Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
1.
Front Physiol ; 15: 1415037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086932

RESUMEN

Background: Carbon dioxide (CO2), traditionally viewed as a mere byproduct of cellular respiration, plays a multifaceted role in human physiology beyond simple elimination through respiration. CO2 may regulate the tumor microenvironment by significantly affecting the release of oxygen (O2) to tissues through the Bohr effect and by modulating blood pH and vasodilation. Previous studies suggest hypercapnia (elevated CO2 levels) might trigger optimized cellular mechanisms with potential therapeutic benefits. The role of CO2 in cellular stress conditions within tumor environments and its impact on O2 utilization offers a new investigative area in oncology. Objectives: This study aims to explore CO2's role in the tumor environment, particularly how its physiological properties and adaptive responses can influence therapeutic strategies. Methods: By applying a structured translational approach using the Work Breakdown Structure method, the study divided the analysis into six interconnected work packages to comprehensively analyze the interactions between carbon dioxide and the tumor microenvironment. Methods included systematic literature reviews, data analyses, data integration for identifying critical success factors and exploring extracellular environment modulation. The research used SMART criteria for assessing innovation and the applicability of results. Results: The research revealed that the human body's adaptability to hypercapnic conditions could potentially inform innovative strategies for manipulating the tumor microenvironment. This could enhance O2 utilization efficiency and manage adaptive responses to cellular stress. The study proposed that carbon dioxide's hormetic potential could induce beneficial responses in the tumor microenvironment, prompting clinical protocols for experimental validation. The research underscored the importance of pH regulation, emphasizing CO2 and carbonic acid's role in modulating metabolic and signaling pathways related to cancer. Conclusion: The study underscores CO2 as vital to our physiology and suggests potential therapeutic uses within the tumor microenvironment. pH modulation and cellular oxygenation optimization via CO2 manipulation could offer innovative strategies to enhance existing cancer therapies. These findings encourage further exploration of CO2's therapeutic potential. Future research should focus on experimental validation and exploration of clinical applications, emphasizing the need for interdisciplinary and collaborative approaches to tackle current challenges in cancer treatment.

2.
Clin Transl Oncol ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122983

RESUMEN

BACKGROUND: To investigate the impact of the tumor microenvironment (TME) on the responsiveness to chemotherapy in ovarian cancer (OV). METHODS: We integrated single cell RNA-seq datasets of OV containing chemo-response information, and characterize their clusters based on different TME sections. We focus on analyzing cell-cell communication to elaborate on the mechanisms by which different components of the TME directly influence the chemo-response of tumor cells. RESULTS: scRNA-seq datasets were annotated according to specific markers for different cell types. Differential analysis of malignant epithelial cells revealed that chemoresistance was associated with the TME. Notably, distinct TME components exhibited varying effects on chemoresistance. Enriched SPP1+ tumor-associated macrophages in chemo-resistant patients could promote chemoresistance through SPP1 binding to CD44 on tumor cells. Additionally, the overexpression of THBS2 in stromal cells could promote chemoresistance through binding with CD47 on tumor cells. In contrast, GZMA in the lymphocytes could downregulate the expression of PARD3 through direct interaction with PARD3, thereby attenuating chemoresistance in tumor cells. CONCLUSION: Our study indicates that the non-tumor cell components of the TME (e.g. SPP1+ TAMs, stromal cells and lymphocytes) can directly impact the chemo-response of OV and targeting the TME was potentially crucial in chemotherapy of OV.

3.
Int J Mol Sci ; 25(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39126001

RESUMEN

Breast cancer is the most diagnosed type of cancer worldwide and the second cause of death in women. Triple-negative breast cancer (TNBC) is the most aggressive, and due to the lack of specific targets, it is considered the most challenging subtype to treat and the subtype with the worst prognosis. The present study aims to determine the antitumor effect of beta-D-glucose-reduced silver nanoparticles (AgNPs-G) in a murine model of TNBC, as well as to study its effect on the tumor microenvironment. In an airbag model with 4T1 tumor cell implantation, the administration of AgNPs-G or doxorubicin showed antitumoral activity. Using immunohistochemistry it was demonstrated that treatment with AgNPs-G decreased the expression of PCNA, IDO, and GAL-3 and increased the expression of Caspase-3. In the tumor microenvironment, the treatment increased the percentage of memory T cells and innate effector cells and decreased CD4+ cells and regulatory T cells. There was also an increase in the levels of TNF-α, IFN-γ, and IL-6, while TNF-α was increased in serum. In conclusion, we suggest that AgNPs-G treatment has an antitumor effect that is demonstrated by its ability to remodel the tumor microenvironment in mice with TNBC.


Asunto(s)
Glucosa , Nanopartículas del Metal , Plata , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Animales , Microambiente Tumoral/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Plata/química , Nanopartículas del Metal/química , Femenino , Ratones , Glucosa/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Doxorrubicina/farmacología , Humanos
4.
Artículo en Inglés | MEDLINE | ID: mdl-39007523

RESUMEN

Solid tumors represent the most common type of cancer in humans and are classified into sarcomas, lymphomas, and carcinomas based on the originating cells. Among these, carcinomas, which arise from epithelial and glandular cells lining the body's tissues, are the most prevalent. Around the world, a significant increase in the incidence of solid tumors is observed during recent years. In this context, efforts to discover more effective cancer treatments have led to a deeper understanding of the tumor microenvironment (TME) and its components. Currently, the interactions between cancer cells and elements of the TME are being intensely investigated. Remarkable progress in research is noted, largely owing to the development of advanced in vitro models, such as tumor-on-a-chip models that assist in understanding and ultimately discovering new effective treatments for a specific type of cancer. The purpose of this article is to provide a review of the TME and cancer cell components, along with the advances on tumor-on-a-chip models designed to mimic tumors, offering a perspective on the current state of the art. Recent studies using this kind of microdevices that reproduce the TME have allowed a better understanding of the cancer and its treatments. Nevertheless, current applications of this technology present some limitations that must be overcome to achieve a broad application by researchers looking for a deeper knowledge of cancer and new strategies to improve current therapies.

5.
Clin Transl Oncol ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083142

RESUMEN

PURPOSE: This study aims to develop radiomics models and a nomogram based on machine learning techniques, preoperative dual-energy computed tomography (DECT) images, clinical and pathological characteristics, to explore the tumor microenvironment (TME) of clear cell renal cell carcinoma (ccRCC). METHODS: We retrospectively recruited of 87 patients diagnosed with ccRCC through pathological confirmation from Center I (training set, n = 69; validation set, n = 18), and collected their DECT images and clinical information. Feature selection was conducted using variance threshold, SelectKBest, and the least absolute shrinkage and selection operator (LASSO). Radiomics models were then established using 14 classifiers to predict TME cells. Subsequently, we selected the most predictive radiomics features to calculate the radiomics score (Radscore). A combined model was constructed through multivariate logistic regression analysis combining the Radscore and relevant clinical characteristics, and presented in the form of a nomogram. Additionally, 17 patients were recruited from Center II as an external validation cohort for the nomogram. The performance of the models was assessed using methods such as the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). RESULTS: The validation set AUC values for the radiomics models assessing CD8+, CD163+, and αSMA+ cells were 0.875, 0.889, and 0.864, respectively. Additionally, the external validation cohort AUC value for the nomogram reaches 0.849 and shows good calibration. CONCLUSION: Radiomics models could allow for non-invasive assessment of TME cells from DECT images in ccRCC patients, promising to enhance our understanding and management of the tumor.

6.
Clin Transl Oncol ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39066875

RESUMEN

PURPOSE: Breast cancer (BRCA) is characterized by a unique metastatic pattern, often presenting with bone metastasis (BoM), posing significant clinical challenges. Through the study of the immune microenvironment in BRCA BoM offer perspectives for therapeutic interventions targeting this specific metastatic manifestation of BRCA. METHODS: This study employs single-cell RNA sequencing and TCGA data analysis to comprehensively compare primary tumors (PT), lymph node metastasis (LN), and BoM. RESULTS AND CONCLUSIONS: Our investigation identifies a metastatic niche in BoM marked by an increased abundance of cancer-associated fibroblasts (CAFs) and reduced immune cell presence. A distinct subtype (State 1) of BRCA BoM cells associated with adverse prognosis is identified. State 1, displaying heightened stemness traits, may represent an initiation phase for BoM in BRCA. Complex cell communications involving tumor, stromal, and immune cells are revealed. Interactions of FN1, SPP1, and MDK correlate with elevated immune cells in BoM. CD46, MDK, and PTN interactions drive myofibroblast activation and proliferation, contributing to tissue remodeling. Additionally, MDK, PTN, and FN1 interactions influence FAP+ CAF activation, impacting cell adhesion and migration in BoM. These insights deepen our understanding of the metastatic niche in breast cancer BoM.

7.
Heliyon ; 10(12): e32762, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988554

RESUMEN

The use of vegetation in cities is one of the most promising strategies for urban climate change adaptation and mitigation. Tree shade influences heat storage from surfaces reducing long wave radiation emission which directly affects people. People 's heat perception depends more on insolation and the temperature of surrounding objects than on air temperature itself. There is a need for analyzes that include the combined effects of physical and human variables on thermal comfort, as well as location-based studies to address its climatic and social conditions. In order to compare the effect of the trees on microenvironmental temperature and perceived thermal comfort, we measured physical parameters and performed structured interviews on three downtown streets of Montevideo, Uruguay, which had sections with and without trees on four dates during the summer. Generally, people surveyed under both treatments stated they did not feel fully comfortable due to summer heat, but the proportion of people who stated feeling in thermal comfort under tree shade was more than double than the unshaded sections. The seasonal ARIMA analysis supported that the tree shade reduced the microenvironmental temperature by its effect on radiant temperature. By using a statistical decision tree methodology that combines all the variables in the same analysis, we found a greater impact of physical variables than personal variables on people's thermal comfort and thermal preferences. We also identified gender as a significant variable that affects people's thermal preferences, where 46.4 % of females preferred a slightly colder environment.

8.
Anim Reprod ; 21(2): e20230063, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39021495

RESUMEN

Lipid metabolism is essential for ensuring oocyte maturation and embryo development. ß-Oxidized fatty acids (FA) are a potent source of energy for cells, particularly for bovine somatic follicular cells. Superstimulatory protocols using follicle stimulating hormone (FSH) or FSH combined with equine chorionic gonadotropin (eCG) are capable of stimulating the follicular microenvironment and drive the expression of biomarker genes associated with lipid metabolism in the cumulus-oocyte complex (COC) for better embryo development. In this study, we assesed the effects of FSH and FSH/eCG protocols on the expression of genes related to lipid metabolism in bovine granulosa cells (GCs). Further, we measured triglyceride levels in follicular fluid (FF) obtained from both superstimulatd and non-superstimulated cows (synchronized cows). In summary, superstimulation with gonadotropins maintained the TG levels in bovine FF and ensured GCs mRNA abundance of ACSL1, ACSL3, ACSL6, SCD, ELOVL5, ELOVL6, FASN, FADS2, and SREBP1. We, however, found the abundance of CPTIB mRNA to be lower in GCs obtained from cows subjected to FSH/eCG protocols than synchronized cows. In conclusion, the findings of this study showed that ovarian superstimulation around the preovulatory phase has a mild impact on the lipid metabolism in GCs.

9.
Expert Rev Endocrinol Metab ; : 1-9, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975697

RESUMEN

INTRODUCTION: The global incidence of thyroid cancer (TC) has increased in the last decades. While improvements in diagnosis may contribute, overdiagnosis is also a possibility. This review focuses on the epidemiology, risk factors, and immune microenvironment associated with differentiated TC (DTC). AREAS COVERED: A search was conducted in Scielo, Scopus, and EMBASE databases, involving 72 articles. TC is the most common endocrine neoplasm, with DTC form being predominant. Its incidence has globally risen, particularly among women aged over 45. Endogenous risk factors for DTC include genetic disorders, race, age, female gender, obesity, and type 2 diabetes mellitus. Environmental risks involve ionizing radiation, whether through therapeutic treatment or environmental contamination from nuclear accidents, iodine deficiency, endocrine disruptors, residence in volcanic areas, environmental pollution, and stress. The use of anti-obesity medications remains controversial. The tumor's immune microenvironment is the histological space where tumor cells interact with host cells, crucial for understanding aggressiveness. Immunotherapy emerges as a promising intervention. EXPERT OPINION: Recent advances in DTC management offer transformative potential, requiring collaborative efforts for implementation. Emerging areas like precision medicine, molecular profiling, and immunotherapy present exciting prospects for future exploration, shaping the next era of diagnostic and therapeutic strategies in thyroid cancer research.


The global incidence of thyroid cancer (TC) has significantly increased, attributed partly to improved diagnosis and potentially to overdiagnosis. This review focuses on the epidemiology, risk factors, and immune microenvironment associated with differentiated TC (DTC). DTC is the most common endocrine neoplasm, and predominantly affects women over 45 years old. Endogenous risk factors include genetic disorders, race, age, female gender, obesity, and type 2 diabetes mellitus (T2DM). Environmental risks encompass ionizing radiation, iodine deficiency, endocrine disruptors, volcanic residence, pollution, and stress. The use of glucagon-like peptide 1 agonists remains controversial. The tumor's immune microenvironment is crucial for understanding aggressiveness, with immunotherapy showing promise. Understanding both macro and microenvironmental factors is crucial for devising effective prevention and treatment strategies for DTC.

10.
Clin Transl Oncol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971914

RESUMEN

Exosomes, measuring between 30 and 150 nm in diameter, are small vesicles enclosed by a lipid bilayer membrane. They are released by various cells in the body and carry a diverse payload of molecules, including proteins, lipids, mRNA, and different RNA species such as long non-coding RNA, circular RNA, and microRNA (miRNA). With lengths of approximately 19-22 nucleotides, miRNAs constitute the predominant cargo in exosomes and serve as crucial regulators of protein biosynthesis. In cancer detection, exosomal miRNAs show promise as non-invasive biomarkers due to their stability and presence in various bodily fluids, aiding in early detection and precise diagnosis with specific miRNA signatures linked to different cancer types. Moreover, exosomal miRNAs influence treatment outcomes by affecting cellular processes like cell growth, cell death, and drug resistance, thereby impacting response to therapy. Additionally, they serve as indicators of disease progression and treatment response, providing insights that can guide treatment decisions and improve patient care. Through longitudinal studies, changes in exosomal miRNA profiles have been observed to correlate with disease progression, metastasis, and response to therapy, highlighting their potential for real-time monitoring of tumor dynamics and treatment efficacy. Understanding the intricate roles of exosomal miRNAs in cancer biology offers opportunities for developing innovative diagnostic tools and therapeutic strategies tailored to individual patients, ultimately advancing precision medicine approaches and improving outcomes for cancer patients. This review aims to provide an understanding of the role of exosomal miRNAs in cancer detection, treatment, and monitoring, shedding light on their potential for revolutionising oncology practices and patient care.

11.
J Immunother Cancer ; 12(7)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969523

RESUMEN

BACKGROUND: Melanoma, the most lethal form of skin cancer, has undergone a transformative treatment shift with the advent of checkpoint blockade immunotherapy (CBI). Understanding the intricate network of immune cells infiltrating the tumor and orchestrating the control of melanoma cells and the response to CBI is currently of utmost importance. There is evidence underscoring the significance of tissue-resident memory (TRM) CD8 T cells and classic dendritic cell type 1 (cDC1) in cancer protection. Transcriptomic studies also support the existence of a TCF7+ (encoding TCF1) T cell as the most important for immunotherapy response, although uncertainty exists about whether there is a TCF1+TRM T cell due to evidence indicating TCF1 downregulation for tissue residency activation. METHODS: We used multiplexed immunofluorescence and spectral flow cytometry to evaluate TRM CD8 T cells and cDC1 in two melanoma patient cohorts: one immunotherapy-naive and the other receiving immunotherapy. The first cohort was divided between patients free of disease or with metastasis 2 years postdiagnosis while the second between CBI responders and non-responders. RESULTS: Our study identifies two CD8+TRM subsets, TCF1+ and TCF1-, correlating with melanoma protection. TCF1+TRM cells show heightened expression of IFN-γ and Ki67 while TCF1- TRM cells exhibit increased expression of cytotoxic molecules. In metastatic patients, TRM subsets undergo a shift in marker expression, with the TCF1- subset displaying increased expression of exhaustion markers. We observed a close spatial correlation between cDC1s and TRMs, with TCF1+TRM/cDC1 pairs enriched in the stroma and TCF1- TRM/cDC1 pairs in tumor areas. Notably, these TCF1- TRMs express cytotoxic molecules and are associated with apoptotic melanoma cells. Both TCF1+ and TCF1- TRM subsets, alongside cDC1, prove relevant to CBI response. CONCLUSIONS: Our study supports the importance of TRM CD8 T cells and cDC1 in melanoma protection while also highlighting the existence of functionally distinctive TCF1+ and TCF1- TRM subsets, both crucial for melanoma control and CBI response.


Asunto(s)
Linfocitos T CD8-positivos , Factor Nuclear 1-alfa del Hepatocito , Inmunoterapia , Melanoma , Humanos , Melanoma/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Inmunoterapia/métodos , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Femenino , Masculino , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Persona de Mediana Edad , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/terapia , Anciano
12.
Med Int (Lond) ; 4(5): 46, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983795

RESUMEN

Breast cancer (BC) is the leading cause of cancer-related mortality among women worldwide. Immunotherapies are a promising approach in cancer treatment, particularly for aggressive forms of BC with high mortality rates. However, the current eligibility for immunotherapy remains limited to a limited fraction of patients with BC. Myeloid-derived suppressor cells (MDSCs), originating from myeloid cells, are known for their dual role in immunosuppression and tumor promotion, significantly affecting patient outcomes by fostering the formation of premetastatic niches. Consequently, targeting MDSCs has emerged as a promising avenue for further exploration in therapeutic interventions. Leveraging nanotechnology-based drug delivery systems, which excel in accumulating drugs within tumors via passive or active targeting mechanisms, are a promising strategy for the use of MDSCs in the treatment of BC. The present review discusses the immunosuppressive functions of MDSCs, their role in BC, and the diverse strategies for targeting them in cancer therapy. Additionally, the present review discusses future advancements in BC treatments focusing on MDSCs. Furthermore, it elucidates the mechanisms underlying MDSC activation, recruitment and differentiation in BC progression, highlighting the clinical characteristics that render MDSCs suitable candidates for the therapy and targeted nanotherapy of BC.

13.
bioRxiv ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38915572

RESUMEN

The aging of mammalian ovary is accompanied by an increase in tissue fibrosis and heightened inflammation. Myeloid cells, including macrophages, monocytes, dendritic cells, and neutrophils, play pivotal roles in shaping the ovarian tissue microenvironment and regulating inflammatory responses. However, a comprehensive understanding of the roles of these cells in the ovarian aging process is lacking. To bridge this knowledge gap, we utilized single-cell RNA sequencing (scRNAseq) and flow cytometry analysis to functionally characterize CD45+ CD11b+ myeloid cell populations in young (3 months old) and aged (14-17 months old) murine ovaries. Our dataset unveiled the presence of five ovarian macrophage subsets, including a Cx3cr1 low Cd81 hi subset unique to the aged murine ovary. Most notably, our data revealed significant alterations in ANNEXIN and TGFß signaling within aged ovarian myeloid cells, which suggest a novel mechanism contributing to the onset and progression of aging-associated inflammation and fibrosis in the ovarian tissue.

14.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891880

RESUMEN

Cordycepin, or 3'-deoxyadenosine, is an adenosine analog with a broad spectrum of biological activity. The key structural difference between cordycepin and adenosine lies in the absence of a hydroxyl group at the 3' position of the ribose ring. Upon administration, cordycepin can undergo an enzymatic transformation in specific tissues, forming cordycepin triphosphate. In this study, we conducted a comprehensive analysis of the structural features of cordycepin and its derivatives, contrasting them with endogenous purine-based metabolites using chemoinformatics and bioinformatics tools in addition to molecular dynamics simulations. We tested the hypothesis that cordycepin triphosphate could bind to the active site of the adenylate cyclase enzyme. The outcomes of our molecular dynamics simulations revealed scores that are comparable to, and superior to, those of adenosine triphosphate (ATP), the endogenous ligand. This interaction could reduce the production of cyclic adenosine monophosphate (cAMP) by acting as a pseudo-ATP that lacks a hydroxyl group at the 3' position, essential to carry out nucleotide cyclization. We discuss the implications in the context of the plasticity of cancer and other cells within the tumor microenvironment, such as cancer-associated fibroblast, endothelial, and immune cells. This interaction could awaken antitumor immunity by preventing phenotypic changes in the immune cells driven by sustained cAMP signaling. The last could be an unreported molecular mechanism that helps to explain more details about cordycepin's mechanism of action.


Asunto(s)
AMP Cíclico , Desoxiadenosinas , Simulación de Dinámica Molecular , Neoplasias , Desoxiadenosinas/metabolismo , Desoxiadenosinas/farmacología , Desoxiadenosinas/química , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , AMP Cíclico/metabolismo , Adenosina Trifosfato/metabolismo , Transducción de Señal/efectos de los fármacos , Simulación por Computador , Adenilil Ciclasas/metabolismo
15.
Clin Transl Oncol ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38922537

RESUMEN

Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expression of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodulatory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer vaccines and cell therapy for overcoming resistance to treatment.

16.
Genes (Basel) ; 15(5)2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790160

RESUMEN

Pituitary neuroendocrine tumors (PitNET) are known to be variably infiltrated by different immune cells. Nonetheless, their role in pituitary oncogenesis has only begun to be unveiled. The immune microenvironment could determine the biological and clinical behavior of a neoplasm and may have prognostic implications. To evaluate the expression of immune-related genes and to correlate such expression with the presence of infiltrating immune cells in forty-two PitNETs of different lineages, we performed whole transcriptome analysis and RT-qPCR. Deconvolution analysis was carried out to infer the immune cell types present in each tumor and the presence of immune cells was confirmed by immunofluorescence. We found characteristic expression profiles of immune-related genes including those encoding interleukins and chemokines for each tumor lineage. Genes such as IL4-I1, IL-36A, TIRAP, IL-17REL, and CCL5 were upregulated in all PitNETS, whereas IL34, IL20RA, and IL-2RB characterize the NR5A1-, TBX19-, and POU1F1-derived tumors, respectively. Transcriptome deconvolution analysis showed that M2 macrophages, CD4+ T cells, CD8+ T cells, NK cells, and neutrophils can potentially infiltrate PitNET. Furthermore, CD4+ and CD8+ T cells and NK cells infiltration was validated by immunofluorescence. Expression of CCL18, IL-5RA, and HLA-B as well as macrophage tumor infiltration could identify patients who can potentially benefit from treatment with immune checkpoint inhibitors.


Asunto(s)
Tumores Neuroendocrinos , Neoplasias Hipofisarias , Transcriptoma , Microambiente Tumoral , Humanos , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/inmunología , Neoplasias Hipofisarias/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/inmunología , Tumores Neuroendocrinos/patología , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica/métodos , Masculino , Femenino , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Persona de Mediana Edad , Adulto
17.
Cancers (Basel) ; 16(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38730655

RESUMEN

Despite the unique and complex nature of cancer pain, the activation of different ion channels can be related to the initiation and maintenance of pain. The transient receptor potential vanilloid 4 (TRPV4) is a cation channel broadly expressed in sensory afferent neurons. This channel is activated by multiple stimuli to mediate pain perception associated with inflammatory and neuropathic pain. Here, we focused on summarizing the role of TRPV4 in cancer etiology and cancer-induced pain mechanisms. Many studies revealed that the administration of a TRPV4 antagonist and TRPV4 knockdown diminishes nociception in chemotherapy-induced peripheral neuropathy (CIPN). Although the evidence on TRPV4 channels' involvement in cancer pain is scarce, the expression of these receptors was reportedly enhanced in cancer-induced bone pain (CIBP), perineural, and orofacial cancer models following the inoculation of tumor cells to the bone marrow cavity, sciatic nerve, and tongue, respectively. Effective pain management is a continuous problem for patients diagnosed with cancer, and current guidelines fail to address a mechanism-based treatment. Therefore, examining new molecules with potential antinociceptive properties targeting TRPV4 modulation would be interesting. Identifying such agents could lead to the development of treatment strategies with improved pain-relieving effects and fewer adverse effects than the currently available analgesics.

18.
Heliyon ; 10(9): e30360, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711658

RESUMEN

In amyotrophic lateral sclerosis (ALS), astrocytes are considered key players in some non-cell non-neuronal autonomous mechanisms that underlie motor neuron death. However, it is unknown how much of these deleterious features were permanently acquired. To assess this point, we evaluated if the most remarkable features of neurotoxic aberrant glial phenotypes (AbAs) isolated from paralytic rats of the ALS model G93A Cu/Zn superoxide dismutase 1 (SOD1) could remain upon long lasting cultivation. Real time PCR, immunolabelling and zymography analysis showed that upon many passages, AbAs preserved the cell proliferation capacity, mitochondrial function and response to different compounds that inhibit some key astrocyte functions but decreased the expression of parameters associated to cell lineage, homeostasis and inflammation. As these results are contrary to the sustained inflammatory status observed along disease progression in SOD1G93A rats, we propose that the most AbAs remarkable features related to homeostasis and neurotoxicity were not permanently acquired and might depend on the signaling coming from the injuring microenvironment present in the degenerating spinal cord of terminal rats.

19.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791312

RESUMEN

Glioblastomas (GBM) are the most common primary malignant brain tumors, comprising 2% of all cancers in adults. Their location and cellular and molecular heterogeneity, along with their highly infiltrative nature, make their treatment challenging. Recently, our research group reported promising results from a prospective phase II clinical trial involving allogeneic vaccination with dendritic cells (DCs). To date, six out of the thirty-seven reported cases remain alive without tumor recurrence. In this study, we focused on the characterization of infiltrating immune cells observed at the time of surgical resection. An analytical model employing a neural network-based predictive algorithm was used to ascertain the potential prognostic implications of immunological variables on patients' overall survival. Counterintuitively, immune phenotyping of tumor-associated macrophages (TAMs) has revealed the extracellular marker PD-L1 to be a positive predictor of overall survival. In contrast, the elevated expression of CD86 within this cellular subset emerged as a negative prognostic indicator. Fundamentally, the neural network algorithm outlined here allows a prediction of the responsiveness of patients undergoing dendritic cell vaccination in terms of overall survival based on clinical parameters and the profile of infiltrated TAMs observed at the time of tumor excision.


Asunto(s)
Neoplasias Encefálicas , Células Dendríticas , Glioblastoma , Inmunoterapia , Humanos , Células Dendríticas/inmunología , Glioblastoma/terapia , Glioblastoma/inmunología , Glioblastoma/mortalidad , Glioblastoma/patología , Inmunoterapia/métodos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/patología , Masculino , Femenino , Persona de Mediana Edad , Antígeno B7-H1/metabolismo , Pronóstico , Adulto , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Anciano , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo
20.
Clin Transl Oncol ; 26(10): 2395-2417, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38602644

RESUMEN

The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Microambiente Tumoral , Humanos , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/metabolismo , Neoplasias/patología , Neoplasias/terapia , Resistencia a Antineoplásicos , Transducción de Señal , Citocinas/metabolismo , Progresión de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA