Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 626
Filtrar
1.
Cell Mol Life Sci ; 81(1): 296, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992165

RESUMEN

Next to its classical role in MHC II-mediated antigen presentation, CD74 was identified as a high-affinity receptor for macrophage migration inhibitory factor (MIF), a pleiotropic cytokine and major determinant of various acute and chronic inflammatory conditions, cardiovascular diseases and cancer. Recent evidence suggests that CD74 is expressed in T cells, but the functional relevance of this observation is poorly understood. Here, we characterized the regulation of CD74 expression and that of the MIF chemokine receptors during activation of human CD4+ T cells and studied links to MIF-induced T-cell migration, function, and COVID-19 disease stage. MIF receptor profiling of resting primary human CD4+ T cells via flow cytometry revealed high surface expression of CXCR4, while CD74, CXCR2 and ACKR3/CXCR7 were not measurably expressed. However, CD4+ T cells constitutively expressed CD74 intracellularly, which upon T-cell activation was significantly upregulated, post-translationally modified by chondroitin sulfate and could be detected on the cell surface, as determined by flow cytometry, Western blot, immunohistochemistry, and re-analysis of available RNA-sequencing and proteomic data sets. Applying 3D-matrix-based live cell-imaging and receptor pathway-specific inhibitors, we determined a causal involvement of CD74 and CXCR4 in MIF-induced CD4+ T-cell migration. Mechanistically, proximity ligation assay visualized CD74/CXCR4 heterocomplexes on activated CD4+ T cells, which were significantly diminished after MIF treatment, pointing towards a MIF-mediated internalization process. Lastly, in a cohort of 30 COVID-19 patients, CD74 surface expression was found to be significantly upregulated on CD4+ and CD8+ T cells in patients with severe compared to patients with only mild disease course. Together, our study characterizes the MIF receptor network in the course of T-cell activation and reveals CD74 as a novel functional MIF receptor and MHC II-independent activation marker of primary human CD4+ T cells.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Linfocitos T CD4-Positivos , COVID-19 , Antígenos de Histocompatibilidad Clase II , Oxidorreductasas Intramoleculares , Activación de Linfocitos , Factores Inhibidores de la Migración de Macrófagos , SARS-CoV-2 , Humanos , Antígenos de Diferenciación de Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Activación de Linfocitos/inmunología , SARS-CoV-2/metabolismo , SARS-CoV-2/inmunología , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/patología , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/genética , Receptores CXCR4/metabolismo , Receptores CXCR4/genética , Movimiento Celular , Masculino , Femenino , Persona de Mediana Edad , Receptores Inmunológicos
2.
ChemMedChem ; : e202400394, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977403

RESUMEN

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine with roles in innate and adaptive human immune responses, as well as inflammation. MIF exerts its biological activity by binding to the cell surface receptor CD74 as well as intracellular signalling proteins. MIF also possesses keto-enol tautomerase activity. Inhibition of the tautomerase activity has been associated with loss of biological activity of MIF and a potential anticancer target. Isothiocyanates (ITCs) are a class of compounds present in cruciferous vegetables that inhibit the MIF tautomerase activity via covalent modification of the N-terminal proline. A range of substituted ITCs featuring benzyl, phenethyl and phenyl propyl isothiocyanates were designed, synthesised and tested to determine any structure activity relationship for inhibiting MIF. Crystal structures of covalent compounds 8 and 9 in complex with rhMIF revealed key hydrogen bonding and edge-to-face π stacking interactions. Compound 9 and 11 with sub micromolar activity were tested in the NCI60 cancer cell lines panel. Both compounds showed tissue-specific reduced growth in colon and renal cancer cell lines, while one of these showed potent, dose-dependent inhibition of growth against all seven colon cancer cell lines (GI50 < 2.5 µM) and all eight renal cancer cell lines (GI50 < 2.2 µM).

3.
Biol Proced Online ; 26(1): 21, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38969982

RESUMEN

BACKGROUND: The role of tumor inflammatory microenvironment in the advancement of cancer, particularly prostate cancer, is widely acknowledged. ELL-associated factor 2 (EAF2), a tumor suppressor that has been identified in the prostate, is often downregulated in prostate cancer. Earlier investigations have shown that mice with EAF2 gene knockout exhibited a substantial infiltration of inflammatory cells into the prostatic stroma. METHODS: A cohort comprising 38 patients who had been diagnosed with prostate cancer and subsequently undergone radical prostatectomy (RP) was selected. These patients were pathologically graded according to the Gleason scoring system and divided into two groups. The purpose of this selection was to investigate the potential correlation between EAF2 and CD163 using immunohistochemistry (IHC) staining. Additionally, in vitro experimentation was conducted to verify the relationship between EAF2 expression, macrophage migration and polarization. RESULTS: Our study demonstrated that in specimens of human prostate cancer, the expression of EAF2 was notably downregulated, and this decrease was inversely associated with the number of CD163-positive macrophages that infiltrated the cancerous tissue. Cell co-culture experiments revealed that the chemotactic effect of tumor cells towards macrophages was intensified and that macrophages differentiated into tumor-associated macrophages (TAMs) when EAF2 was knocked out. Additionally, the application of cytokine protein microarray showed that the expression of chemokine macrophage migration inhibitory factor (MIF) increased after EAF2 knockout. CONCLUSIONS: Our findings suggested that EAF2 was involved in the infiltration of CD163-positive macrophages in prostate cancer via MIF.

4.
Redox Biol ; 75: 103264, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38972295

RESUMEN

MIF is a ubiquitous protein involved in proinflammatory processes, which undergoes an oxidation-driven conformational change to oxidized (ox)MIF. We demonstrate that hypochlorous acid, produced by neutrophil-released myeloperoxidase (MPO) under inflammatory conditions, effectively oxidizes MIF into the oxMIF isoform, which is specifically recognized by the anti-oxMIF therapeutic antibody, ON104. NMR investigation of MIF oxidized by the MPO system revealed increased flexibility throughout the MIF structure, including at several catalytic and allosteric sites. Mass spectrometry of MPO-oxMIF revealed methionines as the primary site of oxidation, whereas Pro2 and Tyr99/100 remained almost unmodified. ELISA, SPR and cell-based assays demonstrated that structural changes caused by MPO-driven oxidation promoted binding of oxMIF to its receptor, CD74, which does not occur with native MIF. These data reveal the environment and modifications that facilitate interactions between MIF and its pro-inflammatory receptor, and a route for therapeutic intervention targeting the oxMIF isoform.

5.
Cell Biochem Biophys ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39018005

RESUMEN

Colorectal cancer is one of the most common malignant tumors worldwide, with high incidence and mortality rates making it a focus of research. Chemotherapy is a primary treatment modality for colon cancer, but chemotherapy resistance severely impacts treatment efficacy. MIF has been found to promote tumor progression and resistance in various cancers. This study aims to investigate the role of MIF in chemotherapy resistance in colon cancer and its potential mechanisms, particularly through the upregulation of CXCR7 expression, affecting the metabolism and drug sensitivity of colon cancer cells. The expression levels of MIF in colon cancer tissues and its association with patient prognosis were evaluated by analyzing TCGA and HPA data. Subsequently, the expression levels of MIF in colon cancer cell lines and resistant cell lines were detected by qRT-PCR and immunohistochemistry, and the effect of MIF on oxaliplatin sensitivity was assessed. The impact of MIF on the metabolic activity of colon cancer cells was measured using a cellular energy metabolism analyzer. Further experiments explored the mechanism by which MIF affects the metabolic activity of colon cancer cells through the upregulation of CXCR7 expression, and the role of CTCF in regulating CXCR7 transcription was validated by silencing CTCF. Finally, the effect of MIF on drug sensitivity of colon cancer cells was verified in a mouse xenograft tumor model. In this study, we found that the expression of MIF in colon cancer tissues was significantly higher than in normal tissues, and high MIF expression was associated with poor prognosis in patients. The expression levels of MIF in resistant colon cancer cell lines were significantly higher than in parental cell lines, and MIF overexpression significantly increased the resistance of colon cancer cells to oxaliplatin. Conversely, silencing MIF significantly reduced the IC50 value of resistant cells and increased apoptosis. MIF overexpression significantly increased the ECAR and OCR levels of colon cancer cells, while MIF knockdown significantly reduced these metabolic indicators. Further studies indicated that MIF affects the metabolic activity of colon cancer cells by upregulating CXCR7 expression. CTCF binding peaks at the CXCR7 promoter region and luciferase activity assays indicated that CTCF regulates CXCR7 transcription, and silencing CTCF significantly enhanced the sensitivity of colon cancer cells to oxaliplatin. In vivo experiments in mice showed that MIF silencing combined with oxaliplatin treatment significantly inhibited tumor growth and increased the necrotic area of tumor tissues. In conclusion, this study reveals the crucial role of MIF in chemotherapy resistance in colon cancer through the upregulation of CXCR7 expression, with CTCF playing an important regulatory role in this process. Our findings provide new theoretical insights and potential therapeutic targets for overcoming chemotherapy resistance in colon cancer. Future research should further explore the roles of MIF and CXCR7 in other types of cancers and the potential of MIF and CXCR7 as therapeutic targets.

6.
Oncotarget ; 15: 507-520, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028303

RESUMEN

Macrophage Migration Inhibitory Factor (MIF) and its homolog D-dopachrome Tautomerase (DDT) have been implicated as drivers of tumor progression across a variety of cancers. Recent evidence suggests MIF as a therapeutic target in immune checkpoint inhibition (ICI) resistant melanomas, however clinical evidence of MIF and particularly of DDT remain limited. This retrospective study analyzed 97 patients treated at Yale for melanoma between 2002-2020. Bulk-RNA sequencing of patient tumor samples from the Skin Cancer SPORE Biorepository was used to evaluate for differential gene expression of MIF, DDT, CD74, and selected inflammatory markers, and gene expression was correlated with patient survival outcomes. Our findings revealed a strong correlation between MIF and DDT levels, with no statistically significant difference across common melanoma mutations and subtypes. Improved survival was associated with lower MIF and DDT levels and higher CD74:MIF and CD74:DDT levels. High CD74:DDT and CD74:MIF levels were also associated with enrichment of infiltrating inflammatory cell markers. These data suggest DDT as a novel target in immune therapy. Dual MIF and DDT blockade may provide synergistic responses in patients with melanoma, irrespective of common mutations, and may overcome ICI resistance. These markers may also provide prognostic value for further biomarker development.


Asunto(s)
Antígenos de Diferenciación de Linfocitos B , Biomarcadores de Tumor , Antígenos de Histocompatibilidad Clase II , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos , Melanoma , Humanos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Melanoma/mortalidad , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/genética , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Pronóstico , Masculino , Femenino , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Adulto , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/mortalidad , Mutación , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Anciano de 80 o más Años
7.
Inflamm Res ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844677

RESUMEN

BACKGROUND: Inflammatory macrophage infiltration plays a critical role in acute kidney disease induced by ischemia-reperfusion (IRI-AKI). Calycosin is a natural flavone with multiple bioactivities. This study aimed to investigate the therapeutic role of calycosin in IRI-AKI and its underlying mechanism. METHODS: The renoprotective and anti-inflammatory effects of calycosin were analyzed in C57BL/6 mice with IRI-AKI and lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA-seq was used for mechanism investigation. The molecular target of calycosin was screened by in silico methods and validated by surface plasmon resonance (SPR). Macrophage chemotaxis was analyzed using Transwell and agarose gel spot assays. RESULTS: Calycosin treatment significantly reduced serum creatinine and urea nitrogen and attenuated tubular destruction in IRI-AKI mice. Additionally, calycosin markedly suppressed NF-κB signaling activation and the expression of inflammatory mediators IL-1ß and TNF-α in IRI-AKI kidneys and LPS-stimulated RAW 264.7 cells. Interestingly, RNA-seq revealed calycosin remarkably downregulated chemotaxis-related pathways in RAW 264.7 cells. Among the differentially expressed genes, Ccl2/MCP-1, a critical chemokine mediating macrophage inflammatory chemotaxis, was downregulated in both LPS-stimulated RAW 264.7 cells and IRI-AKI kidneys. Consistently, calycosin treatment attenuated macrophage infiltration in the IRI-AKI kidneys. Importantly, in silico target prediction, molecular docking, and SPR assay demonstrated that calycosin directly binds to macrophage migration inhibitory factor (MIF). Functionally, calycosin abrogated MIF-stimulated NF-κB signaling activation and Ccl2 expression and MIF-mediated chemotaxis in RAW 264.7 cells. CONCLUSIONS: In summary, calycosin attenuates IRI-AKI by inhibiting MIF-mediated macrophage inflammatory chemotaxis, suggesting it could be a promising therapeutic agent for the treatment of IRI-AKI.

8.
Front Immunol ; 15: 1361343, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38846956

RESUMEN

Macrophages are a rich source of macrophage migration inhibitory factor (MIF). It is well established that macrophages and MIF play a pathogenic role in anti-glomerular basement membrane crescentic glomerulonephritis (anti-GBM CGN). However, whether macrophages mediate anti-GBM CGN via MIF-dependent mechanism remains unexplored, which was investigated in this study by specifically deleting MIF from macrophages in MIFf/f-lysM-cre mice. We found that compared to anti-GBM CGN induced in MIFf/f control mice, conditional ablation of MIF in macrophages significantly suppressed anti-GBM CGN by inhibiting glomerular crescent formation and reducing serum creatinine and proteinuria while improving creatine clearance. Mechanistically, selective MIF depletion in macrophages largely inhibited renal macrophage and T cell recruitment, promoted the polarization of macrophage from M1 towards M2 via the CD74/NF-κB/p38MAPK-dependent mechanism. Unexpectedly, selective depletion of macrophage MIF also significantly promoted Treg while inhibiting Th1 and Th17 immune responses. In summary, MIF produced by macrophages plays a pathogenic role in anti-GBM CGN. Targeting macrophage-derived MIF may represent a novel and promising therapeutic approach for the treatment of immune-mediated kidney diseases.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular , Antígenos de Diferenciación de Linfocitos B , Antígenos de Histocompatibilidad Clase II , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos , Macrófagos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Enfermedad por Anticuerpos Antimembrana Basal Glomerular/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/genética , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Diferenciación de Linfocitos B/metabolismo , Modelos Animales de Enfermedad , FN-kappa B/metabolismo , Ratones Noqueados , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ratones Endogámicos C57BL , Células Th17/inmunología , Células Th17/metabolismo , Proteinuria/inmunología , Transducción de Señal
9.
Transl Res ; 272: 1-18, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38823438

RESUMEN

OBJECTIVES: To unravel the heterogeneity and function of microenvironmental neutrophils during intervertebral disc degeneration (IDD). METHODS: Single-cell RNA sequencing (scRNA-seq) was utilized to dissect the cellular landscape of neutrophils in intervertebral disc (IVD) tissues and their crosstalk with nucleus pulposus cells (NPCs). The expression levels of macrophage migration inhibitory factor (MIF) and ACKR3 in IVD tissues were detected. The MIF/ACKR3 axis was identified and its effects on IDD were investigated in vitro and in vivo. RESULTS: We sequenced here 71520 single cells from 5 control and 9 degenerated IVD samples using scRNA-seq. We identified a unique cluster of neutrophils abundant in degenerated IVD tissues that highly expressed MIF and was functionally enriched in extracellular matrix organization (ECMO). Cell-to-cell communication analyses showed that this ECMO-neutrophil subpopulation was closely interacted with an effector NPCs subtype, which displayed high expression of ACKR3. Further analyses revealed that MIF was positively correlated with ACKR3 and functioned via directly binding to ACKR3 on effector NPCs. MIF inhibition attenuated degenerative changes of NPCs and extracellular matrix, which could be partially reversed by ACKR3 overexpression. Clinically, a significant correlation of high MIF/ACKR3 expression with advanced IDD grade was observed. Furthermore, we also found a positive association between MIF+ ECMO-neutrophil counts and ACKR3+ effector NPCs density as well as higher expression of the MIF/ACKR3 signaling in areas where these two cell types were neighbors. CONCLUSIONS: These data suggest that ECMO-neutrophil promotes IDD progression by their communication with NPCs via the MIF/ACKR3 axis, which may shed light on therapeutic strategies.

10.
Sci Rep ; 14(1): 14892, 2024 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937503

RESUMEN

Accurate screening of COVID-19 infection status for symptomatic patients is a critical public health task. Although molecular and antigen tests now exist for COVID-19, in resource-limited settings, screening tests are often not available. Furthermore, during the early stages of the pandemic tests were not available in any capacity. We utilized an automated machine learning (ML) approach to train and evaluate thousands of models on a clinical dataset consisting of commonly available clinical and laboratory data, along with cytokine profiles for patients (n = 150). These models were then further tested for generalizability on an out-of-sample secondary dataset (n = 120). We were able to develop a ML model for rapid and reliable screening of patients as COVID-19 positive or negative using three approaches: commonly available clinical and laboratory data, a cytokine profile, and a combination of the common data and cytokine profile. Of the tens of thousands of models automatically tested for the three approaches, all three approaches demonstrated > 92% sensitivity and > 88 specificity while our highest performing model achieved 95.6% sensitivity and 98.1% specificity. These models represent a potential effective deployable solution for COVID-19 status classification for symptomatic patients in resource-limited settings and provide proof-of-concept for rapid development of screening tools for novel emerging infectious diseases.


Asunto(s)
COVID-19 , Citocinas , Aprendizaje Automático , Humanos , COVID-19/diagnóstico , Citocinas/sangre , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , Tamizaje Masivo/métodos , Masculino , Femenino , Sensibilidad y Especificidad , Persona de Mediana Edad , Adulto , Anciano
11.
J Biol Chem ; 300(7): 107443, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838773

RESUMEN

Functional variants of the gene for the cytokine macrophage migration inhibitory factor (MIF) are defined by a 4-nucleotide promoter microsatellite (-794 CATT5-8, rs5844572) and confer risk for autoimmune, infectious, and oncologic diseases. We describe herein the discovery of a prototypic, small molecule inhibitor of MIF transcription with selectivity for high microsatellite repeat number and correspondingly high gene expression. Utilizing a high-throughput luminescent proximity screen, we identify 1-carbomethoxy-5-formyl-4,6,8-trihydroxyphenazine (CMFT) to inhibit the functional interaction between the transcription factor ICBP90 (namely, UHRF1) and the MIF -794 CATT5-8 promoter microsatellite. CMFT inhibits MIF mRNA expression in a -794 CATT5-8 length-dependent manner with an IC50 of 470 nM, and preferentially reduces ICBP90-dependent MIF mRNA and protein expression in high-genotypic versus low-genotypic MIF-expressing macrophages. RNA expression analysis also showed CMFT to downregulate MIF-dependent, inflammatory gene expression with little evidence of off-target metabolic toxicity. These findings provide proof-of-concept for advancing the pharmacogenomic development of precision-based MIF inhibitors for diverse autoimmune and inflammatory conditions.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38916819

RESUMEN

PURPOSE: Macrophage migration inhibitory factor (MIF) is an integral cytokine for the modulation of both innate and adaptive immunity and is involved in the pathogenesis of various cancers. However, conflicting findings on the relationship between MIF polymorphisms and breast cancer (BC) have been reported in earlier research. We investigated the clinical value of serum MIF levels and the association between MIF rs1049829 and rs755622 variants with their serum levels and propensity to develop BC. METHODS: A total of 133 treatment-naïve Egyptian BC females and 126 apparently healthy controls were matriculated in this case-control study. The serum MIF protein levels were quantified by ELISA, whereas the genotyping was executed utilizing the TaqMan® allelic discrimination assay. RESULTS: A significant increase in the serum MIF level in BC cases was observed in comparison to control subjects (P < 0.0001), with a diagnostic potential to discriminate BC with 92.5% sensitivity and 73.7% specificity at a cut-off value > 9.47 ng/mL. Besides, a significant difference in serum MIF level was observed in BC cases with progesterone receptor (PR) negativity compared to those with PR positivity (P = 0.046). Moreover, a significant association was depicted between the rs1049829 variant of MIF gene and the protective effect against BC meanwhile the rs755622 variant demonstrated no significant link with BC risk. CONCLUSIONS: This study revealed that serum MIF levels may be regarded as a promising serum tumor marker for BC. Also, the rs1049829 variant of the MIF gene is considered a protective candidate against BC.

13.
Adv Sci (Weinh) ; : e2403963, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38924362

RESUMEN

Ferroptosis is a form of regulated cell death that can be modulated by small molecules and has the potential for the development of therapeutics for oncology. Although excessive lipid peroxidation is the defining hallmark of ferroptosis, DNA damage may also play a significant role. In this study, a potential mechanistic role for MIF in homologous recombination (HR) DNA repair is identified. The inhibition or genetic depletion of MIF or other HR proteins, such as breast cancer type 1 susceptibility protein (BRCA1), is demonstrated to significantly enhance the sensitivity of cells to ferroptosis. The interference with HR results in the translocation of the tumor suppressor protein p53 to the mitochondria, which in turn stimulates the production of reactive oxygen species. Taken together, the findings demonstrate that MIF-directed small molecules enhance ferroptosis via a putative MIF-BRCA1-RAD51 axis in HR, which causes resistance to ferroptosis. This suggests a potential novel druggable route to enhance ferroptosis by targeted anticancer therapeutics in the future.

14.
Cancers (Basel) ; 16(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38730725

RESUMEN

Immune checkpoint blockade (ICB) therapy is used to treat a wide range of cancers; however, some patients are at risk of developing treatment resistance and/or immune-related adverse events (irAEs). Thus, there is a great need for the identification of reliable predictive biomarkers for response and toxicity. The cytokine MIF (macrophage migration inhibitory factor) and its cognate receptor CD74 are intimately connected with cancer progression and have previously been proposed as prognostic biomarkers for patient outcome in various cancers, including solid tumors such as malignant melanoma. Here, we assess their potential as predictive biomarkers for response to ICB therapy and irAE development. We provide a brief overview of their function and roles in the context of cancer and autoimmune disease. We also review the evidence showing that MIF and CD74 may be of use as predictive biomarkers of patient response to ICB therapy and irAE development. We also highlight that careful consideration is required when assessing the potential of serum MIF levels as a biomarker due to its reported circadian expression in human plasma. Finally, we suggest future directions for the establishment of MIF and CD74 as predictive biomarkers for ICB therapy and irAE development to guide further research in this field.

15.
Cell Rep Med ; 5(5): 101546, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38703766

RESUMEN

Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), a neurodegenerative disease characterized by motor neuron (MN) loss. We previously discovered that macrophage migration inhibitory factor (MIF), whose levels are extremely low in spinal MNs, inhibits mutant SOD1 misfolding and toxicity. In this study, we show that a single peripheral injection of adeno-associated virus (AAV) delivering MIF into adult SOD1G37R mice significantly improves their motor function, delays disease progression, and extends survival. Moreover, MIF treatment reduces neuroinflammation and misfolded SOD1 accumulation, rescues MNs, and corrects dysregulated pathways as observed by proteomics and transcriptomics. Furthermore, we reveal low MIF levels in human induced pluripotent stem cell-derived MNs from familial ALS patients with different genetic mutations, as well as in post mortem tissues of sporadic ALS patients. Our findings indicate that peripheral MIF administration may provide a potential therapeutic mechanism for modulating misfolded SOD1 in vivo and disease outcome in ALS patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Factores Inhibidores de la Migración de Macrófagos , Neuronas Motoras , Superóxido Dismutasa-1 , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/patología , Animales , Humanos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Ratones , Células Madre Pluripotentes Inducidas/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/genética , Ratones Transgénicos , Dependovirus/genética , Modelos Animales de Enfermedad , Masculino , Mutación/genética , Femenino , Pliegue de Proteína
16.
FASEB J ; 38(10): e23696, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38787620

RESUMEN

Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that plays a crucial role in antitumor immunity. However, the role of MIF in influencing the tumor microenvironment (TME) and prognosis of triple-negative breast cancer (TNBC) remains to be elucidated. Using R, we analyzed single-cell RNA sequencing (scRNA-seq) data of 41 567 cells from 10 TNBC tumor samples and spatial transcriptomic data from two patients. Relationships between MIF expression and immune cell infiltration, clinicopathological stage, and survival prognosis were determined using samples from The Cancer Genome Atlas (TCGA) and validated in a clinical cohort using immunohistochemistry. Analysis of scRNA-seq data revealed that MIF secreted by epithelial cells in TNBC patients could regulate the polarization of macrophages into the M2 phenotype, which plays a key role in modulating the TME. Spatial transcriptomic data also showed that epithelial cells (tumor cells) and MIF were proximally located. Analysis of TCGA samples confirmed that tumor tissues of patients with high MIF expression were enriched with M2 macrophages and showed a higher T stage. High MIF expression was significantly associated with poor patient prognosis. Immunohistochemical staining showed high MIF expression was associated with younger patients and worse clinicopathological staging. MIF secreted by epithelial cells may represent a potential biomarker for the diagnosis and prognosis of TNBC and may promote TNBC invasion by remodeling the tumor immune microenvironment.


Asunto(s)
Biomarcadores de Tumor , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos , Macrófagos , Neoplasias de la Mama Triple Negativas , Microambiente Tumoral , Humanos , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/genética , Femenino , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/genética , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Macrófagos/metabolismo , Macrófagos/inmunología , Pronóstico , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica
17.
Mol Neurobiol ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743209

RESUMEN

Intracerebral hemorrhage (ICH) is a subtype of stroke with the highest fatality and disability rate. Up to now, commonly used first-line therapies have limited value in improving prognosis. Angiogenesis is essential to neurological recovery after ICH. Recent studies have shown that microRNA-451(miR-451) plays an important role in angiogenesis by regulating the function of vascular endothelial cells. We found miR-451 was significantly decreased in the peripheral blood of ICH patients in the acute stage. Based on the clinical findings, we conducted this study to investigate the potential regulatory effect of miR-451 on angiogenesis after ICH. The expression of miR-451 in ICH mouse model and in a hemin toxicity model of human brain microvascular endothelial cells (hBMECs) was decreased the same as in ICH patients. MiR-451 negatively regulated the proliferation, migration, and tube formation of hBMECs in vitro. MiR-451 negatively regulated the microvessel density in the perihematoma tissue and affected neural functional recovery of ICH mouse model. Knockdown of miR-451 could recovered tight junction and protect the integrity of blood-brain barrier after ICH. Based on bioinformatic programs, macrophage migration inhibitory factor (MIF) was predicted to be the target gene and identified to be regulated by miR-451 inhibiting the protein translation. And p-AKT and p-ERK were verified to be downstream of MIF in angiogenesis. These results all suggest that miR-451 will be a potential target for regulating angiogenesis in ICH.

18.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732068

RESUMEN

Discovered as inflammatory cytokines, MIF and DDT exhibit widespread expression and have emerged as critical mediators in the response to infection, inflammation, and more recently, in cancer. In this comprehensive review, we provide details on their structures, binding partners, regulatory mechanisms, and roles in cancer. We also elaborate on their significant impact in driving tumorigenesis across various cancer types, supported by extensive in vitro, in vivo, bioinformatic, and clinical studies. To date, only a limited number of clinical trials have explored MIF as a therapeutic target in cancer patients, and DDT has not been evaluated. The ongoing pursuit of optimal strategies for targeting MIF and DDT highlights their potential as promising antitumor candidates. Dual inhibition of MIF and DDT may allow for the most effective suppression of canonical and non-canonical signaling pathways, warranting further investigations and clinical exploration.


Asunto(s)
Carcinogénesis , Oxidorreductasas Intramoleculares , Factores Inhibidores de la Migración de Macrófagos , Neoplasias , Transducción de Señal , Humanos , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Factores Inhibidores de la Migración de Macrófagos/antagonistas & inhibidores , Oxidorreductasas Intramoleculares/metabolismo , Oxidorreductasas Intramoleculares/antagonistas & inhibidores , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Animales , Transducción de Señal/efectos de los fármacos , Carcinogénesis/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología
19.
J Infect Dis ; 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687212

RESUMEN

Proinflammatory cytokine levels and host genetic makeup are key determinants of Clostridioides difficile infection (CDI) outcomes. We previously reported that blocking the inflammatory cytokine macrophage migration inhibitory factor (MIF) ameliorates CDI. Here, we determined kinetics of MIF production and its association with a common genetic variant in leptin receptor (LEPR) using blood from patients with CDI. We found highest plasma MIF early after C difficile exposure and in individuals who express mutant/derived LEPR. Our data suggest that early-phase CDI provides a possible window of opportunity in which MIF targeting, potentially in combination with LEPR genotype, could have therapeutic utility.

20.
Thorac Cancer ; 15(14): 1164-1175, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38587042

RESUMEN

BACKGROUND: Sphingolipids not only serve as structural components for maintaining cell membrane fluidity but also function as bioactive molecules involved in cell signaling and the regulation of various biological processes. Their pivotal role in cancer cell development, encompassing cancer cell proliferation, migration, angiogenesis, and metastasis, has been a focal point for decades. However, the contribution of sphingolipids to the complexity of tumor microenvironment promoting cancer progression has been rarely investigated. METHODS: Through the integration of publicly available bulk RNA-seq and single-cell RNA-seq data, we conducted a comprehensive analysis to compare the transcriptomic features between tumors and adjacent normal tissues, thus elucidating the intricacies of the tumor microenvironment (TME). RESULTS: Disparities in sphingolipid metabolism (SLM)-associated genes were observed between normal and cancerous tissues, with the TME characterized by the enrichment of sphingolipid signaling in macrophages. Cellular interaction analysis revealed robust communication between macrophages and cancer cells exhibiting low SLM, identifying the crucial ligand-receptor pair, macrophage inhibitory factor (MIF)-CD74. Pseudo-time analysis unveiled the involvement of SLM in modulating macrophage polarization towards either M1 or M2 phenotypes. Categorizing macrophages into six subclusters based on gene expression patterns and function, the SPP1+ cluster, RGS1+ cluster, and CXCL10+ cluster were likely implicated in sphingolipid-induced M2 macrophage polarization. Additionally, the CXCL10+, AGER+, and FABP4+ clusters were likely to be involved in angiogenesis through their interaction with endothelial cells. CONCLUSION: Based on multiple scRNA-seq datasets, we propose that a MIF-targeted strategy could potentially impede the polarization from M1 to M2 and impair tumor angiogenesis in low-SLM non-small cell lung cancer (NSCLC), demonstrating its potent antitumor efficacy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neovascularización Patológica , Esfingolípidos , Macrófagos Asociados a Tumores , Humanos , Esfingolípidos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Macrófagos Asociados a Tumores/metabolismo , Transducción de Señal , Análisis de la Célula Individual , Ratones , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Animales , Análisis de Secuencia de ARN , Microambiente Tumoral , Angiogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA