Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.010
Filtrar
1.
Sci Rep ; 14(1): 17808, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090195

RESUMEN

Antimicrobial peptides, such as nisin, are proposed as promising agents for cancer treatment. While glycation has been recognized as an effective method for enhancing various physicochemical properties of nisin, its anticancer effects remain unexplored. Therefore, we aimed to assess the anticancer potential of glycated nisin against MDA-MB-231 cells. The MDA-MB cells were treated with increasing concentrations of nisin and glycated nisin for 24, 48, and 72 h. The IC50 values for nisin were higher than those for glycated nisin. Glycated nisin at concentrations of 20 and 40 µg/mL decreased cell viability more than nisin at the same concentrations. The rate of apoptosis in the group treated with 20 µg/mL of nisin was lower compared to other treatment groups, and no significant difference in apoptosis rates was observed at different time points (p > 0.05). However, in the glycated nisin groups with concentrations of 10, 20, and 40 µg/mL, the level of apoptosis was very high after 24 h (73-81% of cells undergoing apoptosis). Overall, our study suggests that glycated nisin exhibits stronger cytotoxic effects on MDA-MB-231 cells, primarily involving the induction of apoptosis. This indicates its potential utilization as an alternative approach to address the issue of drug resistance in cancer cells.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Supervivencia Celular , Nisina , Nisina/farmacología , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Glicosilación/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química
2.
Sci Rep ; 14(1): 17986, 2024 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097605

RESUMEN

In order to investigate the changes in the properties of the cell culture solution in the effect of cell synchronization via cell starvation (for 12, 24, and 36 h), a new spiral-interdigital pattern of microelectrode as a biosensor has been proposed. Then, to test its superiority, the results of this spiral-interdigital pattern with the results of the commercial pattern have been compared. The cells were selected from breast cancer standard lines (MDA-MB-231). Changes in CV peaks of the secretions were recorded by the spiral-interdigital pattern, in which increasing the interactive surface with homogenous electric paths had been considered by simulation before fabrication. The results of the simulation and experimental procedures showed a meaningful correlation. The occurrence of CV oxidative peaks at about 0.1-0.4 V and reductive peaks at approximately 0 V in the spiral-interdigital biosensor in the starved MDA-MB-231 cell line has been observed. The starvation situation resembles one that does not cause meaningful cell apoptosis or necrosis, and this method is only used to make the cells synchronized. Also, no peak is observed in normal cell growth conditions. In addition, by using the commercial design of the electrodes, no peak is observed in any of the conditions of normal and synchronized growth of the cells. Therefore, it seems that the observed peaks are caused by the agents that are secreted in the cell culture solution in a synchronized situation. Moreover, the design of the new spiral-interdigital electrode can significantly increase the sensitivity of the sensor to receive these peaks due to more space and a uniform electric field.


Asunto(s)
Técnicas Biosensibles , Microelectrodos , Humanos , Línea Celular Tumoral , Técnicas Biosensibles/métodos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Femenino
3.
Discov Oncol ; 15(1): 339, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39117970

RESUMEN

To investigate the effects of higher cellular stanniocalcin 2 (STC2) on suppressing the migration and invasion but promoting the apoptosis of triple-negative breast cancer (TNBC). STC2 in TNBC and the para-carcinoma tissues were analyzed by immunohistochemistry (IHC), while the mRNA level was measured by qPCR. Over-expressing or silencing STC2 was established in MDA-MB-231 cells. Epithelial mesenchymal transition (EMT) related proteins, cell migration, invasion, proliferation and apoptosis were detected. MDA-MB-231 with over-expressing or silencing STC2 were injected into nude mice to formatting tumors, and then EMT related proteins were measured by IHC. Lower STC2 expressed in TNBC tissues than in the para-carcinoma tissues. Silencing STC2 promoted EMT of TNBC cell MDA-MB-231, as well as cell migration, invasion and proliferation, but suppressed MDA-MB-231 apoptosis, while over-expressing STC2 had the opposite results, which might be related to PKC/PI3K/AKT/mTOR pathway. STC2 was the protective gene in TNBC, by suppressing migration and invasion to inhibit MDA-MB-231 cell EMT but promote cell apoptosis, in order to suppress TNBC progression.

4.
Front Bioeng Biotechnol ; 12: 1422235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39157442

RESUMEN

Spheroids have become principal three-dimensional models to study cancer, developmental processes, and drug efficacy. Single-cell analysis techniques have emerged as ideal tools to gauge the complexity of cellular responses in these models. However, the single-cell quantitative assessment based on 3D-microscopic data of the subcellular distribution of fluorescence markers, such as the nuclear/cytoplasm ratio of transcription factors, has largely remained elusive. For spheroid generation, ultra-low attachment plates are noteworthy due to their simplicity, compatibility with automation, and experimental and commercial accessibility. However, it is unknown whether and to what degree the plate type impacts spheroid formation and biology. This study developed a novel AI-based pipeline for the analysis of 3D-confocal data of optically cleared large spheroids at the wholemount, single-cell, and sub-cellular levels. To identify relevant samples for the pipeline, automated brightfield microscopy was employed to systematically compare the size and eccentricity of spheroids formed in six different plate types using four distinct human cell lines. This showed that all plate types exhibited similar spheroid-forming capabilities and the gross patterns of growth or shrinkage during 4 days after seeding were comparable. Yet, size and eccentricity varied systematically among specific cell lines and plate types. Based on this prescreen, spheroids of HaCaT keratinocytes and HT-29 cancer cells were further assessed. In HaCaT spheroids, the in-depth analysis revealed a correlation between spheroid size, cell proliferation, and the nuclear/cytoplasm ratio of the transcriptional coactivator, YAP1, as well as an inverse correlation with respect to cell differentiation. These findings, yielded with a spheroid model and at a single-cell level, corroborate earlier concepts of the role of YAP1 in cell proliferation and differentiation of keratinocytes in human skin. Further, the results show that the plate type may influence the outcome of experimental campaigns and that it is advisable to scan different plate types for the optimal configuration during a specific investigation.

5.
Biomed Pharmacother ; 178: 117249, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111077

RESUMEN

A new imidazolium ionic liquid (IL) halide conjugated with dimethylcardamonin (DMC, 1), namely [Bbim]Br-DMC (3), was synthesised to improve the biological activity of the natural chalcone. DMC was isolated from seeds of Syzygium nervosum A. Cunn. ex DC. which was an effective anti-breast cancer agent. The compound 1 and 3 showed anticancer activity in MDA-MB-231 cells with IC50 values of 14.54 ± 0.99 µM and 7.40 ± 0.15 µM, respectively. MTT assay showed that compound 3 had cytotoxic effect at least two-fold greater than compound 1 but was low toxic to normal cells of Hs 578Bst. After 48 h, compound 3 at concentration of IC50 value inhibited the proliferation and induced morphological changes of MDA-MB-231 cells in a time-dependent manner. The cell cycle profile also showed that compound 3 exerted anti-proliferation activity with the cell cycle arrest at G0/G1 phase and compound 3 also induced apoptosis and reduced mitochondrial membrane potential in MDA-MB-231 cells in a dose-dependent manner. In gene expression assay, compound 3 up-regulated pro-apoptotic genes such as Bax and p53 and suppressed anti-apoptotic Bcl-2 whereas there was no effect on DNA repair gene such as PARP1. The Bax/Bcl-2 ratio was significantly increased after treated with compound 3. In the molecular docking study, the interactions between compound 3 and B-DNA structure in the minor groove region via hydrogen bonds was reported. In conclusion, [Bbim]Br-DMC or compound 3 is a potential candidate to induce apoptosis and inhibits proliferation via cell cycle arrest and decreases mitochondrial membrane of triple-negative breast cancer MDA-MB-231 cells.


Asunto(s)
Apoptosis , Proliferación Celular , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Imidazoles/farmacología , Imidazoles/síntesis química , Imidazoles/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Simulación del Acoplamiento Molecular , Femenino , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química
6.
Cureus ; 16(7): e65027, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39165432

RESUMEN

Background Enhancing chemotherapy efficacy is crucial in breast cancer treatment. This study examines the synergistic effects of paclitaxel, a common chemotherapeutic drug, and Cluster of differentiation 73 (cd73) gene suppression via siRNA on MDA-MB-231 breast cancer cells. Methods MDA-MB-231 cells were transfected with CD73 siRNA and treated with paclitaxel. Cell viability, apoptosis, and migration were assessed by using MTT assays, Annexin V-FITC/PI staining, and wound healing assays, respectively, with flow cytometry analyzing cell cycle distribution. Results The combination of CD73 siRNA and paclitaxel significantly reduced cell viability, lowering paclitaxel's IC50 from 14.73 µg/mL to 8.471 µg/mL, indicating enhanced drug sensitivity. Apoptosis rates increased with the combination treatment, while cell migration was significantly inhibited. Flow cytometry revealed cell cycle arrest in the Sub-G1 and G2-M phases. Conclusion These findings suggest that cd73 gene suppression enhances paclitaxel's cytotoxic effects, promoting apoptosis and inhibiting cell migration in MDA-MB-231 breast cancer cell line. This combined strategy shows promise for improving breast cancer treatment outcomes by increasing the efficacy of existing chemotherapeutic regimens, warranting further research to explore its potential clinical applications and effectiveness in other breast cancer cell lines and models.

7.
Asian Biomed (Res Rev News) ; 18(3): 133-145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39175950

RESUMEN

Background: During breast cancer treatment, approximately half of the patients are prescribed psychotropic medication, such as selective serotonin reuptake inhibitors (SSRIs). Escitalopram oxalate is an SSRI used as an antidepressant. Objectives: In this study, by creating a breast cancer microenvironment with THP-1, MCF-7 and MDA-MB-231 breast cancer co-culture models were created. Methods: MCF-7, MDA-MB-231, and THP-1 cell lines to determine the concentration range of the cytotoxic effect of escitalopram oxalate MTS and MTT test were used. IC50 values were determined by the xCELLigence real-time cell analysis (RTCA) system. Apoptotic activities and cytokine levels were determined by flow cytometry. Results: In the xCELLigence real-time analysis made according to the results, the IC50 value of escitalopram oxalate was measured as 13.7 µM for MCF-7 and 10.9 µM for MDA-MB-231. The IC50 value was measured as 54.6 µM for MCF-7 and 58.4 µM for MDA-MB-231 in xCELLigence analysis with tamoxifen. According to the MTS test results, the IC50 value of tamoxifen for THP-1 was 92.03 µM and the IC50 value for escitalopram oxalate was 95.32 µM. In the co-culture model, the immunological effects of escitalopram oxalate on MCF-7 cells were 2.8%, 11.1%, 15.6%, 10.6%, and 12.1% for interleukin (IL)-1ß, IL-6, IL-8, IL-10, and TNF-α, respectively, while MDA effects on MB-231 cells, respectively, were 2.1%, 15.9%, 16.2%, 8.8%, and 11.8%. Conclusions: According to the results obtained, it was concluded that the immunological effects of escitalopram oxalate are more effective than tamoxifen and that it can be used as an adjunctive agent in breast cancer treatment.

8.
Toxicol Res (Camb) ; 13(4): tfae111, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39036524

RESUMEN

Background: The resistant and aggressive nature of triple-negative breast cancer (TNBC) renders it mostly incurable even following extensive multimodal treatment. Therefore, more studies are required to understand the underlying molecular mechanisms of its pathogenesis. SIRT1 is a class III histone deacetylase NAD + -dependent enzyme that is interlinked in tumor progression, apoptosis, metastasis, and other mechanisms of tumorigenesis, while DNA polymerase delta 1 (POLD1) functions as a gene coding for p125, which plays an important role in genome stability and DNA replication. Objective: We aimed to investigate the downstream signaling pathway of EX-527, a potent and selective SIRT1 inhibitor, in MDA-MB-231 breast cancer cell lines, and the crosstalk between SIRT1 and POLD1, which is essential for the activities of polymerase δ. Methods: The antiproliferative and apoptotic effects of EX-527 on MDA-MB-231 cells were assessed by MTT and annexin V/PI double staining assays. Migration and invasion activity of MDA-MB-231 cells were assessed by wound-healing scratch and transwell assays. Protein expressions were examined using Western Blot analysis. Results: MDA-MB-231 cells treatment with IC50 values of 45.3 µM EX-527 significantly suppressed cell proliferation and induced apoptosis by down-regulating SIRT1. Also, it significantly repressed migration and invasion of MDA-MB-231 cells as evaluated by wound healing and transwell invasion assays. Western blot results showed that decreased expression of SIRT1 is positively correlated with expression of p53 along with down-regulating POLD1. Conclusion: SIRT1 could have an oncogenic role in breast cancer development and progression via activating POLD1. These conclusions present new insights into the underlying mechanisms of TNBC.

9.
Toxicol In Vitro ; 99: 105890, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972516

RESUMEN

Beauvericin (BEA), Enniatin B (ENN B), and Ochratoxin A (OTA) are mycotoxins produced by fungi species. Their main effect on several organs and systems is associated with chronic exposure going from immunotoxicity, estrogenic disorders, and renal failure to cancer (in animals and humans). OTA belongs to Group 1 according to the International Agency for Research in Cancer (IARC) and it has legislated limited values; not happening for BEA nor ENN B. Exposure to mixtures of mycotoxins occurs through food intake in daily consumption. The aim of this study was to evaluate the implication of BEA, ENN B, and OTA individually and combined in producing cytotoxicity in cells for immunological studies and cancer cell lines (human leukemia cells (HL-60), fresh human peripheral blood mononuclear cells (PBMCs), and human breast cancer (MDA-MB-231) cells). Cells were treated for 4 h and 24 h at different concentrations of BEA, ENN B, and OTA, respectively. Viability assays were carried out by flow cytometry using DAPI (4',6-diamindino-2-phenylindole, dihydrochloride) as a viability dye and the potential effects of synergism, addition, and antagonism were assessed through the Chou and Talalay method. Individual OTA treatment exerted the greatest cytotoxicity for PBMC cells (IC50 0.5 µM) while ENN B for HL-60 (IC50 0.25 µM) and MDA-MB-231 (IC50 0.15 µM). In binary combination [ENN B + OTA] resulted in exerting the greatest cytotoxicity for HL-60 and MDA-MB-231 cells; while [BEA + OTA] in PBMC cells. The triple combination resulted in being highly cytotoxic for PBMC cells compared to HL-60 and MDA-MB-231 cells. In summary, PBMC cells were the most sensible cells for all three mycotoxins and the presence of OTA in any of the combinations had the greatest toxicity causing synergism as the most common cytotoxic effect.


Asunto(s)
Neoplasias de la Mama , Supervivencia Celular , Depsipéptidos , Leucocitos Mononucleares , Ocratoxinas , Humanos , Depsipéptidos/toxicidad , Ocratoxinas/toxicidad , Leucocitos Mononucleares/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Femenino , Leucemia/tratamiento farmacológico
10.
Cell Mol Bioeng ; 17(3): 203-217, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39050509

RESUMEN

Introduction: Metastasis is responsible for 90% of cancer-related deaths worldwide. However, the potential inhibitory effects of metastasis by various anticancer drugs have been left largely unexplored. Existing preclinical models primarily focus on antiproliferative agents on the primary tumor to halt the cancer growth but not in metastasis. Unlike primary tumors, metastasis requires cancer cells to exert sufficient cellular traction force through the actomyosin machinery to migrate away from the primary tumor site. Therefore, we seek to explore the potential of cellular traction force as a novel readout for screening drugs that target cancer metastasis. Methods: In vitro models of invasive and non-invasive breast cancer were first established using MDA-MB-231 and MCF-7 cell lines, respectively. Cellular morphology was characterized, revealing spindle-like morphology in MDA-MB-231 and spherical morphology in MCF-7 cells. The baseline cellular traction force was quantified using the Traction force Microscopy technique. Cisplatin, a paradigm antimetastatic drug, and 5-Fluorouracil (5FU), a non-antimetastatic drug, were selected to evaluate the potential of cellular traction force as a drug testing readout for the in vitro cancer metastasis. Results: MDA-MB-231 cells exhibited significantly higher baseline cellular traction force compared to MCF-7 cells. Treatment with Cisplatin, an antimetastatic drug, and 5-Fluorouracil (5FU), a non-antimetastatic drug, demonstrated distinct effects on cellular traction force in MDA-MB-231 but not in MCF-7 cells. These findings correlate with the invasive potential observed in the two models. Conclusion: Cellular traction force emerges as a promising metric for evaluating drug efficacy in inhibiting cancer metastasis using in vitro models. This approach could enhance the screening and development of novel anti-metastatic therapies, addressing a critical gap in current anticancer drug research.

11.
Anticancer Res ; 44(8): 3277-3285, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39060082

RESUMEN

BACKGROUND/AIM: Lipids are essential for energy production, signaling, and membrane formation, hence increased lipid metabolism may lead to cancer growth. 4-cholesten-3-one (4Cone), a sterol metabolite, has various biological activities, including the inhibition of cancer growth. This study examined whether 4Cone could change the lipid profile of triple-negative breast cancer cells (MDA-MB-231) and whether in combination with the anti-cancer chemotherapy docetaxel (TXT) could further reduce cancer aggressiveness. MATERIALS AND METHODS: The effect of 4Cone, TXT, or their combination (4Cone/TXT) on migration and proliferation was examined utilizing the wound healing and MTT assays. The expression of the lipogenesis-related enzymes was assessed using RT-qPCR and lipid profile was examined using mass spectrometry. RESULTS: 4Cone and TXT individually reduced cell viability and migration of MDA-MB-231 cancer cells; however, their combination (4Cone/TXT) had a greater impact on both attributes. All treated cells showed markedly decreased levels of the multidrug resistance enzyme PGP as well as the lipogenic enzymes FASN, ACC1, SCD1, HMGCR, and DGAT. Furthermore, lipid fingerprints were markedly different in treated cells compared with the untreated group. 4Cone increased the percentage of sphingomyelin (SM) while it decreased the percentage of ceramide (Cer); 4Cone in conjunction with TXT had the reverse effect. Triglyceride levels were reduced in 4Cone- and 4Cone/TXT-treated cells, but interestingly, they increased in TXT-treated cells. Additionally, treated cancer cells exhibited changes in glycerophospholipid subclasses. CONCLUSION: 4Cone alone or in combination with TXT alters the lipid profile by reducing a key lipogenic enzyme, resulting in the inhibition of cell proliferation and migration.


Asunto(s)
Movimiento Celular , Proliferación Celular , Docetaxel , Lipidómica , Humanos , Docetaxel/farmacología , Lipidómica/métodos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Femenino , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Antineoplásicos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Células MDA-MB-231
12.
Anticancer Res ; 44(7): 2837-2846, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38925852

RESUMEN

BACKGROUND/AIM: Pulsed electromagnetic field (PEMF) stimulation enhances the efficacy of several anticancer drugs. Doxorubicin is an anticancer drug used to treat various types of cancer, including breast cancer. However, the effect of PEMF stimulation on the efficacy of doxorubicin and the underlying mechanisms remain unclear. Thus, this study aimed to investigate the effect of PEMF stimulation on the anticancer activity of doxorubicin in MDA-MB-231 human breast cancer cells. MATERIALS AND METHODS: MDA-MB-231 cells were seeded and allowed to incubate for 48 h. The cells were treated with doxorubicin, cisplatin, 5-fluorouracil, or paclitaxel for 48 h. Subsequently, the cells were stimulated with a 60-min PEMF session thrice a day (with an interval of 4 h between each session) for 24 or 48 h. Cell viability was assessed by trypan blue dye exclusion assay and cell-cycle analysis was analyzed by flow cytometry. Molecular mechanisms involved in late G2 arrest were confirmed by a western blot assay and confocal microscopy. RESULTS: MDA-MB-231 cells treated with a combination of doxorubicin and PEMF had remarkably lower viability than those treated with doxorubicin alone. PEMF stimulation increased doxorubicin-induced cell-cycle arrest in the late G2 phase by suppressing cyclin-dependent kinase 1 (CDK1) activity through the enhancement of myelin transcription factor 1 (MYT1) expression, cell division cycle 25C (CDC25C) phosphorylation, and stratifin (14-3-3σ) expression. PEMF also increased doxorubicin-induced DNA damage by inhibiting DNA topoisomerase II alpha (TOP2A). CONCLUSION: These findings support the use of PEMF stimulation as an adjuvant to strengthen the antiproliferative effect of doxorubicin on breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Doxorrubicina , Humanos , Doxorrubicina/farmacología , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Campos Electromagnéticos , ADN-Topoisomerasas de Tipo II/metabolismo , Proliferación Celular/efectos de los fármacos , Paclitaxel/farmacología , Fluorouracilo/farmacología , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Fosfatasas cdc25/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo
13.
Heliyon ; 10(11): e31925, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841445

RESUMEN

Background: Breast cancer is a major global cancer, for which radiation and chemotherapy are the main treatments. Natural remedies are being studied to reduce the side effects. Etoposide (ETO), a chemo-drug, and quercetin (QC), a phytochemical, are considered potential factors for adaptation to conventional treatments. Objectives: The anticancer effect of the synergy between ETO and Quercetin-loaded solid lipid nanoparticles (QC-SLNs), was investigated in MDA-MB-231 cells. Methods: We developed QC-SLNs for efficient cellular delivery, characterizing their morphology, particle size, and zeta potential. We assessed the cytotoxicity of QC-SLNs and ETO on breast cancer cells via the MTT assay. Effects on apoptosis intensity in MDA-MB-231 cells have been detected utilizing annexin V-FITC, PI, and caspase activities. Real-time PCR assessed Bax gene and Bcl-2 gene fold change expression, while Western blot analysis determined p53 and p21 protein levels. Results: Spherical, negatively charged QC-SLNs, when combined with ETO, significantly enhanced inhibition of MDA-MB-231 cell proliferation compared to ETO or QC-SLNs alone. The combined treatment also notably increased the apoptosis pathway. QC-SLNs + ETO increased the Bax/Bcl-2 gene ratio, elevated p53 and p21 proteins, and activated caspase 3 and 9 enzymes. These results indicate the potential for QC-SLNs + ETO as a strategy for breast cancer treatment, potentially overcoming ETO-resistant breast cancer chemoresistance. Conclusion: These results suggest that QC-SLN has the potential to have a substantial impact on the breast cancer cure by improving the efficacy of ETO. This enhancement could potentially help overcome chemoresistance observed in ETO-resistant breast cancer.

14.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124577, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850612

RESUMEN

Isophorone is a cyclic ketone that has gained significant attention in the field of organic chemistry due to its versatile reactivity and structural attributes. Derivatives of isophorone offer a broad spectrum of applications ranging from pharmaceuticals to polymer chemistry. With the aim of developing novel hybrid structures based on benzylidene by combining with isophorone scaffold, we report 3 derivatives of the benzylidene-isophorone hybrids and its potent anticancer activity. In order to optimize the anticancer activity of hybrids di-substitution of -Cl group in C2 and C6 position of phenyl ring (compound1), -OCH3 group in C2 and C5 position of phenyl ring (compound2), and -OCH3 group in C2 and C3 position of phenyl ring (compound3) of benzylidene (PhCH=) moiety were made. The structure of Compounds1,2 and 3 were elucidated using spectral and XRD methods. Compounds1,2 and 3 exhibit space group P c a 21, P-1, and P 1 21/n 1 respectively. Compounds1,2 and 3 were tested for the potent anticancer activity on MDA MB-231 cell line. All the three compounds exhibit good anticancer activity on the breast cancer cells. The parent hybrid with ortho, ortho directing -Cl (1) exhibits strong antiproliferation effect (IC50 = 0.028 µM) on MDA-MB 231 cell line. However, hybrid structures with ortho, meta directing -OCH3 (2) group showed moderate effect (IC50 = 0.061 µM) and hybrid with ortho, meta directing -OCH3 (3) substitution showed the least potent anticancer activity (IC50 = 0.074 µM). The benzylidene-isophorone hybrids exhibit anticancer effects in the following order: 1 > 2 > 3.


Asunto(s)
Antineoplásicos , Compuestos de Bencilideno , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Compuestos de Bencilideno/farmacología , Compuestos de Bencilideno/química , Proliferación Celular/efectos de los fármacos , Modelos Moleculares , Cristalografía por Rayos X , Ciclohexanonas
15.
Food Chem Toxicol ; 190: 114794, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849046

RESUMEN

Phytochemical analysis of the methanolic extracts of Jatropha podagrica stalks and roots using liquid chromatography-mass spectrometry (LC-MS) led to the isolation of six compounds: corchoionoside C (1), isobiflorin (2), fraxin (3), hovetrichoside C (4), fraxetin (5), and corillagin (6). The isolated compounds (1-6) were tested for their cytotoxicity against MDA-MB-231 human breast cancer cells. Remarkably, compound 4 (hovetrichoside C) exhibited robust cytotoxicity against MDA-MB-231 cells, displaying an IC50 value of 50.26 ± 1.22 µM, along with an apoptotic cell death rate of 24.21 ± 2.08% at 100 µM. Treatment involving compound 4 amplified protein levels of cleaved caspase-8, -9, -3, -7, BH3-interacting domain death agonist (Bid), Bcl-2-associated X protein (Bax), and cleaved poly (ADP-ribose) polymerase (cleaved PARP), while concurrently reducing B-cell lymphoma 2 (Bcl-2) levels. In totality, these findings underscore that hovetrichoside C (4) possesses anti-breast cancer activity that revolves around apoptosis induction via both extrinsic and intrinsic signaling pathways.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Jatropha , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Jatropha/química , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Femenino , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química
16.
In Silico Pharmacol ; 12(2): 58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912326

RESUMEN

The process of tumorigenesis is highly associated with the disruption of cell-cycle regulators and derangement of various signaling pathways, which end up with the inhibition of apoptosis and hyper-activation of survival pathways. The PI3K medicated AKT/mTOR pathway is the widely explained mechanism for cancer cell survival which causes the overexpression of MDM2 and downregulates the p53-BAX mediated apoptotic pathway. Curcumin (CUR), the phyto-compound, derived from Curcuma longa is currently being focused on for its anticancer activities against breast cancer cells, MDA-MB-231, not only because of its minimal cytotoxicity against healthy cells (HEK293) but also because it synergistically sensitizes the activity of Doxorubicin (DOXO) in lower doses, which can be a promising source for complementary drug development. This study aims to investigate the combinatorial effect of CUR and DOXO on PI3K/AKT/mTOR pathway proteins by sequential molecular docking analysis and MD simulation studies. The lower binding affinity of the sequentially docked protein-ligand complex proves the increasing binding affinity of CUR and DOXO in the combinatorial dose. The mRNA expressions of different genes of this pathway are observed and quantified using rt-qPCR, where the decreasing fold change (2-∆∆Ct) indicates the suppression of the AKT/mTOR pathway after co-treatment of CUR and DOXO against MDA-MB-231 cells. These in silico and in vitro findings can be a new horizon for further in vitro and clinical trials of breast cancer treatment. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00231-2.

17.
Bioprocess Biosyst Eng ; 47(9): 1571-1584, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38935113

RESUMEN

Bio-inspired zinc oxide nanoparticles are gaining immense interest due to their safety, low cost, biocompatibility, and broad biological properties. In recent years, much research has been focused on plant-based nanoparticles, mainly for their eco-friendly, facile, and non-toxic character. Hence, the current study emphasized a bottom-up synthesis of zinc oxide nanoparticles (ZnO NPs) from Psidium guajava aqueous leaf extract and evaluation of its biological properties. The structural characteristic features of biosynthesized ZnO NPs were confirmed using various analytical methods, such as UV-Vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS), Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM). The synthesized ZnO NPs exhibited a hydrodynamic shape with an average particle size of 11.6-80.2 nm. A significant antimicrobial efficiency with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 40 and 27 µg/ml for Enterococcus faecalis, followed by 30 and 40 µg/ml for Staphylococcus aureus, 20 and 30 µg/ml for Staphylococcus mutans, 30 µg/ml for Candida albicans was observed by ZnO NPs. Additionally, they showed significant breakdown of biofilms of Streptococcus mutans and Candida albicans indicating their future value in drug-resistance research. Furthermore, an excellent dose-dependent activity of antioxidant property was noticed with an IC50 of 9.89 µg/ml. The antiproliferative potential of the ZnO NPs was indicated by the viability of MDA MB 231 cells, which showed a drastic decrease in response to increased concentrations of biosynthesized ZnO NPs. Thus, the present results open up vistas to explore their pharmaceutical potential for the development of targeted anticancer drugs in the future.


Asunto(s)
Antioxidantes , Nanopartículas del Metal , Psidium , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Psidium/química , Antioxidantes/farmacología , Antioxidantes/química , Nanopartículas del Metal/química , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Enterococcus faecalis/efectos de los fármacos , Enterococcus faecalis/crecimiento & desarrollo , Antibacterianos/farmacología , Antibacterianos/química , Hojas de la Planta/química , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Nanopartículas/química
18.
Chem Asian J ; : e202400616, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38923831

RESUMEN

The anticancer efficacy of doxorubicin, an anthracycline-based and FDA-approved chemotherapeutic drug, is significantly hindered by acquired chemoresistance and severe side effects despite its potent anticancer properties. To overcome these challenges, we developed an innovative therapeutic formulation that integrates targeted chemotherapy and phototherapy within a single platform using gold nanoparticles (AuNPs). This novel nanoconjugate, designated as Dox-Fe@FA-AuNPs, is co-functionalized with folic acid, doxorubicin, and an iron(III)-phenolate/carboxylate complex, enabling cancer-specific drug activation. Here, we report the synthesis, characterization, and comprehensive physico-chemical and biological evaluations of Dox-Fe@FA-AuNPs. The nanoconjugate exhibited excellent solubility, stability, and enhanced cellular uptake in folate receptor-positive cancer cells. The nanoconjugate was potently cytotoxic against HeLa and MDA-MB-231 cancer cells (HeLa: 105.5±16.52 µg mL-1; MDA-MB-231: 112.0±12.31 µg mL-1; MDA-MB-231 (3D): 156.31±19.35 µg mL-1) while less cytotoxic to the folate(-) cancer cells (MCF-7, A549 and HepG2). The cytotoxicity was attributed to the pH-dependent release of doxorubicin, which preferentially occurs in the acidic tumor microenvironment. Additionally, under red light irradiation, the nanoconjugate generated ROS, inducing caspase-3/7-dependent apoptosis with a photo-index (PI) >50, and inhibited cancer cell migration. Our findings underscore the potential of Dox-Fe@FA-AuNPs as a highly effective and sustainable platform for targeted chemo-phototherapy.

19.
Cell Biol Int ; 48(9): 1354-1363, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38894528

RESUMEN

Ecto-5'-nucleotidase (CD73) hydrolyses 5'AMP to adenosine and inorganic phosphate. Breast cancer cells (MDA-MB-231) express high CD73 levels, and this enzyme has been found to play a tumour-promoting role in breast cancer. However, no studies have sought to investigate whether CD73 has differential affinity or substrate preferences between noncancerous and cancerous breast cells. In the present study, we aimed to biochemically characterise ecto-5'-nucleotidase in breast cancer cell lines and assess whether its catalytic function and tumour progression are correlated in breast cancer cells. The results showed that compared to nontumoral breast MCF-10A cells, triple-negative breast cancer MDA-MB-231 cells had a higher ecto-5'-nucleotidase expression level and enzymatic activity. Although ecto-5'-nucleotidase activity in the MDA-MB-231 cell line showed no selectivity among monophosphorylated substrates, 5'AMP was preferred by the MCF-10A cell line. Compared to the MCF-10A cell line, the MDA-MB-231 cell line has better hydrolytic ability, lower substrate affinity, and high inhibitory potential after treatment with a specific CD73 inhibitor α,ß­methylene ADP (APCP). Therefore, we demonstrated that a specific inhibitor of the ecto-5-nucleotidase significantly reduced the migratory and invasive capacity of MDA-MB-231 cells, suggesting that ecto-5-nucleotidase activity might play an important role in metastatic progression.


Asunto(s)
5'-Nucleotidasa , Neoplasias de la Mama Triple Negativas , Humanos , 5'-Nucleotidasa/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Femenino , Proteínas Ligadas a GPI/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Movimiento Celular , Adenosina/metabolismo , Adenosina/análogos & derivados
20.
Pharmaceuticals (Basel) ; 17(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794187

RESUMEN

Breast cancer is a prevalent and potentially life-threatening disease that affects women worldwide. Natural products have gained attention as potential anticancer agents due to their fewer side effects, low toxicity, and cost effectiveness compared to traditional chemotherapy drugs. In the current study, the network pharmacology approach was used following a molecular docking study to evaluate the therapeutic potential of N. sativa-derived phytochemicals against breast cancer. Specifically, the study aimed to identify potential anticancer agents targeting key proteins implicated in breast cancer progression. Five proteins (i.e., EGFR, MAPK3, ESR1, MAPK1, and PTGS2) associated with breast cancer were selected as receptor proteins. Fourteen phytochemicals from N. sativa were prioritized based on drug-likeness (DL) and oral bioavailability (OB) parameters (with criteria set at DL > 0.18 and OB > 30%, respectively). Subsequent analysis of gene targets identified 283 overlapping genes primarily related to breast cancer pathogenesis. Ten hub genes were identified through topological analysis based on their significance in the KEGG pathway and GO annotations. Molecular docking revealed strong binding affinities between folic acid, betulinic acid, stigmasterol, and selected receptor proteins. These phytochemicals also demonstrated druggability potential. In vitro experiments in the MDA-MB-231 breast cancer cell line revealed that betulinic acid and stigmasterol significantly reduced cell viability after 24 h of treatment, confirming their anticancer activity. Furthermore, in vivo evaluation using a DMBA-induced rat model showed that betulinic acid and stigmasterol contributed to the significant recovery of cancer markers. This study aimed to explore the mechanisms underlying the anticancer potential of N. sativa phytochemicals against breast cancer, with the ultimate goal of identifying novel therapeutic candidates for future drug development. Overall, these results highlight betulinic acid and stigmasterol as promising candidates to develop novel anticancer agents against breast cancer. The comprehensive approach of this study, which integrates network pharmacology and molecular docking study and its experimental validation, strengthens the evidence supporting the therapeutic benefits of N. sativa-derived phytochemicals in breast cancer treatment, making them promising candidates for the development of novel anticancer agents against breast cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA