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38977301

RESUMEN

Overexpression of the agouti-signaling protein (asip1), an endogenous melanocortin antagonist, under the control of a constitutive promoter in zebrafish [Tg(Xla.Eef1a1:Cau.Asip1]iim4] (asip1-Tg) increases food intake by reducing sensitivity of the central satiety systems and abolish circadian activity rhythms. The phenotype also shows increased linear growth and body weight, yet no enhanced aggressiveness in dyadic fights is observed. In fact, asip1-Tg animals choose to flee to safer areas rather than face a potential threat, thus suggesting a potential anxiety-like behavior (ALB). Standard behavioral tests, i.e., the open field test (OFT), the novel object test (NOT), and the novel tank dive test (NTDT), were used to investigate thigmotaxis and ALB in male and female zebrafish. Results showed that the asip1-Tg strain exhibited severe ALB in every test, mainly characterized by pronounced freezing behavior and increased linear and angular swimming velocities. asip1-Tg animals exhibited low central serotonin (5-HT) and dopamine (DA) levels and high turnover rates, thus suggesting that central monoaminergic pathways might mediate melanocortin antagonist-induced ALB. Accordingly, the treatment of asip1-Tg animals with fluoxetine, a selective serotonin reuptake inhibitor (SSRI), reversed the ALB phenotype in NTDT as well as 5-HT turnover. Genomic and anatomical data further supported neuronal interaction between melanocortinergic and serotonergic systems. These results suggest that inhibition of the melanocortin system by ubiquitous overexpression of endogenous antagonist has an anxiogenic effect mediated by serotonergic transmission.


Asunto(s)
Ansiedad , Serotonina , Pez Cebra , Animales , Ansiedad/metabolismo , Ansiedad/psicología , Masculino , Femenino , Serotonina/metabolismo , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Fluoxetina/farmacología , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Dopamina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/genética
4.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39062808

RESUMEN

The melanocortin-4 receptor (MC4R) is a key player in the hypothalamic leptin-melanocortin pathway that regulates satiety and hunger. MC4R belongs to the G protein-coupled receptors (GPCRs), which are known to form heterodimers with other membrane proteins, potentially modulating receptor function or characteristics. Like MC4R, thyroid hormones (TH) are also essential for energy homeostasis control. TH transport across membranes is facilitated by the monocarboxylate transporter 8 (MCT8), which is also known to form heterodimers with GPCRs. Based on the finding in single-cell RNA-sequencing data that both proteins are simultaneously expressed in hypothalamic neurons, we investigated a putative interplay between MC4R and MCT8. We developed a novel staining protocol utilizing a fluorophore-labeled MC4R ligand and demonstrated a co-localization of MC4R and MCT8 in human brain tissue. Using in vitro assays such as BRET, IP1, and cAMP determination, we found that MCT8 modulates MC4R-mediated phospholipase C activation but not cAMP formation via a direct interaction, an effect that does not require a functional MCT8 as it was not altered by a specific MCT8 inhibitor. This suggests an extended functional spectrum of MCT8 as a GPCR signaling modulator and argues for the investigation of further GPCR-protein interactions with hitherto underrepresented physiological functions.


Asunto(s)
Transportadores de Ácidos Monocarboxílicos , Receptor de Melanocortina Tipo 4 , Fosfolipasas de Tipo C , Humanos , Receptor de Melanocortina Tipo 4/metabolismo , Receptor de Melanocortina Tipo 4/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Fosfolipasas de Tipo C/metabolismo , Células HEK293 , Transducción de Señal , AMP Cíclico/metabolismo , Simportadores/metabolismo , Simportadores/genética , Unión Proteica , Animales
5.
Cell Rep ; 43(8): 114501, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39067024

RESUMEN

Evaluation of weight loss drugs is usually performed in diet-induced obese mice housed at ∼22°C. This is a cold stress that increases energy expenditure by ∼35% compared to thermoneutrality (∼30°C), which may overestimate drug-induced weight loss. We investigated five anti-obesity mechanisms that have been in clinical development, comparing weight loss in mice housed at 22°C vs. 30°C. Glucagon-like peptide-1 (GLP-1), human fibroblast growth factor 21 (hFGF21), and melanocortin-4 receptor (MC4R) agonist induced similar weight losses. Peptide YY elicited greater vehicle-subtracted weight loss at 30°C (7.2% vs. 1.4%), whereas growth differentiation factor 15 (GDF15) was more effective at 22°C (13% vs. 6%). Independent of ambient temperature, GLP-1 and hFGF21 prevented the reduction in metabolic rate caused by weight loss. There was no simple rule for a better prediction of human drug efficacy based on ambient temperature, but since humans live at thermoneutrality, drug testing using mice should include experiments near thermoneutrality.


Asunto(s)
Pérdida de Peso , Animales , Humanos , Pérdida de Peso/efectos de los fármacos , Ratones , Masculino , Péptido 1 Similar al Glucagón/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo , Vivienda para Animales , Temperatura , Receptor de Melanocortina Tipo 4/metabolismo , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico
6.
Methods Mol Biol ; 2796: 229-248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38856905

RESUMEN

Automated patch clamp recording is a valuable technique in drug discovery and the study of ion channels. It allows for the precise measurement and manipulation of channel currents, providing insights into their function and modulation by drugs or other compounds. The melanocortin 4 receptor (MC4-R) is a G protein-coupled receptor (GPCR) crucial to appetite regulation, energy balance, and body weight. MC4-R signaling is complex and involves interactions with other receptors and neuropeptides in the appetite-regulating circuitry. MC4-Rs, like other GPCRs, are known to modulate ion channels such as Kir7.1, an inward rectifier potassium channel, in response to ligand binding. This modulation is critical for controlling ion flow across the cell membrane, which can influence membrane potential, excitability, and neurotransmission. The MC4-R is the target for the anti-obesity drug Imcivree. However, this drug is known to lack optimal potency and also has side effects. Using high-throughput techniques for studying the MC4-R/Kir7.1 complex allows researchers to rapidly screen many compounds or conditions, aiding the development of drugs that target this system. Additionally, automated patch clamp recording of this receptor-channel complex and its ligands can provide valuable functional and pharmacological insights supporting the development of novel therapeutic strategies. This approach can be generalized to other GPCR-gated ion channel functional complexes, potentially accelerating the pace of research in different fields with the promise to uncover previously unknown aspects of receptor-ion channel interactions.


Asunto(s)
Técnicas de Placa-Clamp , Canales de Potasio de Rectificación Interna , Receptor de Melanocortina Tipo 4 , Técnicas de Placa-Clamp/métodos , Animales , Humanos , Receptor de Melanocortina Tipo 4/metabolismo , Canales de Potasio de Rectificación Interna/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293
7.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915534

RESUMEN

Inactivating mutations in the melanocortin 4 receptor (MC4R) gene cause monogenic obesity. Interestingly, female patients also display various degrees of reproductive disorders, in line with the subfertile phenotype of MC4RKO female mice. However, the cellular mechanisms by which MC4R regulates reproduction are unknown. Kiss1 neurons directly stimulate gonadotropin-releasing hormone (GnRH) release through two distinct populations; the Kiss1ARH neurons, controlling GnRH pulses, and the sexually dimorphic Kiss1AVPV/PeN neurons controlling the preovulatory LH surge. Here, we show that Mc4r expressed in Kiss1 neurons is required for fertility in females. In vivo, deletion of Mc4r from Kiss1 neurons in female mice replicates the reproductive impairments of MC4RKO mice without inducing obesity. Conversely, reinsertion of Mc4r in Kiss1 neurons of MC4R null mice restores estrous cyclicity and LH pulsatility without reducing their obese phenotype. In vitro, we dissect the specific action of MC4R on Kiss1ARH vs Kiss1AVPV/PeN neurons and show that MC4R activation excites Kiss1ARH neurons through direct synaptic actions. In contrast, Kiss1AVPV/PeN neurons are normally inhibited by MC4R activation except under elevated estradiol levels, thus facilitating the activation of Kiss1AVPV/PeN neurons to induce the LH surge driving ovulation in females. Our findings demonstrate that POMCARH neurons acting through MC4R, directly regulate reproductive function in females by stimulating the "pulse generator" activity of Kiss1ARH neurons and restricting the activation of Kiss1AVPV/PeN neurons to the time of the estradiol-dependent LH surge, and thus unveil a novel pathway of the metabolic regulation of fertility by the melanocortin system.

8.
Clin Obes ; 14(3): e12659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602039

RESUMEN

Nearly 90 clinicians and researchers from around the world attended the first IMPROVE 2022 International Meeting on Pathway-Related Obesity. Delegates attended in person or online from across Europe, Argentina and Israel to hear the latest scientific and clinical developments in hyperphagia and severe, early-onset obesity, and set out a vision of excellence for the future for improving the diagnosis, treatment, and care of patients with melanocortin-4 receptor (MC4R) pathway-related obesity. The meeting co-chair Peter Kühnen, Charité Universitätsmedizin Berlin, Germany, indicated that change was needed with the rapidly increasing prevalence of obesity and the associated complications to improve the understanding of the underlying mechanisms and acknowledge that monogenic forms of obesity can play an important role, providing insights that can be applied to a wider group of patients with obesity. World-leading experts presented the latest research and led discussions on the underlying science of obesity, diagnosis (including clinical and genetic approaches such as the role of defective MC4R signalling), and emerging clinical data and research with targeted pharmacological approaches. The aim of the meeting was to agree on the questions that needed to be addressed in future research and to ensure that optimised diagnostic work-up was used with new genetic testing tools becoming available. This should aid the planning of new evidence-based treatment strategies for the future, as explained by co-chair Martin Wabitsch, Ulm University Medical Center, Germany.


Asunto(s)
Obesidad , Receptor de Melanocortina Tipo 4 , Humanos , Hiperfagia , Obesidad/terapia , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal
9.
Wei Sheng Yan Jiu ; 53(2): 229-236, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38604958

RESUMEN

OBJECTIVE: To investigate the association of polymorphisms in SEC16B rs633715, DNAJC27 rs713586, FTO rs11642015 and MC4R rs6567160 with overweight and obesity in Han Chinese preschool children. METHODS: A total of 749 Han Chinese preschool children from Henan and Guizhou Province of Long-term Health Effects Assessment Project of Infants and Toddlers Nutritional Pack were selected for the study and divided into an overweight and obese group and a normal control group in 2022. rs633715, rs713586, rs11642015 and rs6567160 were genotyped using Kompetitive allele-specific PCR(KASP) technology. The distribution of genotypic polymorphisms was compared using the χ~2 test. The association between the four loci and overweight and obesity in preschool children was analyzed using a multifactorial logistic regression model. RESULTS: The statistical analysis revealed a significant disparity(P<0.05) in the distribution of genotypic polymorphisms of rs633715 and rs6567160 among preschoolers in Henan and Guizhou Province. CC heterozygous mutant and recessive models at rs633715 locus were associated with susceptibility to overweight and obesity in preschool children [OR and 95% CI 2.915(1.163-7.305), and 2.997(1.226-7.323), respectively, both P<0.05]. TC heterozygous mutant and dominant models at rs713586 locus were also associated susceptibility to overweight and obesity in preschool children(OR and 95% CI were 2.362(1.054-5.289)and 2.362(1.054-5.289), respectively, both P<0.05). rs11642015 and rs6567160 loci were not associated with susceptibility to overweight and obesity in preschool children(P>0.05). The result of the analysis of the cumulative effect of rs633715 and rs713586 showed that the number of genotypes carrying the risk genotype was positively associated with the risk of overweight and obesity in preschool children(P_(trend)<0.01). CONCLUSION: Among Han Chinese preschool children, SEC16B rs633715 and DNAJC27 rs713586 were associated with susceptibility to overweight and obesity in preschool children. Moreover, rs633715 and rs713586 had a cumulative effect on susceptibility to overweight and obesity in preschool children, the number of risk genotypes carried was positively associated with childhood overweight and obesity risk.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Sobrepeso , Obesidad Infantil , Receptor de Melanocortina Tipo 4 , Preescolar , Humanos , Alelos , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Predisposición Genética a la Enfermedad , Genotipo , Sobrepeso/genética , Obesidad Infantil/genética , Polimorfismo de Nucleótido Simple , Receptor de Melanocortina Tipo 4/genética
10.
Metab Syndr Relat Disord ; 22(4): 241-250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38466981

RESUMEN

Objective: It is well established that melanocortin-4 receptor (MC4R) rs17782313 locus polymorphism is associated with increased obesity risk and that obesity is strongly associated with an enhanced risk of all metabolic syndrome (MS) components. Thus, in this study, we examined the association between the MC4R rs17782313 locus polymorphism and the risk of the remaining MS components, namely, diabetes, hypertension, low high-density lipoprotein (HDL), and hypertriglyceridemia. Methods: We performed an extensive literature screening across six scientific databases, namely, PubMed, Embase, Web of Science, Medline, ScienceDirect, CNKI, and WanFang employing a specific search strategy. Eligible studies were selected for inclusion in our meta-analysis, and odds ratio (OR) values and 95% confidence interval (CI) were computed through fixed- or random-effects models to examine correlation strength. In addition, we performed subgroup analyses involving adjustment factors (unadjusted body mass index [BMI], adjusted BMI), race (Caucasian, Asian), and source of controls (population, hospital). Results: Twenty-two eligible studies were selected from 846 articles, involving 28,018 patients and 98,994 normal participants. Based on this meta-analysis, the MC4R rs17782313 locus polymorphism was associated with an augmented risk of diabetes (allele contrast model T vs. C: OR = 1.05, 95% CI = 1.03-1.08; dominant model TT vs. TC + CC: OR = 1.07, 95% CI = 1.03-1.11) and hypertension (dominant model TT vs. TC + CC: OR = 1.16, 95% CI = 1.03-1.31) risk. However, based on this analysis, the MC4R rs17782313 locus polymorphism was not associated with low HDL and hypertriglyceridemia risk. Conclusions: Based on this analysis, the MC4R rs17782313 locus polymorphism is associated with enhanced risks of diabetes and hypertension, while the associations with low HDL and hypertriglyceridemia require further exploration.


Asunto(s)
Predisposición Genética a la Enfermedad , Síndrome Metabólico , Obesidad , Polimorfismo de Nucleótido Simple , Receptor de Melanocortina Tipo 4 , Receptor de Melanocortina Tipo 4/genética , Humanos , Síndrome Metabólico/genética , Obesidad/genética , Estudios de Asociación Genética , Hipertensión/genética
11.
Mol Med ; 30(1): 34, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448811

RESUMEN

BACKGROUND: Imbalance in energy regulation is a major cause of insulin resistance and diabetes. Melanocortin-4 receptor (MC4R) signaling at specific sites in the central nervous system has synergistic but non-overlapping functions. However, the mechanism by which MC4R in the arcuate nucleus (ARC) region regulates energy balance and insulin resistance remains unclear. METHODS: The MC4Rflox/flox mice with proopiomelanocortin (POMC) -Cre mice were crossed to generate the POMC-MC4Rflox/+ mice. Then POMC-MC4Rflox/+ mice were further mated with MC4Rflox/flox mice to generate the POMC-MC4Rflox/flox mice in which MC4R is selectively deleted in POMC neurons. Bilateral injections of 200 nl of AAV-sh-Kir2.1 (AAV-sh-NC was used as control) were made into the ARC of the hypothalamus. Oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure were measured by using the CLAMS; Total, visceral and subcutaneous fat was analyzed using micro-CT. Co-immunoprecipitation assays (Co-IP) were used to analyze the interaction between MC4R and Kir2.1 in GT1-7 cells. RESULTS: POMC neuron-specific ablation of MC4R in the ARC region promoted food intake, impaired energy expenditure, leading to increased weight gain and impaired systemic glucose homeostasis. Additionally, MC4R ablation reduced the activation of POMC neuron, and is not tissue-specific for peripheral regulation, suggesting the importance of its central regulation. Mechanistically, sequencing analysis and Co-IP assay demonstrated a direct interaction of MC4R with Kir2.1. Knockdown of Kir2.1 in POMC neuron-specific ablation of MC4R restored the effect of MC4R ablation on energy expenditure and systemic glucose homeostasis, indicating by reduced body weight and ameliorated insulin resistance. CONCLUSION: Hypothalamic POMC neuron-specific knockout of MC4R affects energy balance and insulin sensitivity by regulating Kir2.1. Kir2.1 represents a new target and pathway that could be targeted in obesity.


Asunto(s)
Resistencia a la Insulina , Animales , Ratones , Glucosa , Hipotálamo , Resistencia a la Insulina/genética , Neuronas , Proopiomelanocortina/genética , Receptor de Melanocortina Tipo 4/genética
12.
Neurogastroenterol Motil ; 36(5): e14764, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361111

RESUMEN

BACKGROUND: Accelerated gastric emptying (GE) is a trait seen in obesity. Mutations in the hypothalamic leptin-melanocortin 4 receptor (Leptin-MC4R) pathway have been associated with obesity. We sought to investigate the association of leptin-MC4R pathway variants and GE in patients with obesity. METHODS: This is a cross-sectional study of patients with a history of severe obesity that were genotyped and completed a GE test by scintigraphy. We evaluated the percentage of GE (GE %) at 2 and 4 h between both groups using ANCOVA with weight and sex as covariates. We subdivide patients into carriers based on the location of the identified variants (i.e., upstream or downstream of the Leptin-MC4R pathway) and compared them with noncarriers using ANOVA. Results are presented as mean and standard deviation (± SD). KEY RESULTS: A total of 95 patients; nine carriers (67% females; 39.78 ± 12.33 years; BMI: 49.14 ± 12.96 kg/m2) and 86 noncarriers (87% female; 49.98 ± 13.74 years; BMI: 40.75 ± 6.29 kg/m2) were included. At 2 and 4 h, carriers had a delayed GE when compared noncarriers (p = 0.03 and p = 0.005, respectively). In carriers, when compared upstream carriers vs. downstream carriers vs. noncarriers by location there was a significant difference in GE among groups at 2 h and at 4 h (p = 0.02 and p = 0.01, respectively). CONCLUSIONS & INFERENCES: Carriers of heterozygous variants in the Leptin-MC4R pathway had a delayed GE compared to noncarriers. These findings point the important relationship between the Leptin-MC4R pathway and gastric motility.


Asunto(s)
Vaciamiento Gástrico , Leptina , Obesidad , Receptor de Melanocortina Tipo 4 , Humanos , Leptina/genética , Femenino , Masculino , Vaciamiento Gástrico/fisiología , Vaciamiento Gástrico/genética , Adulto , Estudios Transversales , Persona de Mediana Edad , Receptor de Melanocortina Tipo 4/genética , Obesidad/genética , Obesidad/fisiopatología , Transducción de Señal
13.
Brain Sci ; 14(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38248278

RESUMEN

Alterations in the various neuropeptide systems in the mesocorticolimbic circuitry have been implicated in negative effects associated with drug withdrawal. The corticotropin-releasing factor (CRF) and α-melanocyte-stimulating hormone are two peptides that may be involved. This study investigated the regulatory effects of chronic nicotine exposure and withdrawal on the mRNA levels of melanocortin receptors (MC3R, MC4R), CRF, and CRF receptors (CRFR1 and CRFR2) expressed in the mesocorticolimbic system. Rats were given drinking water with nicotine or without nicotine (control group) for 12 weeks, after which they continued receiving nicotine (chronic exposure) or were withdrawn from nicotine for 24 or 48 h. The animals were decapitated following behavioral testing for withdrawal signs. Quantitative real-time PCR analysis demonstrated that nicotine exposure (with or without withdrawal) increased levels of CRF and CRFR1 mRNA in the amygdala, CRF mRNA in the medial prefrontal cortex, and CRFR1 mRNA in the septum. Nicotine withdrawal also enhanced MC3R and MC4R mRNA levels in different brain regions, while chronic nicotine exposure was associated with increased MC4R mRNA levels in the nucleus accumbens. These results suggest that chronic nicotine exposure and withdrawal regulate CRF and melanocortin signaling in the mesocorticolimbic system, possibly contributing to negative affective state and nicotine addiction.

14.
J Pediatr Endocrinol Metab ; 37(2): 110-122, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38197679

RESUMEN

OBJECTIVES: This study aims to explore the effects of fat mass obesity-associated (FTO) (rs9939609) and melanocortin 4 receptor (MC4R) (rs17782313) gene polymorphisms in children with type 1 diabetes (T1D) and their relation to obesity. METHODS: Fat mass obesity-associated (FTO) (rs9939609) and melanocortin 4 receptor (MC4R) (rs17782313) gene polymorphisms were evaluated in 164 patients and 100 controls, and genotypes, alleles, and haplotype frequencies were compared between cases and controls. RESULTS: A significant association with T1D development was found with the TC, CC, and TC+CC genotypes and the C allele of MC4R rs17782313. In addition, TA, AA, and TA+AA genotypes and the A allele of FTO rs9939609 may also be risky for T1D development. While the TC and TC+CC genotypes of MC4R rs17782313 may be protective against obesity development, the AA genotype and A allele of FTO rs9939609 may also be protective against obesity development. Regarding obese subjects, comparing diabetics vs. non-diabetic studied subjects, FTO rs9939609, TA, AA, and TA+AA genotypes and the A allele had significantly higher frequencies in T1D with a higher risk of developing T1D. However, conducting multivariable analysis using significant covariates in univariable analysis revealed that only earlier age of T1D onset, lower C-peptide, and the MC4R dominant model were considered independent predictors of obesity within T1D. CONCLUSIONS: The role of both genes' polymorphisms on the pathogenesis and the outcome of T1D and obesity can help in understanding the pathogenesis of both diseases and their associations with each other's and may be used as novel therapeutic targets for both diseases.


Asunto(s)
Diabetes Mellitus Tipo 1 , Niño , Humanos , Diabetes Mellitus Tipo 1/genética , Receptor de Melanocortina Tipo 4/genética , Polimorfismo de Nucleótido Simple , Índice de Masa Corporal , Obesidad/genética , Genotipo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Predisposición Genética a la Enfermedad
15.
J Clin Endocrinol Metab ; 109(3): e1249-e1259, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-37820740

RESUMEN

CONTEXT: Genetic variants in melanocortin 3 receptor (MC3R) and melanocortin 4 receptor (MC4R) genes are strongly associated with childhood obesity. OBJECTIVE: This study aims to identify and functionally characterize MC3R and MC4R variants in an Asian cohort of children with severe early-onset obesity. METHODS: Whole-exome sequencing was performed to screen for MC3R and MC4R coding variants in 488 Asian children with severe early-onset obesity (body mass index for age ≥97th percentile). Functionality of the identified variants were determined via measurement of intracellular cyclic adenosine monophosphate (cAMP) concentrations and luciferase activity. RESULTS: Four MC3R and 2 MC4R heterozygous nonsynonymous rare variants were detected. There were 3 novel variants: MC3R c.151G > C (p.Val51Leu), MC4R c.127C > A (p.Gln43Lys), and MC4R c.272T > G (p.Met91Arg), and 3 previously reported variants: MC3R c.127G > A (p.Glu43Lys), MC3R c.97G > A (p.Ala33Thr), and MC3R c.437T > A (p.Ile146Asn). Both MC3R c.127G > A (p.Glu43Lys) and MC4R c.272T > G (p.Met91Arg) variants demonstrated defective downstream cAMP signaling activity. The MC4R c.127C > A (p.Gln43Lys) variant showed reduced cAMP signaling activity at low substrate concentration but the signaling activity was restored at high substrate concentration. The MC3R c.151G > C (p.Val51Leu) variant did not show a significant reduction in cAMP signaling activity compared to wild-type (WT) MC3R. Coexpression studies of the WT and variant MC3R/MC4R showed that the heterozygous variants did not exhibit dominant negative effect. CONCLUSION: Our functional assays demonstrated that MC3R c.127G > A (p.Glu43Lys) and MC4R c.272T > G (p.Met91Arg) variants might predispose individuals to early-onset obesity, and further studies are needed to establish the causative effect of these variants in the pathogenesis of obesity.


Asunto(s)
Obesidad Mórbida , Obesidad Infantil , Humanos , Niño , Obesidad Mórbida/genética , Melanocortinas , Obesidad Infantil/genética , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Receptor de Melanocortina Tipo 3/genética , Receptor de Melanocortina Tipo 3/metabolismo , Proteínas Portadoras
16.
J Diabetes ; 16(3): e13504, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38035773

RESUMEN

The skeleton is traditionally known for its structural support, organ protection, movement, and maintenance of mineral homeostasis. Over the last 10 years, bone has emerged as an endocrine organ with diverse physiological functions. The two key molecules in this context are fibroblast growth factor 23 (FGF23), secreted by osteocytes, and osteocalcin, a hormone produced by osteoblasts. FGF23 affects mineral homeostasis through its actions on the kidneys, and osteocalcin has beneficial effects in improving glucose homeostasis, muscle function, brain development, cognition, and male fertility. In addition, another osteoblast-derived hormone, lipocalin 2 (LCN2) has emerged into the researchers' field of vision. In this review, we mainly focus on LCN2's role in appetite regulation and glucose metabolism and also briefly introduce its effects in other pathophysiological conditions, such as nonalcoholic fatty liver disease, sarcopenic obesity, and cancer-induced cachexia.


Asunto(s)
Huesos , Hormonas , Humanos , Masculino , Animales , Ratones , Lipocalina 2/metabolismo , Osteocalcina , Huesos/metabolismo , Minerales
17.
Biochem Pharmacol ; 219: 115952, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036189

RESUMEN

The aim of our study is to investigate in vitro and in vivo MC4R as a novel target in melanoma using the selective antagonist ML00253764 (ML) alone and in combination with vemurafenib, a B-rafV600E inhibitor. The human melanoma B-raf mutated A-2058 and WM 266-4 cell lines were used. An MC4R null A-2058 cell line was generated using a CRISPR/Cas9 system. MC4R protein expression was analysed by western blotting, immunohistochemistry, and immunofluorescence. Proliferation and apoptotic assays were performed with ML00253764, whereas the synergism with vemurafenib was evaluated by the combination index (CI) and Loewe methods. ERK1/2 phosphorylation and BCL-XL expression were quantified by western blot. In vivo experiments were performed in Athymic Nude-Foxn1nu male mice, injecting subcutaneously melanoma cells, and treating animals with ML, vemurafenib and their concomitant combination. Comet and cytome assays were performed. Our results show that human melanoma cell lines A-2058 and WM 266-4, and melanoma human tissue, express functional MC4R receptors on their surface. MC4R receptors on melanoma cells can be inhibited by the selective antagonist ML, causing antiproliferative and proapoptotic activity through the inhibition of phosphorylation of ERK1/2 and a reduction of BCL-XL. The concomitant combination of vemurafenib and ML caused a synergistic effect on melanoma cells in vitro and inhibited in vivo tumor growth in a preclinical model, without causing mouse weight loss or genotoxicity. Our original research contributes to the landscape of pharmacological treatments for melanoma, providing MC4R antagonists as drugs that can be added to established therapies.


Asunto(s)
Melanoma , Masculino , Humanos , Animales , Ratones , Vemurafenib/farmacología , Melanoma/metabolismo , Receptor de Melanocortina Tipo 4 , Proliferación Celular , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Mutación
18.
J Physiol Anthropol ; 42(1): 29, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066615

RESUMEN

BACKGROUND: Overweight and obesity among children have become significant global health concerns. Previous studies have highlighted the potential role of genetic factors, particularly polymorphisms in the FTO and MC4R genes, as well as environmental factors in the development of childhood obesity. This study aimed to investigate the relationships between genetic, socioeconomic and perinatal factors, adverse childhood events (ACEs), and lifestyle, and their impact on overweight, obesity and body composition parameters in children. Additionally, we explored potential interactions between genetic factors and ACEs. METHODS: Four hundred fifty-six children aged 6-12 years participated in our study. Information on the socioeconomic status, perinatal factors, ACEs and lifestyle of the children was collected with a questionnaire completed by their parents/guardians. We examined the children's body weight and conducted an electrical bioimpedance analysis. Overweight and obesity were diagnosed based on the International Obesity Task Force and McCarthy criteria. We genotyped two selected polymorphisms in the FTO and MC4R genes using the TaqMan SNP allelic discrimination method. RESULTS: Higher BMI (Body Mass Index) z scores were related to higher paternal BMI and lower maternal age at the child's birth. Higher FMI (Fat Mass Index) z scores were associated with higher paternal BMI, increased gestational weight, lower maternal education and the presence of the FTO risk allele. Higher FatM (fat mass in kg) z scores were linked to lower maternal education, lower maternal age at the child's birth, higher maternal body weight gain, paternal BMI and the presence of the FTO risk allele. Moreover, interaction effects were observed on BMI z scores between ACE and FTO AA, and on FMI z scores and FatM z scored between ACE and MC4R CC. CONCLUSIONS: The contribution of environmental factors is more strongly related to changes in body composition than genetic ones. Additionally, the presence of the risk allele combined with unfavourable environmental factors like ACEs leads to visible interaction effects, resulting in increased BMI z scores and FMI z scores in children.


Asunto(s)
Adiposidad , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Índice de Masa Corporal , Sobrepeso , Obesidad Infantil , Niño , Femenino , Humanos , Embarazo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Predisposición Genética a la Enfermedad , Genotipo , Sobrepeso/epidemiología , Sobrepeso/genética , Obesidad Infantil/epidemiología , Obesidad Infantil/genética , Polimorfismo de Nucleótido Simple/genética , Receptor de Melanocortina Tipo 4/genética , Adiposidad/genética
19.
Mol Biol Rep ; 51(1): 4, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38071695

RESUMEN

In recent years, strategic plans for poultry production have emphasized quantitative traits, particularly body weight and carcass traits (meat yield), in response to overpopulation challenges. Candidate genes such as adenylosuccinate lyase (ADSL), melanocortin-4-receptor (MC4R), and calpain 1 (CAPN1) have played vital roles in this context due to their associations with muscle growth and body composition. This study aims to investigate the influence of polymorphisms and gene expressions of the aforementioned genes on body weight (BW), growth rate (GR), breast weight (BrW), and thigh weight (TW) across four distinct chicken breeds: Fayoumi, Matrouh, Mamourah, and Leghorn. The use of PCR-SSCP analysis revealed genetic polymorphisms through the identification of various patterns (genotypes) within the three examined genes. The ADSL, MC4R, and CAPN1 genes exhibited five, three, and two different genotypes, respectively. These polymorphisms displayed promising connections with enhancing economically significant production traits, particularly BW, BrW and TW. Furthermore, gene expression analyses were conducted on breast and thigh tissues obtained from the chicken breeds at 60 days of age, where ADSL and MC4R exhibited a noteworthy up-regulation in Fayoumi and Matrouh breeds, and down-regulation in Mamourah and Leghorn. In contrast, CAPN1 expression decreased across most breeds with a slight increase noted in Fayoumi breed. In conclusion, this investigation underscores the substantial impact of ADSL, MC4R, and CAPN1 genes on economically important production traits within Egyptian domestic chicken breeds. Consequently, these genes emerge as significant molecular markers, holding potential utility in avian selection and breeding programs aimed at enhancing productive performance.


Asunto(s)
Adenilosuccinato Liasa , Pollos , Animales , Pollos/metabolismo , Adenilosuccinato Liasa/genética , Adenilosuccinato Liasa/metabolismo , Egipto , Polimorfismo de Nucleótido Simple/genética , Genotipo , Carne , Peso Corporal
20.
JCEM Case Rep ; 1(3): luad041, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37908575

RESUMEN

The melanocortin-4 receptor agonist setmelanotide is now recommended for the treatment of genetic obesity due to proopiomelanocortin (POMC), proprotein convertase subtilisin/kexin type 1 (PCSK1), or leptin receptor (LEPR) deficiency in patients aged 6 years and older. Here, we describe the clinical benefit of setmelanotide administration in a 5-year-old child with severe hyperphagia and obesity due to POMC deficiency. Daily administration of 0.5 mg setmelanotide for 12 months resulted in significant weight loss of -30 kg from baseline (-36% of weight loss) and improvements in hyperphagia and metabolic status. No major side effects were observed, except for hyperpigmentation and transient spontaneous erections. Interestingly, the clinical improvement of the child was associated with a remarkable improvement in the quality of life of the parents, along with a decrease in their emotional scores. This observation supports the early use of setmelanotide in young children with melanocortin pathway variants, in order to limit the adverse consequences of early and extreme weight gain, and to improve the quality of life of patients and of their relatives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA