Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 241
Filtrar
1.
Sci Rep ; 14(1): 18070, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103430

RESUMEN

We have developed an innovative mesoporous nanocatalyst by carefully attaching a 2-aminothiophenol-Cu complex onto functionalized MCM-41. This straightforward synthesis process has yielded a versatile nanocatalyst known for its outstanding efficiency, recyclability, and enhanced stability. The structural integrity of the nanocatalyst was comprehensively analyzed using an array of techniques, including BET (Brunauer-Emmett-Teller) for surface area measurement, ICP (Inductively Coupled Plasma) for metal content determination, EDS (Energy-Dispersive X-ray Spectroscopy) for elemental mapping, XRD (X-ray Diffraction) for crystalline structure elucidation, SEM (Scanning Electron Microscopy), EMA (Elemental Mapping Analysis), TEM (Transmission Electron Microscopy), TGA (Thermogravimetric Analysis), FT-IR (Fourier Transform Infrared Spectroscopy), AFM (Atomic Force Microscopy), and CV (cyclic voltammetry). Subsequently, the catalytic properties of the newly developed MCM-41-CPTEO-2-aminothiophenol-Cu catalyst was evaluated in the synthesis of biphenyls, demonstrating outstanding yields through a Suzuki coupling reaction between phenylboronic acid and aryl halides. Importantly, this reaction was conducted in an environmentally friendly medium. Note the remarkable recyclability of the catalyst, proving its sustainability over six cycles with minimal loss in activity additionally hot filtration test was prepared to examine the stability of this nanocatalyst. This outstanding feature emphasizes the catalyst's potential for long-term, environmentally conscious catalytic applications.

2.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125669

RESUMEN

Advanced breast cancer remains a significant oncological challenge, requiring new approaches to improve clinical outcomes. This study investigated an innovative theranostic agent using the MCM-41-NH2-DTPA-Gd3⁺-MIH nanomaterial, which combined MRI imaging for detection and a novel chemotherapy agent (MIH 2.4Bl) for treatment. The nanomaterial was based on the mesoporous silica type, MCM-41, and was optimized for drug delivery via functionalization with amine groups and conjugation with DTPA and complexation with Gd3+. MRI sensitivity was enhanced by using gadolinium-based contrast agents, which are crucial in identifying early neoplastic lesions. MIH 2.4Bl, with its unique mesoionic structure, allows effective interactions with biomolecules that facilitate its intracellular antitumoral activity. Physicochemical characterization confirmed the nanomaterial synthesis and effective drug incorporation, with 15% of MIH 2.4Bl being adsorbed. Drug release assays indicated that approximately 50% was released within 8 h. MRI phantom studies demonstrated the superior imaging capability of the nanomaterial, with a relaxivity significantly higher than that of the commercial agent Magnevist. In vitro cellular cytotoxicity assays, the effectiveness of the nanomaterial in killing MDA-MB-231 breast cancer cells was demonstrated at an EC50 concentration of 12.6 mg/mL compared to an EC50 concentration of 68.9 mg/mL in normal human mammary epithelial cells (HMECs). In vivo, MRI evaluation in a 4T1 syngeneic mouse model confirmed its efficacy as a contrast agent. This study highlighted the theranostic capabilities of MCM-41-NH2-DTPA-Gd3⁺-MIH and its potential to enhance breast cancer management.


Asunto(s)
Neoplasias de la Mama , Imagen por Resonancia Magnética , Nanopartículas , Dióxido de Silicio , Nanomedicina Teranóstica , Dióxido de Silicio/química , Animales , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Nanomedicina Teranóstica/métodos , Imagen por Resonancia Magnética/métodos , Ratones , Línea Celular Tumoral , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Medios de Contraste/química , Gadolinio/química , Porosidad , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Sci Rep ; 14(1): 18014, 2024 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097612

RESUMEN

Cerium oxide nanoparticles are known for their antibacterial effects resulting from Ce3+ to Ce4+ conversion. Application of such cerium oxide nanoparticles in dentistry has been previously considered but limited due to deterioration of mechanical properties. Hence, this study aimed to examine mesoporous silica (MCM-41) coated with cerium oxide nanoparticles and evaluate the antibacterial effects and mechanical properties when applied to dental composite resin. Cerium oxide nanoparticles were coated on the MCM-41 surface using the sol-gel method by adding cerium oxide nanoparticle precursor to the MCM-41 dispersion. The samples were tested for antibacterial activity against Streptococcus mutans via CFU and MTT assays. The mechanical properties were assessed by flexural strength and depth of cure according to ISO 4049. Data were analyzed using a t-test, one-way ANOVA, and Tukey's post-hoc test (p = 0.05). The experimental group showed significantly increased antibacterial properties compared to the control groups (p < 0.005). The flexural strength exhibited a decreasing trend as the amount of cerium oxide nanoparticle-coated MCM-41 increased. However, the flexural strength and depth of cure values of the silane group met the ISO 4049 standard. Antibacterial properties increased with increasing amounts of cerium oxide nanoparticles. Although the mechanical properties decreased, silane treatment overcame this drawback. Hence, the cerium oxide nanoparticles coated on MCM-41 may be used for dental resin composite.


Asunto(s)
Antibacterianos , Cerio , Resinas Compuestas , Nanopartículas , Dióxido de Silicio , Streptococcus mutans , Cerio/química , Cerio/farmacología , Dióxido de Silicio/química , Antibacterianos/farmacología , Antibacterianos/química , Resinas Compuestas/química , Resinas Compuestas/farmacología , Streptococcus mutans/efectos de los fármacos , Nanopartículas/química , Resinas Acrílicas/química , Ensayo de Materiales , Poliuretanos/química , Poliuretanos/farmacología , Resistencia Flexional , Porosidad
4.
Environ Technol ; : 1-15, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972301

RESUMEN

Carbon capture and storage (CCS) is crucial in mitigating greenhouse gas emissions. Solid adsorbents, notable for their reusability and corrosion resistance, are gaining attention in CO2 gas separation. This study uses Silica fume as an adsorbent and silica source for SiO2 and MCM-41 silica-based adsorbents. Silica was extracted via an alkaline dissolution method, and adsorbents were synthesized using a CO2-induced precipitation method, chosen for its shorter synthesis time and CO2 utilization. The effects of pore volume, average pore diameter, and specific surface area on amine loading and CO2 adsorption capacity were investigated using CTAB surfactant in SiO2 synthesis, resulting in MCM-41. The synthesized adsorbents were modified with TEPA and DEA amines due to their high affinity for CO2. After determining optimal amine loading, the impact of combining TEPA with DEA was examined. The highest CO2 adsorption capacity under simulated flue gas conditions (15% volume CO2 and 85% volume N2) was 198 milligrams per gram of adsorbent for the SiO2 adsorbent functionalized with 50% by weight amine (28% TEPA and 22% DEA). Variations in CO2 adsorption over time, the influence of adsorbent quantity on adsorption capacity, the affinity of the adsorbent for N2 adsorption, and the adsorption-desorption cycle were investigated. The 28%TEPA-22%DEA-SiO2 adsorbent emerged as the optimal choice due to its large total volume and average pore diameter, absence of a template in its structure, excellent performance in CO2 adsorption, lack of affinity for N2, and robust adsorption-desorption stability.

5.
Waste Manag ; 186: 205-213, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38924981

RESUMEN

Multilayer film packaging (MLP) waste was decomposed completely at 500 °C. Catalysts were employed to convert residue polymer to waxes via pyrolysis at 500 °C. The activities achieved from using mordenite (Si/Al = 10), H-ZSM-5 (Si/Al = 25), MCM-41, and Al-MCM-41 (Si/Al ratio of 25, 50, and 75) catalysts were studied. The yield and property of the wax were improved with the use of the catalysis with various acidity and porous structure. The low yield of the waxes, when using mordenite and H-ZSM-5 catalysts, was caused by the microporous structure and strong acidic properties of the catalysts resulting in larger amount of gas production. The MCM-41 catalyst modified with various aluminum content raised the wax yield to 60 %. Al-MCM-41(50) produced the largest amount of wax when compared to Al-MCM-41(25), Al-MCM-41(75), and MCM-41. The mild acidity and mesoporous structure of Al-MCM-41(50) significantly enhanced the paraffins structure of the obtained waxes over other structures, while lower Si/Al ratios favored the conversion of paraffins toward olefin structure. The pyrolysis of MLP with Al-MCM-41(50) produced paraffins and olefins with the middle carbon ranging (C11-20) which were similar quality to pharmaceutical grade of petroleum wax. The spent catalysts of Al-MCM-41 series gradually decreased in wax yield and paraffins composition during the sequential MLP pyrolysis; however, the activity of catalysts was recovered after calcination of the spent catalysts. Furthermore, the viscosity of waxes obtained from Al-MCM-41(50) was 2384 Pa.s at 25 °C similar to the viscosity from commercial petroleum jelly base of 2333 Pa.s.


Asunto(s)
Pirólisis , Ceras , Ceras/química , Catálisis , Embalaje de Productos , Eliminación de Residuos/métodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38920070

RESUMEN

BACKGROUND: A highly efficient superior catalyst of Ni (II) and VO (IV) metal complexes supported on MCM-41 has been synthesized and developed for chemoselective oxidation of sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides using H2O2 as a green and efficient procedure. All sulfoxides and disulfides were obtained in short reaction times with excellent yields. The over-oxidation of sulfides or thiols was not observed and all products were synthesized in high purity. These catalysts could be recovered and reused several times without any significant loss in their catalytic activity. Compared to the old catalysts in the literature, these catalysts showed better activity and selectivity for the synthesis of sulfoxide and disulfide derivatives, which shows the novelty of this work. METHODS: At first, the mesoporous MCM-41 was synthesized, and further, its surface was modified by (3-chloropropyl)-triethoxysilane (CPTES). Then, the modified MCM-41 (nPrCl-MCM- 41) was functionalized by adenine. In the next step, the functionalized MCM-41 (6AP-MCM- 41) was used as support for the immobilization of nickel and oxo-vanadium as final catalysts (Ni-6AP-MCM-41 or VO-6AP-MCM-41). The structure and properties of these catalysts have been identified by XRD, SEM, TGA, FT-IR, and AAS spectral analyses. These catalysts were used in the chemoselective oxidation of sulfides and oxidative coupling of thiols. RESULTS: These complexes catalyzed all reactions well at room temperature. According to the results obtained, the hydroxyl groups of some derivatives, including 2-(methylthio) ethanol or 2,2-(phenylthio) ethanol, remained unchanged during the reaction. CONCLUSION: The method has been found to possess the advantages of low cost, high efficiency, high yields, recovery, and reusability for several runs without significant loss in the catalytic activity.

7.
J Hazard Mater ; 472: 134482, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704905

RESUMEN

The emission of highly-toxic gaseous As2O3 (As2O3 (g)) from nonferrous metal smelting poses environmental concerns. In this study, we prepared an adsorbent (SMIL-X) by loading an ionic liquid (IL) ([HOEtMI]NTf2) into MCM-41 through an impregnation-evaporation process and then applied it to adsorb As2O3 (g). SMIL-20% exhibited an As2O3 (g) adsorption capacity of 35.48 mg/g at 400 °C, which was 490% times higher than that of neat MCM-41. Characterization of SMIL-X indicated that the IL was mainly supported on MCM-41 through O-H…O bonds formed between the hydroxyl groups (-OH) and the silanol groups (Si-OH) and the O-H…F bonds formed between the C-F groups and the Si-OH groups. The hydrogen bonds significantly contributed to the adsorption of As2O3 (g), with -NH and -OH groups forming hydrogen bonds with As-O species (i.e., N-H…O and O-H…O). This showed superior performance to traditional adsorbents that rely on van der Waals forces and chemisorption. Moreover, after exposure to high concentrations of SO2, the adsorption capacities remained at 76% of their initial values, demonstrating some sulfur resistance. This study presents an excellent adsorbent for the purification of As2O3 (g) and shows promising application potential for treating flue gas emitted by nonferrous metal smelting processes.

8.
Sci Rep ; 14(1): 7688, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38561414

RESUMEN

At first, an organometallic catalyst namely, Pd-DPyE@MCM-41@MNP was prepared through magnetic (Fe3O4) nanoparticles-doped into channels of mesoporous silica MCM-41 and then, anchoring a novel complex composed of di(4-pyridyl)ethylene and palladium on the inner surface of the support. This immobilized catalyst was successfully identified via VSM, ICP-OES, TEM, FTIR, TGA, SEM, BET, XRD, EDX and elemental mapping analyses. After that, it was used as a versatile, heterogeneous, and magnetically reproducible catalyst in the generation of N,N'-alkylidene bisamides (1a-13a, 8-20 min, 90-98%, 50 °C, solvent-free) and Suzuki-Miyaura coupling (SMC) reaction derivatives (1b-26b, 10-140 min, 86-98%, 60 °C, PEG-400). The VSM plot of Pd-DPyE@MCM-41@MNP displays that this nanocatalyst can be easily recycled by applying an external magnetic field. In both synthetic paths, this nanocatalyst was reused at least seven times without palladium leaching and significantly reducing its catalytic performance. Also, stability and heterogeneous nature of catalyst were approved via ICP-OES technique and hot filtration test.

9.
Polymers (Basel) ; 16(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38675034

RESUMEN

Tetracycline (TC) is a common antibiotic; when untreated TC enters the environment, it will cause a negative impact on the human body through the food chain. In the present study, MnO2/MCM-41@Fe3O4 (FeMnMCM) prepared using a hydrothermal and redox method and Camellia oleifera shell-activated carbon (COFAC) prepared through alkali activation were encapsulated using alginate (ALG) and calcium chloride as a cross-linking matrix to give the composite beads COFAC-FeMnMCM-ALG. The resultant COFAC-FeMnMCM-ALG composite beads were then carefully characterized, showing a high immobilization of MnO2/MCM-41@Fe3O4, with porous COFAC as an effective bioadsorbent for enriching the pollutants in the treated samples. These bead catalysts were subsequently applied to the oxidative degradation of TC in a Fenton oxidation system. Several parameters affecting the degradation were investigated, including the H2O2 concentration, catalyst dosage, initial TC concentration, and temperature. A very high catalytic activity towards the degradation of TC was demonstrated. The electron paramagnetic resonance (EPR) and quenching results showed that ·OH and ·O2- were generated in the system, with ·OH as the main radical species. In addition, the COFAC-FeMnMCM-ALG catalyst exhibited excellent recyclability/reusability. We conclude that the as-prepared COFAC-FeMnMCM-ALG composite beads, which integrate MnO2 and Fe3O4 with bioadsorbents, provide a new idea for the design of catalysts for advanced oxidation processes (AOPs) and have great potential in the Fenton oxidation system to degrade toxic pollutants.

10.
Pharmaceutics ; 16(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675186

RESUMEN

Melissa officinalis is an important medicinal plant that is used and studied intensively due to its numerous pharmacological effects. This plant has numerous active compounds with biomedical potential; some are volatile, while others are sensitive to heat or oxygen. Therefore, to increase stability and prolong biological activities, the natural extract can be loaded into various nanostructured systems. In this study, different loading systems were obtained from mesoporous silica, like Mobile Composition of Matter family (MCM) with a hexagonal (MCM-41) or cubic (MCM-48) pore structure, simple or functionalized with amino groups (using 3-aminopropyl) such as triethoxysilane (APTES). Thus, the four materials were characterized from morphological and structural points of view by scanning electron microscopy, a BET analysis with adsorption-desorption isotherms, Fourier-transform infrared spectroscopy (FTIR) and a thermogravimetric analysis coupled with differential scanning calorimetry. Natural extract from Melissa officinalis was concentrated and analyzed by High-Performance Liquid Chromatography to identify the polyphenolic compounds. The obtained materials were tested against Gram-negative bacteria and yeasts and against both reference strains and clinical strains belonging to Gram-positive bacteria that were previously isolated from intra-hospital infections. The highest antimicrobial efficiency was found against Gram-positive and fungal strains. Good activity was also recorded against methicillin-resistant S. aureus, the Melissa officinalis extract inhibiting the production of various virulence factors.

11.
Materials (Basel) ; 17(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38591495

RESUMEN

The main outcome of this research was to demonstrate the opportunity to obtain a stable and well-ordered structure of MCM-41 synthesized from fly ash. A series of bimetallic (Cu/Mn) catalysts supported at MCM-41 were prepared via grinding method and investigated in catalytic toluene combustion reaction to show the material's potential application. It was proved, that the Cu/Mn ratio had a crucial effect on the catalytic activity of prepared materials. The best catalytic performance was achieved with sample Cu/Mn(2.5/2.5), for which the temperature of 50% toluene conversion was found to be 300 °C. This value remains in line with the literature reports, for which comparable catalytic activity was attained for 3-fold higher metal loadings. Time-on-stream experiment proved the thermal stability of the investigated catalyst Cu/Mn(2.5/2.5). The obtained results bring a valuable background in the field of fly ash utilization, where fly ash-derived MCM-41 can be considered as efficient and stable support for dispersion of active phase for catalyst preparation.

12.
Turk J Chem ; 48(1): 50-64, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544887

RESUMEN

The magnetic mesoporous silica material, Mag-MCM-41, was synthesized by coating magnetite (Fe3O4) nanoparticles with a mesoporous material called MCM-41. Mag-MCM-41 and modified nanomaterials Mag-MCM-41-NN and Mag-MCM-41-NN-Fe+3 which were modified with aminopropyl functional groups. In water and wastewater, phosphate anions are considered significant contaminants due to their detrimental impact on the environment. They promote the growth of algae, leading to eutrophication. The purpose of this study is to investigate the removal of phosphate anions from aqueous solutions using modified magnetic silica particles. The Mag-MCM-41 material exhibits hexagonal properties and belongs to the class of "mesoporous" materials. It has a surface area of 923 m2.g-1, which was determined through N2 adsorption-desorption isotherms, FTIR, TEM, BET, and SAXS analysis. Kinetic and adsorption isotherm studies were conducted using Mag-MCM-41, Mag-MCM-41-NN, and Mag-MCM-41-NN-Fe+3 adsorbents to examine the behavior of phosphate anions. The kinetic and adsorption isotherm studies of phosphate anions revealed that the adsorption process on Mag-MCM-41, Mag-MCM-41-NN, and Mag-MCM-41-NN-Fe+3 adsorbents followed the chemical adsorption mechanism. Phosphate adsorption on all adsorbents occurred in a monolayer, and the MCM-41-NN-Fe+3 adsorbent exhibited the highest maximum adsorption capacity (qm) value of 112.87 mg.g-1 compared to the other adsorbents.

13.
Pharmaceutics ; 16(3)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38543251

RESUMEN

Malaria is a dangerous tropical disease, with high morbidity in developing countries. The responsible parasite has developed resistance to the existing drugs; therefore, new drug delivery systems are being studied to increase efficacy by targeting hemozoin, a parasite paramagnetic metabolite. Herein, magnetic mesoporous silica (magMCM) was synthesized using iron oxide particles dispersed in the silica structure for magnetically driven behavior. The X-ray diffractogram (XRD) and Mössbauer spectra show patterns corresponding to magnetite and maghemite. Furthermore, Mössbauer spectroscopy revealed superparamagnetic behavior, attributed to single magnetic domains in particles smaller than 10 nm. Even in the presence of iron oxide particles, the hexagonal structure of MCM is clearly identified in XRD (low-angle region) and the channels are visible in TEM images. The drug chloroquine (CQ) was encapsulated by incipient wetness impregnation (magMCM-CQ). The N2 adsorption-desorption isotherms show that CQ molecules were encapsulated in the pores, without completely filling the mesopores. BET surface area values were 630 m2 g-1 (magMCM) and 467 m2 g-1 (magMCM-CQ). Encapsulated CQ exhibited rapid delivery (99% in 3 h) in buffer medium and improved solubility compared to the non-encapsulated drug, attributed to CQ encapsulation in amorphous form. The biocompatibility assessment of magMCM, magMCM-CQ, and CQ against MRC5 non-tumoral lung fibroblasts using the MTT assay after 24 h revealed no toxicity associated with magMCM. On the other hand, the non-encapsulated CQ and magMCM-CQ exhibited comparable dose-response activity, indicating a similar cytotoxic effect.

14.
Sci Rep ; 14(1): 4373, 2024 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388553

RESUMEN

Cancer therapy necessitates the development of novel and effective treatment modalities to combat the complexity of this disease. In this project, we propose a synergistic approach by combining chemo-photothermal treatment using gold nanorods (AuNRs) supported on thiol-functionalized mesoporous silica, offering a promising solution for enhanced lung cancer therapy. To begin, mesoporous MCM-41 was synthesized using a surfactant-templated sol-gel method, chosen for its desirable porous structure, excellent biocompatibility, and non-toxic properties. Further, thiol-functionalized MCM-41 was achieved through a simple grafting process, enabling the subsequent synthesis of AuNRs supported on thiol-functionalized MCM-41 (AuNR@S-MCM-41) via a gold-thiol interaction. The nanocomposite was then loaded with the anticancer drug doxorubicin (DOX), resulting in AuNR@S-MCM-41-DOX. Remarkably, the nanocomposite exhibited pH/NIR dual-responsive drug release behaviors, facilitating targeted drug delivery. In addition, it demonstrated exceptional biocompatibility and efficient internalization into A549 lung cancer cells. Notably, the combined photothermal-chemo therapy by AuNR@S-MCM-41-DOX exhibited superior efficacy in killing cancer cells compared to single chemo- or photothermal therapies. This study showcases the potential of the AuNR@S-MCM-41-DOX nanocomposite as a promising candidate for combined chemo-photothermal therapy in lung cancer treatment. The innovative integration of gold nanorods, thiol-functionalized mesoporous silica, and pH/NIR dual-responsive drug release provides a comprehensive and effective therapeutic approach for improved outcomes in lung cancer therapy. Future advancements based on this strategy hold promise for addressing the challenges posed by cancer and transforming patient care.


Asunto(s)
Neoplasias Pulmonares , Nanotubos , Humanos , Terapia Fototérmica , Neoplasias Pulmonares/tratamiento farmacológico , Oro/química , Doxorrubicina , Dióxido de Silicio/química , Fototerapia , Nanotubos/química
15.
Chemosphere ; 352: 141428, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340999

RESUMEN

Ferromanganese spinel oxides (MnFe2O4, MFO) have been proven effective in activating persulfate for pollutants removal. However, their inherent high surface energy often leads to agglomeration, diminishing active sites and consequently restricting catalytic performance. In this study, using Al-MCM-41 (MCM) mesoporous molecular sieves derived from natural attapulgite as a support, the MFO/MCM composite was synthesized through dispersing MnFe2O4 nanoparticles on MCM carrier by a simple hydrothermal method, which can effectively activate persulfate (PS) to degrade Tetracycline (TC). The addition of Al-MCM-41 can effectively improve the specific surface area and adsorption performance of MnFe2O4, but also reduce the leaching amount of metal ions. The MFO/MCM composite exhibited superior catalytic reactivity towards PS and 84.3% removal efficiency and 64.7% mineralization efficiency of TC (20 mg/L) was achieved in 90 min under optimized conditions of 0.05 mg/L catalyst dosage, 5 mM PS concentration, room temperature and no adjustment of initial pH. The effects of various stoichiometric MFO/MCM ratio, catalyst dosage, PS concentration, initial pH value and co-existing ions on the catalytic performance were investigated in detail. Moreover, the possible reaction mechanism in MFO-MCM/PS system was proposed based on the results of quenching tests, electron paramagnetic resonance (EPR) and XPS analyses. Finally, major degradation intermediates of TC were detected by liquid chromatography mass spectrometry technologies (LC-MS) and four possible degradation pathways were proposed. This study enhances the design approach for developing highly efficient, environmentally friendly and low-cost catalysts for the advanced treatment process of antibiotic wastewater.


Asunto(s)
Óxido de Aluminio , Hierro , Compuestos de Magnesio , Óxido de Magnesio , Manganeso , Óxidos , Compuestos de Silicona , Dióxido de Silicio , Contaminantes Químicos del Agua , Antibacterianos , Tetraciclina/química , Contaminantes Químicos del Agua/análisis
16.
Heliyon ; 10(2): e24652, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312655

RESUMEN

Mesoporous V-Mo-MCM-41 nano molecular sieves were synthesized via the direct hydrothermal method, employing tetraethyl orthosilicate (TEOS) as a silica source and cetyltrimethylammonium bromide (CTAB) as a surfactant template. Comprehensive characterization through N2-adsorption (BET), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX) confirmed the mesoporous nature of the catalysts, revealing variations in specific surface area and a significant pore diameter of 6.3 nm, enhancing their versatility for various chemical transformations. The nanoscale structure was further validated through XRD analysis and SEM images. The catalytic efficiency of V-Mo-MCM-41 was demonstrated by synthesizing oxalic acid from molasses, and a response surface methodology (RSM) study on four key variables revealed a maximum yield of 83 % within 1 h using minimal sulfuric acid, showcasing the effectiveness of the prepared catalysts.

17.
Molecules ; 29(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257374

RESUMEN

This research pioneers the application of microwave irradiation as an innovative strategy for one-pot synthesis and surfactant elimination (cetyltrimethylammonium bromide-CTAB) from MCM-41, introducing a rapid and efficient methodology. MCM-41 silica is widely utilized in various applications due to its unique textural and structural properties. Nonetheless, the presence of residual surfactants after synthesis poses a challenge to its effective application. MCM-41 synthesis, conducted in a microwave reactor at 60 °C, provided a result within 0.5 to 1 h. Comprehensive analyses of structural, chemical, morphological, and surface characteristics were undertaken, with a focus on the impact of synthesis time on these properties. Surfactant extraction involved the use of ethanol as a solvent at 120 °C for 6 min within the microwave reactor. The acquired particles, coupled with the properties of textural and structural features, affirmed the efficacy of the synthesis process, resulting in the synthesis of MCM-41 within 36 min. This study presents the first instance of one-pot synthesis and surfactant removal from MCM-41 using a microwave reactor. The proposed method not only addresses the surfactant removal challenge, but also substantially accelerates the synthesis process, thereby enhancing the potential for MCM-41's application in diverse fields.

18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1017634

RESUMEN

A new Schiff base modified MCM-41 molecular sieve(N-MCM-41)was synthesized via post-grafting method with 2-pyridine formaldehyde for efficient removal of lead ions(Pb2+)from aqueous solution.X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),Fourier transform-infrared(FT-IR)spectroscopy,thermogravimetric analysis(TGA),and X-ray photoelectron spectroscopy(XPS)were employed to characterize the structure,morphology,surface functional groups and chemical states of N-MCM-41.Moreover,the adsorption behavior of Pb2+by N-MCM-41 was systematically studied.Batch adsorption studies revealed that N-MCM-41 showed the maximal adsorption capacity of 101.3 mg/g at 45℃and pH=5.5 under the initial Pb2+ concentration of 80 mg/L after 180 min adsorption.The adsorption process conformed to the Langmuir isotherm model and the pseudo-second-order kinetics model.The adsorption of Pb2+by N-MCM-41 was a spontaneous and endothermic process.Adsorption mechanism analyses suggested that functional groups on N-MCM-41 had strong coordination ability with Pb2+to improve the adsorption capacity.The synthesized N-MCM-41 adsorbent exhibited excellent reusability in five regeneration cycles.Overall,this study showed that the N-MCM-41 had good application prospect to remove Pb2+ from aqueous solution.

19.
Molecules ; 28(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38067649

RESUMEN

Layered double oxides are widely employed in catalyzing the aldol condensation for producing biofuels, but its selectivity and stability need to be further improved. Herein, a novel MCM-41-supported Mg-Al-layered double oxide (LDO/MCM-41) was prepared via the in situ integration of a sol-gel process and coprecipitation, followed by calcination. This composite was first employed to catalyze the self-condensation of cyclopentanone for producing high-density cycloalkane precursors. LDO/MCM-41 possessed large specific surface area, uniform pore size distribution, abundant medium basic sites and Bronsted acid sites. Compared with the bulk LDO, LDO/MCM-41 exhibited a higher selectivity for C10 and C15 oxygenates at 150 °C (93.4% vs. 84.6%). The selectivity for C15 was especially enhanced on LDO/MCM-41, which was three times greater than that on LDO. The stability test showed that naked LDO with stronger basic strength had a rapid initial activity, while it suffered an obvious deactivation due to its poor carbon balance. LDO/MCM-41 with lower basic strength had an enhanced stability even with a lower initial activity. Under the optimum conditions (50% LDO loading, 170 °C, 7 h), the cyclopentanone conversion on LDO/MCM-41 reached 77.8%, with a 60% yield of C10 and 15.2% yield of C15.

20.
Environ Sci Pollut Res Int ; 30(58): 121684-121701, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37953422

RESUMEN

In this study, a polyaniline/mesoporous silica (PANI/MCM-41) composite material that can be used as a filler for permeable reactive barrier (PRB) was prepared by in situ polymerization. Firstly, the adsorption capacity of PANI/MCM-41 on Cr (VI) in solution was investigated. The results show that the prepared PANI/MCM-41 exhibits a significant Cr (VI) adsorption capacity (~ 340 mg/g), and the adsorption process is more accurately described by the Langmuir isotherm and pseudo-second-order kinetic model. The thermodynamic functions evidenced that the Cr(VI) adsorption was an endothermic spontaneous process. In addition, adsorption-desorption cycle experiments proved the excellent reusability of the material. Subsequently, the material was utilized as a filler in the PRB for the remediation of Cr(VI)-contaminated soil using electrokinetic-permeable reactive barrier (EK-PRB) technology. The results show that compared with traditional electrokinetic remediation, the use of PANI/MCM-41 as an active filler can enlarge the current during remediation and enhance the conductivity of soil, which increases the removal rates of total Cr and Cr(VI) in soil (17.4% and 10.2%).


Asunto(s)
Cromo , Contaminantes Químicos del Agua , Adsorción , Cromo/análisis , Dióxido de Silicio , Suelo , Iones , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA