RESUMEN
Allergic asthma is a chronic inflammatory disease characterized by the accumulation of eosinophils, Th2 cells and mononuclear cells in the airways, leading to changes in lung architecture and subsequently reduced respiratory function. We have previously demonstrated that CDIP-2, a chemokine derived peptide, reduced in vitro chemotaxis and decreased cellular infiltration in a murine model of allergic airway inflammation. However, the mechanisms involved in this process have not been identified yet. Now, we found that CDIP-2 reduces chemokine-mediated functions via interactions with CCR1, CCR2 and CCR3. Moreover, using bone marrow-derived eosinophils, we demonstrated that CDIP-2 modifies the calcium fluxes induced by CCL11 and down-modulated CCR3 expression. Finally, CDIP-2 treatment in a murine model of OVA-induced allergic airway inflammation reduced leukocyte recruitment and decreases production of cytokines. These data suggest that chemokine-derived peptides represent new therapeutic tools to generate more effective antiinflammatory drugs.