Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.520
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 276, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39354629

RESUMEN

BACKGROUND: In order for cancers to progress, they must evade elimination by CD8 T cells or other immune mechanisms. CD8 T cells recognize and kill tumor cells that display immunogenic tumor peptides bound to MHC I molecules. One of the ways that cancers can escape such killing is by reducing expression of MHC I molecules, and loss of MHC I is frequently observed in tumors. There are multiple different mechanisms that can underly the loss of MHC I complexes on tumor and it is currently unclear whether there are particular mechanisms that occur frequently and, if so, in what types of cancers. Also of importance to know is whether the loss of MHC I is reversible and how such loss and/or its restoration would impact responses to immunotherapy. Here, we investigate these issues for loss of IRF1 and IRF2, which are transcription factors that drive expression of MHC I pathway genes and some killing mechanisms. METHODS: Bioinformatics analyses of IRF2 and IRF2-dependent gene transcripts were performed for all human cancers in the TCGA RNAseq database. IRF2 protein-DNA-binding was analyzed in ChIPseq databases. CRISRPcas9 was used to knock out IRF1 and IRF2 genes in human and mouse melanoma cells and the resulting phenotypes were analyzed in vitro and in vivo. RESULTS: Transcriptomic analysis revealed that IRF2 expression was reduced in a substantial subset of cases in almost all types of human cancers. When this occurred there was a corresponding reduction in the expression of IRF2-regulated genes that were needed for CD8 T cell recognition. To test cause and effect for these IRF2 correlations and the consequences of IRF2 loss, we gene-edited IRF2 in a patient-derived melanoma and a mouse melanoma. The IRF2 gene-edited melanomas had reduced expression of transcripts for genes in the MHC I pathway and decreased levels of MHC I complexes on the cell surface. Levels of Caspase 7, an IRF2 target gene involved in CD8 T cell killing of tumors, were also reduced. This loss of IRF2 caused both human and mouse melanomas to become resistant to immunotherapy with a checkpoint inhibitor. Importantly, these effects were reversible. Stimulation of the IRF2-deficient melanomas with interferon induced the expression of a functionally homologous transcription factor, IRF1, which then restored the MHC I pathway and responsiveness to CPI. CONCLUSIONS: Our study shows that a subset of cases within most types of cancers downregulates IRF2 and that this can allow cancers to escape immune control. This can cause resistance to checkpoint blockade immunotherapy and is reversible with currently available biologics.


Asunto(s)
Inmunoterapia , Factor 2 Regulador del Interferón , Melanoma , Animales , Humanos , Ratones , Factor 2 Regulador del Interferón/genética , Factor 2 Regulador del Interferón/metabolismo , Melanoma/genética , Melanoma/inmunología , Melanoma/tratamiento farmacológico , Melanoma/terapia , Inmunoterapia/métodos , Melanoma Experimental/inmunología , Melanoma Experimental/genética , Melanoma Experimental/terapia , Línea Celular Tumoral
2.
Front Immunol ; 15: 1422834, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39355248

RESUMEN

Variation within the non-coding genome may influence the regulation and expression of important genes involved in immune control such as the human leukocyte antigen (HLA) system. Class I and Class II HLA molecules are essential for peptide presentation which is required for T lymphocyte activation. Single nucleotide polymorphisms within non-coding regions of HLA Class I and Class II genes may influence the expression of these genes by affecting the binding of transcription factors and chromatin modeling molecules. Furthermore, an interplay between genetic and epigenetic factors may also influence HLA expression. Epigenetic factors such as DNA methylation and non-coding RNA, regulate gene expression without changing the DNA sequence. However, genetic variation may promote or allow genes to escape regulation by epigenetic factors, resulting in altered expression. The HLA system is central to most diseases, therefore, understanding the role of genetics and epigenetics on HLA regulation will tremendously impact healthcare. The knowledge gained from these studies may lead to novel and cost-effective diagnostic approaches and therapeutic interventions. This review discusses the role of non-coding variants on HLA regulation. Furthermore, we discuss the interplay between genetic and epigenetic factors on the regulation of HLA by evaluating literature based on polymorphisms within DNA methylation and miRNA regulatory sites within class I and Class II HLA genes. We also provide insight into the importance of the HLA non-coding genome on disease, discuss ethnic-specific differences across the HLA region and provide guidelines for future HLA studies.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Antígenos HLA , Humanos , Antígenos HLA/genética , Regulación de la Expresión Génica , Polimorfismo de Nucleótido Simple , Variación Genética , ARN no Traducido/genética , MicroARNs/genética
3.
Genome Biol Evol ; 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39358865

RESUMEN

The multigene family of the Major Histocompatibility Complex (MHC) codes for the key antigen-presenting molecules of the vertebrate immune system. In birds, duplicated MHC class II (MHC-II) genes are highly homogenized by concerted evolution and, thus, identification of their orthologous relationships across long evolutionary timescales remains challenging. Relatively low evolutionary rate of avian MHC class IIA genes has been expected to provide a promising avenue to allow such inferences, but availability of MHC-IIA sequences in non-model bird species has been limited until recently. Here, taking advantage from accumulating genomic resources, we identified and analysed MHC-IIA sequences from the most basal lineage of extant birds (Palaeognathae). Conserved region of the MHC-IIA membrane-proximal domain was used to search for orthologous relationships between palaeognath birds and non-avian reptiles. First, analyses of palaeognath sequences revealed the presence of a separate MHC-IIA gene lineage (DAA3) in kiwis, which did not cluster with previously described avian MHC-IIA lineages (DAA1 and DAA2). Next, phylogenetic reconstruction showed that kiwi DAA3 sequences form a single well supported cluster with turtle MHC-IIA. High similarity of these sequences most likely reflects their remarkable evolutionary conservation and retention of ancient orthologous relationships, which can be traced back to basal archosauromorphs ca. 250 million years ago. Our analyses offer novel insights into macroevolutionary history of the MHC and reinforce the view that rapid accumulation of high-quality genome assemblies across divergent non-model species can substantially advance our understanding of gene evolution.

4.
J Nanobiotechnology ; 22(1): 551, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252079

RESUMEN

Chemodynamic therapy represents a novel tumor therapeutic modality via triggering catalytic reactions in tumors to yield highly toxic reactive oxygen species (ROS). Nevertheless, low efficiency catalytic ability, potential systemic toxicity and inefficient tumor targeting, have hindered the efficacy of chemodynamic therapy. Herein, a rationally designed catalytic nanoplatform, composed of folate acid conjugated liposomes loaded with copper peroxide (CP) and chloroquine (CQ; a clinical drug) (denoted as CC@LPF), could power maximal tumor cytotoxicity, mechanistically via maneuvering endogenous and exogenous copper for a highly efficient catalytic reaction. Despite a massive autophagosome accumulation elicited by CP-powered autophagic initiation and CQ-induced autolysosomal blockage, the robust ROS, but not aberrant autophagy, underlies the synergistic tumor inhibition. Otherwise, this combined mode also elicits an early onset, above all, long-term high-level existence of immunogenic cell death markers, associated with ROS and aberrant autophagy -triggered endoplasmic reticulum stress. Besides, CC@LPF, with tumor targeting capability and selective tumor cytotoxicity, could elicit intratumor dendritic cells (mainly attributed to CQ) and tumor infiltrating CD8+ T cells, upon combining with PD-L1 therapeutic antibody, further induce significant anti-tumor effect. Collectively, the rationally designed nanoplatform, CC@LPF, could enhance tumor chemoimmunotherapy via deploying endogenous plus exogenous copper and remodeling tumor microenvironment.


Asunto(s)
Cobre , Inmunoterapia , Especies Reactivas de Oxígeno , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Cobre/química , Cobre/farmacología , Ratones , Inmunoterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Liposomas/química , Catálisis , Autofagia/efectos de los fármacos , Ácido Fólico/química , Ácido Fólico/farmacología , Humanos , Cloroquina/farmacología , Femenino , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
5.
Vaccine ; 42(24): 126266, 2024 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-39232399

RESUMEN

Tuberculosis (TB) is one of the leading causes of death from infectious diseases, killing approximately 1.3 million people worldwide in 2022 alone. The current vaccine for TB contains a live attenuated bacterium, Mycobacterium bovis BCG (Bacille Calmette-Guérin). The BCG vaccine is highly effective in preventing severe forms of childhood TB but does not protect against latent infection or disease in older age groups. A new or improved BCG vaccine for prevention of pulmonary TB is urgently needed. In this study, we infected murine bone marrow derived dendritic cells from C57BL/6 mice with M. bovis BCG followed by elution and identification of BCG-derived MHC class I and class II-bound peptides using tandem mass spectrometry. We identified 1436 MHC-bound peptides of which 94 were derived from BCG. Fifty-five peptides were derived from MHC class I molecules and 39 from class II molecules. We tested the 94 peptides for their immunogenicity using IFN- γ ELISPOT assay with splenocytes purified from BCG immunized mice and 10 showed positive responses. Seven peptides were derived from MHC II and three from MHC class I. In particular, MHC class II binding peptides derived from the mycobacterial surface lipoprotein Mpt83 were highly antigenic. Further evaluations of these immunogenic BCG peptides may identify proteins useful as new TB vaccine candidates.


Asunto(s)
Antígenos Bacterianos , Vacuna BCG , Proteínas Bacterianas , Células Dendríticas , Ratones Endogámicos C57BL , Mycobacterium bovis , Animales , Antígenos Bacterianos/inmunología , Mycobacterium bovis/inmunología , Ratones , Vacuna BCG/inmunología , Proteínas Bacterianas/inmunología , Células Dendríticas/inmunología , Desarrollo de Vacunas , Femenino , Proteómica/métodos , Linfocitos T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Lipoproteínas/inmunología , Tuberculosis/prevención & control , Tuberculosis/inmunología , Péptidos/inmunología , Proteínas de la Membrana
6.
Res Sq ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39281881

RESUMEN

Background: In order for cancers to progress, they must evade elimination by CD8 T cells or other immune mechanisms. CD8 T cells recognize and kill tumor cells that display immunogenic tumor peptides bound to MHC I molecules. One of the ways that cancers can escape such killing is by reducing expression of MHC I molecules, and loss of MHC I is frequently observed in tumors. There are multiple different mechanisms that can underly the loss of MHC I complexes on tumor and it is currently unclear whether there are particular mechanisms that occur frequently and, if so, in what types of cancers. Also of importance to know is whether the loss of MHC I is reversible and how such loss and/or its restoration would impact responses to immunotherapy. Here, we investigate these issues for loss of IRF1 and IRF2, which are transcription factors that drive expression of MHC I pathway genes and some killing mechanisms. Methods: Bioinformatics analyses of IRF2 and IRF2-dependent gene transcripts were performed for all human cancers in the TCGA RNAseq database. IRF2 protein-DNA-binding was analyzed in ChIPseq databases. CRISRPcas9 was used to knock out IRF1 and IRF2 genes in human and mouse melanoma cells and the resulting phenotypes were analyzed in vitro and in vivo. Results: Transcriptomic analysis revealed that IRF2 expression was reduced in a substantial subset of cases in almost all types of human cancers. When this occurred there was a corresponding reduction in the expression of IRF2-regulated genes that were needed for CD8 T cell recognition. To test cause and effect for these IRF2 correlations and the consequences of IRF2 loss, we gene-edited IRF2 in a patient-derived melanoma and a mouse melanoma. The IRF2 gene-edited melanomas had reduced expression of transcripts for genes in the MHC I pathway and decreased levels of MHC I complexes on the cell surface. Levels of Caspase 7, an IRF2 target gene involved in CD8 T cell killing of tumors, were also reduced. This loss of IRF2 caused both human and mouse melanomas to become resistant to immunotherapy with a checkpoint inhibitor. Importantly, these effects were reversible. Stimulation of the IRF2-deficient melanomas with interferon induced the expression of a functionally homologous transcription factor, IRF1, which then restored the MHC I pathway and responsiveness to CPI. Conclusions: Our study shows that a subset of cases within most types of cancers downregulates IRF2 and that this can allow cancers to escape immune control. This can cause resistance to checkpoint blockade immunotherapy and is reversible with currently available biologics.

7.
Phytomedicine ; 135: 156054, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39306883

RESUMEN

BACKGROUND: Pathological cardiac remodeling is a critical process leading to heart failure, characterized primarily by inflammation and apoptosis. Matairesinol (Mat), a key chemical component of Podocarpus macrophyllus resin, exhibits a wide range of pharmacological activities, including anti-hydatid, antioxidant, antitumor, and anti-inflammatory effects. PURPOSE: This study aims to investigate whether Matairesinol alleviate cardiac hypertrophy and remodeling caused by pressure overload and to elucidate its mechanism of action. METHODS: An in vitro pressure loading model was established using neonatal rat cardiomyocytes treated with angiotensin Ⅱ, while an in vivo model was created using C57 mice subjected to transverse aortic constriction (TAC). To activate the PI3K/Akt/FoxO1 pathway, Ys-49 was employed. Moreover, small interfering RNA (siRNA) and short hairpin RNA (shRNA) were utilized to silence Prdx1 expression both in vitro and in vivo. Various techniques, including echocardiography, wheat germ agglutinin (WGA) staining, HE staining, PSR staining, and Masson trichrome staining, were used to assess cardiac function, cardiomyocyte cross-sectional area, and fibrosis levels in rats. Apoptosis in myocardial tissue and in vitro was detected by TUNEL assay, while reactive oxygen species (ROS) content in tissues and cells was measured using DHE staining. Furthermore, the affinity of Prdx1 with Mat and PI3K was analyzed using computer-simulated molecular docking. Western blotting and RT-PCR were utilized to evaluate Prdx1 levels and proteins related to apoptosis and oxidative stress, as well as the mRNA levels of cardiac hypertrophy and fibrosis-related indicators. RESULTS: Mat significantly alleviated cardiac hypertrophy and fibrosis induced by TAC, preserved cardiac function, and markedly reduced cardiomyocyte apoptosis and oxidative damage. In vitro, mat attenuated ang Ⅱ - induced hypertrophy of nrvms and activation of neonatal rat fibroblasts. Notably, activation of the PI3K/Akt/FoxO1 pathway and downregulation of Prdx1 expression were observed in TAC mice; however, these effects were reversed by Mat treatment. Furthermore, Prdx1 knockdown activated the PI3K/Akt/FoxO1 pathway, leading to exacerbation of the disease. Molecular docking indicated that Molecular docking indicated that Mat upregulated Prdx1 expression by binding to it, thereby inhibiting the PI3K/Akt/FoxO1 pathway and protecting the heart by restoring Prdx1 expression levels. CONCLUSION: Matairesinol alleviates pressure overload-induced cardiac remodeling both in vivo and in vitro by upregulating Prdx1 expression and inhibiting the PI3K/Akt/FoxO1 pathway. This study highlights the therapeutic potential of Matairesinol in the treatment of cardiac hypertrophy and remodeling, providing a promising avenue for future research and clinical application.

8.
Parasite Immunol ; 46(8-9): e13062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39313933

RESUMEN

The major histocompatibility complex (MHC) molecules play an integral role in the adaptive immune response to transmissible cancers through tumour antigen presentation and recognition of allogeneic MHC molecules. The transmissible devil facial tumours 1 and 2 (DFT1 and DFT2) modulate MHC-I antigen presentation to evade host immune responses and facilitate transmission of tumours cells to new Tasmanian devil (Sarcophilus harrisii) hosts. To enhance T-cell-driven tumour immunogenicity for vaccination and immunotherapy, DFT1 and DFT2 cells were co-transfected with (i) NLRC5 for MHC-I expression or CIITA for MHC-I and MHC-II expression, and (ii) a co-stimulatory molecule, either CD80, CD86 or 41BBL. The co-transfected DFT cells presented enhanced expression of MHC-I and/or MHC-II. As few devil-specific monoclonal antibodies exist, we used recombinant CTLA4 and 41BB fused to a fluorescent protein to confirm expression of cell surface CD80, CD86 and 41BBL. The capacity for these cells to induce T-cell responses including PD1 and IFNG expression was evaluated in in vitro co-culture assays with captive devil peripheral blood mononuclear cells (PBMCs). Although PBMC viability had increased, there was no evidence of enhanced T-cell activation. This system can be used to identify additional factors required to promote activation of naïve devil T-cells in vitro.


Asunto(s)
Antígeno B7-2 , Neoplasias Faciales , Marsupiales , Animales , Marsupiales/inmunología , Marsupiales/genética , Neoplasias Faciales/inmunología , Neoplasias Faciales/veterinaria , Neoplasias Faciales/genética , Antígeno B7-2/metabolismo , Antígeno B7-2/genética , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígeno B7-1/inmunología , Línea Celular Tumoral , Linfocitos T/inmunología , Leucocitos Mononucleares/inmunología
9.
Cells ; 13(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39329721

RESUMEN

Impaired tumor cell antigen presentation contributes significantly to immune evasion. This study identifies Berbamine hydrochloride (Ber), a compound derived from traditional Chinese medicine, as an effective inhibitor of autophagy that enhances antigen presentation in tumor cells. Ber increases MHC-I-mediated antigen presentation in melanoma cells, improving recognition and elimination by CD8+ T cells. Mutation of Atg4b, which blocks autophagy, also raises MHC-I levels on the cell surface, and further treatment with Ber under these conditions does not increase MHC-I, indicating Ber's role in blocking autophagy to enhance MHC-I expression. Additionally, Ber treatment leads to the accumulation of autophagosomes, with elevated levels of LC3-II and p62, suggesting a disrupted autophagic flux. Fluorescence staining and co-localization analyses reveal that Ber likely inhibits lysosomal acidification without hindering autophagosome-lysosome fusion. Importantly, Ber treatment suppresses melanoma growth in mice and enhances CD8+ T cell infiltration, supporting its therapeutic potential. Our findings demonstrate that Ber disturbs late-stage autophagic flux through abnormal lysosomal acidification, enhancing MHC-I-mediated antigen presentation and curtailing tumor immune escape.


Asunto(s)
Autofagia , Bencilisoquinolinas , Melanoma , Escape del Tumor , Autofagia/efectos de los fármacos , Animales , Ratones , Línea Celular Tumoral , Humanos , Escape del Tumor/efectos de los fármacos , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/uso terapéutico , Melanoma/tratamiento farmacológico , Melanoma/patología , Melanoma/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Presentación de Antígeno/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Ratones Endogámicos C57BL , Autofagosomas/metabolismo , Autofagosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/genética , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Melanoma Experimental/tratamiento farmacológico , Cisteína Endopeptidasas
10.
Cell Oncol (Dordr) ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283477

RESUMEN

BACKGROUND: Non-small cell lung cancer (NSCLC) is a highly aggressive type of lung cancer with poor responses to traditional therapies such as surgery, radiotherapy, and chemotherapy. While immunotherapy has become an effective approach for treating multiple types of cancer, solid tumors frequently exhibit immune escape through various mechanisms, including downregulation of MHC I expression. However, whether the upregulation of MHC I expression can improve the immunotherapeutic effect on NSCLC remains unexplored. Suberoylanilide hydroxamic acid (SAHA) is a potent histone deacetylase (HDAC) inhibitor that has been applied clinically to treat lymphoma, but a high dose of SAHA kills tumor cells and normal cells without preference. Here, we report that low-dose SAHA enhances CD8+ T cell-mediated antitumor immunity by upregulating MHC I expression in NSCLC cells. METHODS: Flow cytometric analysis, quantitative real-time PCR and western blot were used to analyze the expression of MHC I, STAT1 and Smad2/3 in both human and mouse NSCLC cell lines after SAHA treatment. The nuclear translocation of phosphorylated STAT1 and Smad2/3 was investigated by western blot and immunofluorescence staining. The mechanisms underlying STAT1 and Smad2/3 upregulation were analyzed through database searches and chromatin immunoprecipitation-qPCR. Finally, we assessed the antitumor effect of specific CD8+ T cells with SAHA treatment in vivo and in vitro. RESULTS: We showed that low-dose SAHA upregulated the expression of MHC I in NSCLC cell lines without affecting cell viability. We also provided evidence that high levels of MHC I induced by SAHA promoted the activation, proliferation, and cytotoxicity of specific CD8+ T cells in mouse models. Mechanistically, low-dose SAHA increased the levels of H3K9ac and H3K27ac in the promoters of the STAT1, Smad2 and Smad3 genes in NSCLC cells by inhibiting HDAC activity, resulting in elevated expression levels of STAT1, Smad2 and Smad3. The nuclear translocation of phosphorylated STAT1 and Smad2/3 markedly upregulated the expression of MHC I in NSCLC cells. CONCLUSIONS: Low-dose SAHA enhances CD8+ T cell-mediated antitumor immunity by boosting MHC I expression in NSCLC cells. Thus, we revealed a key mechanism of SAHA-mediated enhanced antitumor immunity, providing insights into a novel immunotherapy strategy for NSCLC.

11.
Cell Rep ; 43(9): 114761, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39276348

RESUMEN

Gamma/delta (γδ) T cells are unconventional lymphocytes that recognize diverse ligands via somatically recombined T cell antigen receptors (γδ TCRs). The molecular mechanism by which ligand recognition initiates γδ TCR signaling, a process known as TCR triggering, remains elusive. Unlike αß TCRs, γδ TCRs are not mechanosensitive and do not require co-receptors or typical binding-induced conformational changes for triggering. Here, we show that γδ TCR triggering by nonclassical MHC class Ib antigens, a major class of ligands recognized by γδ T cells, requires steric segregation of the large cell-surface phosphatases CD45 and CD148 from engaged TCRs at synaptic close-contact zones. Increasing access of these inhibitory phosphatases to sites of TCR engagement, by elongating MHC class Ib ligands or truncating CD45/148 ectodomains, abrogates TCR triggering and T cell activation. Our results identify a critical step in γδ TCR triggering and provide insight into the core triggering mechanism of endogenous and synthetic tyrosine-phosphorylated immunoreceptors.


Asunto(s)
Receptores de Antígenos de Linfocitos T gamma-delta , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Humanos , Ligandos , Animales , Antígenos Comunes de Leucocito/metabolismo , Activación de Linfocitos/inmunología , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Fosforilación
12.
Genes (Basel) ; 15(9)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39336776

RESUMEN

SINE-VNTR-Alu (SVA) retrotransposons can regulate expression quantitative trait loci (eQTL) of coding and noncoding genes including transposable elements (TEs) distributed throughout the human genome. Previously, we reported that expressed SVAs and human leucocyte antigen (HLA) class II genotypes on chromosome 6 were associated significantly with Parkinson's disease (PD). Here, our aim was to follow-up our previous study and evaluate the SVA associations and their regulatory effects on the transcription of TEs within the HLA class II genomic region. We reanalyzed the transcriptome data of peripheral blood cells from the Parkinson's Progression Markers Initiative (PPMI) for 1530 subjects for TE and gene RNAs with publicly available computing packages. Four structurally polymorphic SVAs regulate the transcription of 20 distinct clusters of 235 TE loci represented by LINES (37%), SINES (28%), LTR/ERVs (23%), and ancient transposon DNA elements (12%) that are located in close proximity to HLA genes. The transcribed TEs were mostly short length, with an average size of 389 nucleotides. The numbers, types and profiles of positive and negative regulation of TE transcription varied markedly between the four regulatory SVAs. The expressed SVA and TE RNAs in blood cells appear to be enhancer-like elements that are coordinated differentially in the regulation of HLA class II genes. Future work on the mechanisms underlying their regulation and potential impact is essential for elucidating their roles in normal cellular processes and disease pathogenesis.


Asunto(s)
Enfermedad de Parkinson , Sitios de Carácter Cuantitativo , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Elementos Transponibles de ADN/genética , Elementos Alu/genética , Elementos de Nucleótido Esparcido Corto/genética , Transcripción Genética/genética , Regulación de la Expresión Génica/genética , Progresión de la Enfermedad , Antígenos de Histocompatibilidad Clase II/genética
13.
Cancer Cell ; 42(9): 1549-1569.e16, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39255776

RESUMEN

Tumor-associated neutrophil (TAN) effects on glioblastoma (GBM) biology remain under-characterized. We show here that neutrophils with dendritic features-including morphological complexity, expression of antigen presentation genes, and the ability to process exogenous peptide and stimulate major histocompatibility complex (MHC)II-dependent T cell activation-accumulate intratumorally and suppress tumor growth in vivo. Trajectory analysis of patient TAN scRNA-seq identifies this "hybrid" dendritic-neutrophil phenotype as a polarization state that is distinct from canonical cytotoxic TANs, and which differentiates from local precursors. These hybrid-inducible immature neutrophils-which we identified in patient and murine glioblastomas-arise not from circulation, but from local skull marrow. Through labeled skull flap transplantation and targeted ablation, we characterize calvarial marrow as a contributor of antitumoral myeloid antigen-presenting cells (APCs), including TANs, which elicit T cell cytotoxicity and memory. As such, agents augmenting neutrophil egress from skull marrow-such as intracalvarial AMD3100, whose survival-prolonging effect in GBM we report-present therapeutic potential.


Asunto(s)
Neoplasias Encefálicas , Diferenciación Celular , Células Dendríticas , Glioblastoma , Neutrófilos , Humanos , Animales , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Glioblastoma/patología , Glioblastoma/inmunología , Glioblastoma/genética , Glioblastoma/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Cráneo/patología , Cráneo/inmunología , Médula Ósea/patología , Médula Ósea/inmunología , Ratones Endogámicos C57BL , Línea Celular Tumoral
14.
Molecules ; 29(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39339444

RESUMEN

The collaboration between cellular proteases and host cells is pivotal in mounting an effective innate immune defense. Of particular interest is the synergistic interaction between cathepsin G (CatG) and neutrophil elastase (NE), which are proteases secreted by activated neutrophils, and the human alveolar basal epithelial cell line (A549) and the human lung epithelial-like cell line (H1299), because of the potential implications for viral infection. Our study aimed to investigate the binding capacity of CatG and NE on the surface of A549 and H1299 cells through preincubation with purified CatG and NE; thereby, the proteolytic activity could be detected using activity-based probes. Both CatG and NE were capable of binding to the cell surface and exhibited proteolytic activity, leading to increased cell surface levels of MHC I molecules, which is crucial for displaying the endogenous antigenic repertoire. In addition, CatG cleaved the S2' site of the SARS-CoV-2 spike protein at two specific sites (815RS816 and 817FI818) as well as NE (813SK814 and 818IE819), which potentially leads to the destruction of the fusion peptide. Additionally, furin required the presence of Ca2+ ions for the distinct cleavage site necessary to generate the fusion peptide. Overall, the findings suggest that CatG and NE can fortify target cells against viral entry, underscoring the potential significance of cell surface proteases in protecting against viral invasion.


Asunto(s)
Catepsina G , Células Epiteliales , Elastasa de Leucocito , Neutrófilos , Proteolisis , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Catepsina G/metabolismo , Elastasa de Leucocito/metabolismo , Neutrófilos/metabolismo , Neutrófilos/virología , SARS-CoV-2/metabolismo , Células Epiteliales/virología , Células Epiteliales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Células A549 , COVID-19/virología , COVID-19/metabolismo , COVID-19/inmunología , Pulmón/virología , Pulmón/metabolismo , Furina/metabolismo , Unión Proteica , Membrana Celular/metabolismo
15.
BMC Bioinformatics ; 25(1): 310, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333860

RESUMEN

BACKGROUND: Antigen presentation is a central step in initiating and shaping the adaptive immune response. To activate CD8+ T cells, pathogen-derived peptides are presented on the cell surface of antigen-presenting cells bound to major histocompatibility complex (MHC) class I molecules. CD8+ T cells that recognize these complexes with their T cell receptor are activated and ideally eliminate infected cells. Prediction of putative peptides binding to MHC class I (MHC-I) is crucial for understanding pathogen recognition in specific immune responses and for supporting drug and vaccine design. There are reliable databases for epitope prediction algorithms available however they primarily focus on the prediction of epitopes in single immunogenic proteins. RESULTS: We have developed the tool DiscovEpi to establish an interface between whole proteomes and epitope prediction. The tool allows the automated identification of all potential MHC-I-binding peptides within a proteome and calculates the epitope density and average binding score for every protein, a protein-centric approach. DiscovEpi provides a convenient interface between automated multiple sequence extraction by organism and cell compartment from the database UniProt for subsequent epitope prediction via NetMHCpan. Furthermore, it allows ranking of proteins by their predicted immunogenicity on the one hand and comparison of different proteomes on the other. By applying the tool, we predict a higher immunogenic potential of membrane-associated proteins of SARS-CoV-2 compared to those of influenza A based on the presented metrics epitope density and binding score. This could be confirmed visually by comparing the epitope maps of the influenza A strain and SARS-CoV-2. CONCLUSION: Automated prediction of whole proteomes and the subsequent visualization of the location of putative epitopes on sequence-level facilitate the search for putative immunogenic proteins or protein regions and support the study of adaptive immune responses and vaccine design.


Asunto(s)
Antígenos de Histocompatibilidad Clase I , Proteoma , Proteoma/metabolismo , Proteoma/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase I/química , Humanos , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/virología , SARS-CoV-2/inmunología , Programas Informáticos , Epítopos/química , Epítopos/inmunología , Bases de Datos de Proteínas , Algoritmos
16.
Front Immunol ; 15: 1445338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247192

RESUMEN

Background: Defective ribosomal products (DRiPs) are non-functional proteins rapidly degraded during or after translation being an essential source for MHC class I ligands. DRiPs are characterized to derive from a substantial subset of nascent gene products that degrade more rapidly than their corresponding native retiree pool. So far, mass spectrometry analysis revealed that a large number of HLA class I peptides derive from DRiPs. However, a specific viral DRiP on protein level was not described. In this study, we aimed to characterize and identify DRiPs derived from a viral protein. Methods: Using the nucleoprotein (NP) of the lymphocytic choriomeningitis virus (LCMV) which is conjugated N-terminally to ubiquitin, or the ubiquitin-like modifiers FAT10 or ISG15 the occurrence of DRiPs was studied. The formation and degradation of DRiPs was monitored by western blot with the help of a FLAG tag. Flow cytometry and cytotoxic T cells were used to study antigen presentation. Results: We identified several short lived DRiPs derived from LCMV-NP. Of note, these DRiPs could only be observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, but not in the wild type form. Using proteasome inhibitors, we could show that degradation of LCMV-NP derived DRiPs were proteasome dependent. Interestingly, the synthesis of DRiPs could be enhanced when cells were stressed with the help of FCS starvation. An enhanced NP118-126 presentation was observed when the LCMV-NP was modified with ubiquitin or ubiquitin-like modifiers, or under FCS starvation. Conclusion: Taken together, we visualize for the first time DRiPs derived from a viral protein. Furthermore, DRiPs formation, and therefore MHC-I presentation, is enhanced under cellular stress conditions. Our investigations on DRiPs in MHC class I antigen presentation open up new approaches for the development of vaccination strategies.


Asunto(s)
Presentación de Antígeno , Antígenos de Histocompatibilidad Clase I , Virus de la Coriomeningitis Linfocítica , Presentación de Antígeno/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Animales , Humanos , Estrés Fisiológico/inmunología , Linfocitos T Citotóxicos/inmunología , Ratones , Ubiquitinas/metabolismo , Ubiquitinas/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/inmunología , Proteolisis , Nucleoproteínas/inmunología , Nucleoproteínas/metabolismo
17.
Int J Mol Sci ; 25(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39273511

RESUMEN

Immunopeptidomics is the area of knowledge focused on the study of peptides assembled in the major histocompatibility complex (MHC), or human leukocyte antigen (HLA) in humans, which could activate the immune response via specific and selective T cell recognition. Advances in high-sensitivity mass spectrometry have enabled the detailed identification and quantification of the immunopeptidome, significantly impacting fields like oncology, infections, and autoimmune diseases. Current immunopeptidomics approaches primarily focus on workflows to identify immunopeptides from HLA molecules, requiring the isolation of the HLA from relevant cells or tissues. Common critical steps in these workflows, such as cell lysis, HLA immunoenrichment, and peptide isolation, significantly influence outcomes. A systematic evaluation of these steps led to the creation of an 'Immunopeptidome Score' to enhance the reproducibility and robustness of these workflows. This score, derived from LC-MS/MS datasets (ProteomeXchange identifier PXD038165), in combination with available information from public databases, aids in optimizing the immunopeptidome characterization process. The 'Immunopeptidome Score' has been applied in a systematic analysis of protein extraction, HLA immunoprecipitation, and peptide recovery yields across several tumor cell lines enabling the selection of peptides with optimal features and, therefore, the identification of potential biomarker and therapeutic targets.


Asunto(s)
Péptidos , Proteómica , Espectrometría de Masas en Tándem , Humanos , Péptidos/inmunología , Proteómica/métodos , Antígenos HLA/inmunología , Cromatografía Liquida/métodos , Línea Celular Tumoral , Proteoma/inmunología , Inmunoprecipitación/métodos
18.
Mol Biol Evol ; 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39324637

RESUMEN

Interspecific introgression is a potentially important source of novel variation of adaptive significance. Although multiple cases of adaptive introgression are well documented, broader generalizations about its targets and mechanisms are lacking. Multi-allelic balancing selection, particularly when acting through rare allele advantage, is an evolutionary mechanism expected to favor adaptive introgression. This is because introgressed alleles are likely to confer an immediate selective advantage, facilitating their establishment in the recipient species even in the face of strong genomic barriers to introgression. Vertebrate Major Histocompatibility Complex (MHC) genes are well-established targets of long-term multi-allelic balancing selection, so widespread adaptive MHC introgression is expected. Here we evaluate this hypothesis using data from 29 hybrid zones formed by fish, amphibians, squamates, turtles, birds and mammals at advanced stages of speciation. The key prediction of more extensive MHC introgression compared to genome-wide introgression was tested with three complementary statistical approaches. We found evidence for widespread adaptive introgression of MHC genes, providing a link between the process of adaptive introgression and an underlying mechanism. Our work identifies MHC introgression as a general mechanism by which species can acquire novel, and possibly regain previously lost, variation that may enhance defense against pathogens and increase adaptive potential.

19.
Sci Rep ; 14(1): 21710, 2024 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289439

RESUMEN

The prognosis of patients with high-risk neuroblastoma remains poor, partly due to inadequate immune recognition of the tumor. Neuroblastomas display extremely low surface MHC-I, preventing recognition by cytotoxic T lymphocytes (CTLs) and contributing to an immunosuppressive tumor microenvironment. Glycogen synthase kinase-3 beta (GSK-3ß) is involved in pathways that may affect the MHC-I antigen processing and presentation pathway. We proposed that therapeutic inhibition of GSK-3ß might improve the surface display of MHC-I molecules on neuroblastoma cells, and therefore tested if targeting of GSK-3ß using the inhibitor 9-ING-41 (Elraglusib) improves MHC-I-mediated CTL recognition. We analyzed mRNA expression data of neuroblastoma tumor datasets and found that non-MYCN-amplified neuroblastomas express higher GSK-3ß levels than MYCN-amplified tumors. In non-MYCN-amplified cells SH-SY5Y, SK-N-AS and SK-N-SH 9-ING-41 treatment enhanced MHC-I surface display and the expression levels of a subset of genes involved in MHC-I antigen processing and presentation. Further, 9-ING-41 treatment triggered increased STAT1 pathway activation, upstream of antigen presentation pathways in two of the three non-MYCN-amplified cell lines. Finally, in co-culture experiments with CD8 + T cells, 9-ING-41 improved immune recognition of the neuroblastoma cells, as evidenced by augmented T-cell activation marker levels and T-cell proliferation, which was further enhanced by PD-1 immune checkpoint inhibition. Our preclinical study provides experimental support to further explore the GSK-3ß inhibitor 9-ING-41 as an immunomodulatory agent to increase tumor immune recognition in neuroblastoma.


Asunto(s)
Linfocitos T CD8-positivos , Glucógeno Sintasa Quinasa 3 beta , Neuroblastoma , Humanos , Neuroblastoma/inmunología , Neuroblastoma/patología , Neuroblastoma/genética , Línea Celular Tumoral , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T Citotóxicos/inmunología , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo
20.
Explor Target Antitumor Ther ; 5(4): 801-817, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280250

RESUMEN

Cancer is the primary cause of death worldwide, and conventional treatments are painful, complicated, and have negative effects on healthy cells. However, cancer immunotherapy has emerged as a promising alternative. Principle of cancer immunotherapy is the re-activation of T-cell to combat the tumor that presents the peptide antigen on major histocompatibility complex (MHC). Those peptide antigens are identified with the set of omics technology, proteomics, genomics, and bioinformatics, which referred to immunopeptidomics. Indeed, immunopeptidomics can identify the neoantigens that are very useful for cancer immunotherapies. This review explored the use of immunopeptidomics for various immunotherapies, i.e., peptide-based vaccines, immune checkpoint inhibitors, oncolytic viruses, and chimeric antigen receptor T-cell. We also discussed how the diversity of neoantigens allows for the discovery of novel antigenic peptides while post-translationally modified peptides diversify the overall peptides binding to MHC or so-called MHC ligandome. The development of immunopeptidomics is keeping up-to-date and very active, particularly for clinical application. Immunopeptidomics is expected to be fast, accurate and reliable for the application for cancer immunotherapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA