Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Cureus ; 16(7): e64185, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39119395

RESUMEN

Background Clinical role transition is known to pose a challenge to doctors in training. The intensive care unit (ICU) is noted to be a demanding workplace environment, although relatively little is known about the experience of doctors as they transition to intensive care medicine (ICM) at the postgraduate level. Thus, this study aimed to explore the experience of registrar-grade doctors undergoing this transition and to examine the interplay between personal and professional life at this time. Methodology This qualitative study was guided by transcendental phenomenology and multiple and multidimensional transitions theory (MMT). Data were collected via 11 semi-structured interviews and analysed using a six-step analysis. Peer debriefing and a reflexive diary were used. Results The experience of doctors undergoing the transition to ICM was found to be influenced by the clinical environment of the ICU, a demanding and potentially stressful workplace, and one in which collegial support was valued. The previous experience of the individual undergoing the transition was relevant, and the impact of this transition on their professional development and identity was notable. Consistent with MMT, the interplay between personal and professional life was significant, as participants outlined the impact of anxiety before a shift, the emotional and cognitive burden of a shift, and the effect of this transition on their personal relationships. Conclusions This study observes the ICU to be an extremely challenging workplace environment, with a notable influence on the personal lives of those working therein. Nevertheless, ICM offers invaluable opportunities for learning and both personal and professional growth.

2.
Biomed Pharmacother ; 177: 117079, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38968801

RESUMEN

Macrophages are widely distributed throughout various tissues of the body, and mounting evidence suggests their involvement in regulating the tissue microenvironment, thereby influencing disease onset and progression through direct or indirect actions. In chronic kidney disease (CKD), disturbances in renal functional homeostasis lead to inflammatory cell infiltration, tubular expansion, glomerular atrophy, and subsequent renal fibrosis. Macrophages play a pivotal role in this pathological process. Therefore, understanding their role is imperative for investigating CKD progression, mitigating its advancement, and offering novel research perspectives for fibrosis treatment from an immunological standpoint. This review primarily delves into the intrinsic characteristics of macrophages, their origins, diverse subtypes, and their associations with renal fibrosis. Particular emphasis is placed on the transition between M1 and M2 phenotypes. In late-stage CKD, there is a shift from the M1 to the M2 phenotype, accompanied by an increased prevalence of M2 macrophages. This transition is governed by the activation of the TGF-ß1/SMAD3 and JAK/STAT pathways, which facilitate macrophage-to-myofibroblast transition (MMT). The tyrosine kinase Src is involved in both signaling cascades. By thoroughly elucidating macrophage functions and comprehending the modes and molecular mechanisms of macrophage-fibroblast interaction in the kidney, novel, tailored therapeutic strategies for preventing or attenuating the progression of CKD can be developed.


Asunto(s)
Fibrosis , Macrófagos , Insuficiencia Renal Crónica , Humanos , Macrófagos/patología , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/metabolismo , Animales , Transducción de Señal , Riñón/patología , Riñón/metabolismo , Progresión de la Enfermedad , Fenotipo
3.
J Psychiatr Res ; 175: 211-217, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38744160

RESUMEN

BACKGROUND: The relation between impulsivity and sleep indices is not well determined in patients receiving methadone maintenance treatment (MMT). AIMS: to evaluate high impulsivity prevalence, its risk factors and relation with sleep indices. METHODS: a random MMT sample (n = 61) plus MMT current cocaine users (n = 20) were assessed for impulsivity (Barratt impulsivity scale [BIS-11] and Balloon Analogue Risk task [BART]), sleep quality (Pittsburg Sleep Quality Index [PSQI]), sleepiness (The Epworth sleepiness scale [ESS]), and substance in urine. RESULTS: 81 patients, aged 56.6 ± 10, 54.3% tested positive to any substance, 53.1% with poor sleep (PSQI>5) and 43.2% with daytime sleepiness (ESS >7) were studied. Impulsivity (BIS-11 ≥ 72) prevalence was 27.9% (of the representative sample), and 30.9% of all participants. These patients characterized with any substance and shorter duration in MMT with no sleep indices or other differences including BART balloon task performance (that was higher only in any substance than non-substance user group). However, impulsive score linearly correlated with daytime sleepiness (R = 0.2, p = 0.05). Impulsivity proportion was lowest among those with no cocaine followed by cocaine use and the highest in those who used cocaine and opiates (20.8%, 33.3% and 60% respectively, p = 0.02), as daily sleep (38.3%, 42.1% and 60%, p = 0.3) although not statistically significant. CONCLUSION: Daytime sleepiness correlated with impulsivity, but cocaine usage is the robust factor. Further follow-up is warranted to determine whether substance discontinuing will lead to a reduction in impulsivity, and improved vigilance. Sleep quality did not relate to daytime sleepiness and impulsivity and need further research.

4.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731438

RESUMEN

It is very important to choose a suitable method and catalyst to treat coking wastewater. In this study, Fe-Ce-Al/MMT catalysts with different Fe/Ce molar ratios were prepared, characterized by XRD, SEM, and N2 adsorption/desorption, and treated with coking wastewater. The results showed that the optimal Fe-Ce-Al/MMT catalyst with a molar ratio of Fe/Ce of 7/3 has larger interlayer spacing, specific surface area, and pore volume. Based on the composition analysis of real coking wastewater and the study of phenol simulated wastewater, the response surface test of the best catalyst for real coking wastewater was carried out, and the results are as follows: initial pH 3.46, H2O2 dosage 19.02 mL/L, Fe2+ dosage 5475.39 mL/L, reaction temperature 60 °C, and reaction time 248.14 min. Under these conditions, the COD removal rate was 86.23%.

5.
Colloids Surf B Biointerfaces ; 238: 113925, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657556

RESUMEN

Antibiotic-loaded calcium phosphate cement (CPC) has emerged as a promising biomaterial for drug delivery in orthopedics. However, there are problems such as the burst release of antibiotics, low cumulative release ratio, inappropriate release cycle, inferior mechanical strength, and poor anti-collapse properties. In this research, montmorillonite-gentamicin (MMT-GS) was fabricated by solution intercalation method and served as the drug release pathways in CPC to avoid burst release of GS, achieving promoted cumulative release ratios and a release cycle matched the time of inflammatory response. The results indicated that the highest cumulative release ratio and release concentration of GS in CPC/MMT-GS was 94.1 ± 2.8 % and 1183.05 µg/mL, and the release cycle was up to 504 h. In addition, the hierarchical GS delivery system was divided into three stages, and the kinetics followed the Korsmeyer-Peppas model, the zero-order model, and the diffusion-dissolution model, respectively. Meanwhile, the compressive strength of CPC/MMT-GS was up to 51.33 ± 3.62 MPa. Antibacterial results demonstrated that CPC/MMT-GS exhibited excellent in vitro long-lasting antibacterial properties to E. coli and S. aureus. Furthermore, CPC/MMT-GS promoted osteoblast proliferation and exhibited excellent in vivo histocompatibility. Therefore, CPC/MMT-GS has favorable application prospects in the treatment of bone defects with bacterial infections and inflammatory reactions.


Asunto(s)
Antibacterianos , Bentonita , Cementos para Huesos , Fosfatos de Calcio , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Escherichia coli , Gentamicinas , Staphylococcus aureus , Bentonita/química , Antibacterianos/farmacología , Antibacterianos/química , Gentamicinas/farmacología , Gentamicinas/química , Gentamicinas/administración & dosificación , Gentamicinas/farmacocinética , Fosfatos de Calcio/química , Cementos para Huesos/química , Cementos para Huesos/farmacología , Animales , Escherichia coli/efectos de los fármacos , Ratones , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula
6.
Mol Med Rep ; 29(6)2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38639174

RESUMEN

Macrophage­inducible C­type lectin receptor (Mincle) is predominantly found on antigen­presenting cells. It can recognize specific ligands when stimulated by certain pathogens such as fungi and Mycobacterium tuberculosis. This recognition triggers the activation of the nuclear factor­κB pathway, leading to the production of inflammatory factors and contributing to the innate immune response of the host. Moreover, Mincle identifies lipid damage­related molecules discharged by injured cells, such as Sin3­associated protein 130, which triggers aseptic inflammation and ultimately hastens the advancement of renal damage, autoimmune disorders and malignancies by fostering tissue inflammation. Presently, research on the functioning of the Mincle receptor in different inflammatory and fibrosis­associated conditions has emerged as a popular topic. Nevertheless, there remains a lack of research on the impact of Mincle in promoting long­lasting inflammatory reactions and fibrosis. Additional investigation is required into the function of Mincle receptors in chronological inflammatory reactions and fibrosis of organ systems, including the progression from inflammation to fibrosis. Hence, the present study showed an overview of the primary roles and potential mechanism of Mincle in inflammation, fibrosis, as well as the progression of inflammation to fibrosis. The aim of the present study was to clarify the potential mechanism of Mincle in inflammation and fibrosis and to offer perspectives for the development of drugs that target Mincle.


Asunto(s)
Inflamación , Mycobacterium tuberculosis , Animales , Ratones , Fibrosis , Inmunidad Innata , Inflamación/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/metabolismo , FN-kappa B
7.
Front Cell Infect Microbiol ; 14: 1308362, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476167

RESUMEN

Infectious peritonitis is a leading cause of peritoneal functional impairment and a primary factor for therapy discontinuation in peritoneal dialysis (PD) patients. Although bacterial infections are a common cause of peritonitis episodes, emerging evidence suggests a role for viral pathogens. Toll-like receptors (TLRs) specifically recognize conserved pathogen-associated molecular patterns (PAMPs) from bacteria, viruses, and fungi, thereby orchestrating the ensuing inflammatory/immune responses. Among TLRs, TLR3 recognizes viral dsRNA and triggers antiviral response cascades upon activation. Epigenetic regulation, mediated by histone deacetylase (HDAC), has been demonstrated to control several cellular functions in response to various extracellular stimuli. Employing epigenetic target modulators, such as epidrugs, is a current therapeutic option in several cancers and holds promise in treating viral diseases. This study aims to elucidate the impact of TLR3 stimulation on the plasticity of human mesothelial cells (MCs) in PD patients and to investigate the effects of HDAC1-3 inhibition. Treatment of MCs from PD patients with the TLR3 agonist polyinosinic:polycytidylic acid (Poly(I:C)), led to the acquisition of a bona fide mesothelial-to-mesenchymal transition (MMT) characterized by the upregulation of mesenchymal genes and loss of epithelial-like features. Moreover, Poly(I:C) modulated the expression of several inflammatory cytokines and chemokines. A quantitative proteomic analysis of MCs treated with MS-275, an HDAC1-3 inhibitor, unveiled altered expression of several proteins, including inflammatory cytokines/chemokines and interferon-stimulated genes (ISGs). Treatment with MS-275 facilitated MMT reversal and inhibited the interferon signature, which was associated with reduced STAT1 phosphorylation. However, the modulation of inflammatory cytokine/chemokine production was not univocal, as IL-6 and CXCL8 were augmented while TNF-α and CXCL10 were decreased. Collectively, our findings underline the significance of viral infections in acquiring a mesenchymal-like phenotype by MCs and the potential consequences of virus-associated peritonitis episodes for PD patients. The observed promotion of MMT reversal and interferon response inhibition by an HDAC1-3 inhibitor, albeit without a general impact on inflammatory cytokine production, has translational implications deserving further analysis.


Asunto(s)
Benzamidas , Interferón Tipo I , Peritonitis , Piridinas , Virosis , Humanos , Interferón Tipo I/metabolismo , Receptor Toll-Like 3/metabolismo , Epigénesis Genética , Proteómica , Citocinas/metabolismo , Quimiocinas/metabolismo , Poli I-C/farmacología , Receptores Toll-Like/metabolismo , Virosis/genética , Fenotipo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo
8.
Environ Sci Technol ; 58(9): 4415-4427, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38373279

RESUMEN

Efficient mono- and divalent ion separation is pivotal for environmental conservation and energy utilization. Two-dimensional (2D) materials featuring interlayer nanochannels exhibit unique water and ion transport properties, rendering them highly suitable for water treatment membranes. In this work, we incorporated polydopamine/polyethylenimine (PDA/PEI) copolymers into 2D montmorillonite (MMT) nanosheet interlayer channels through electrostatic interactions and bioinspired bonding. A modified laminar structure was formed on the substrate surface via a straightforward vacuum filtration. The electrodialysis experiments reveal that these membranes could achieve monovalent permselectivity of 11.06 and Na+ flux of 2.09 × 10-8 mol cm-2 s-1. The enhanced permselectivity results from the synergistic effect of electrostatic and steric hindrance effect. In addition, the interaction between the PDA/PEI copolymer and the MMT nanosheet ensures the long-term operational stability of the membranes. Theoretical simulations reveal that Na+ has a lower migration energy barrier and higher migration rate for the modified MMT-based membrane compared to Mg2+. This work presents a novel approach for the development of monovalent permselective membranes.


Asunto(s)
Bentonita , Purificación del Agua , Iones , Filtración , Purificación del Agua/métodos
10.
Chem Biodivers ; 21(4): e202301899, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38345198

RESUMEN

This study presents the fabrication of a novel porous composite of graphene oxide-montmorillonite (GO-MMT) through the modification of montmorillonite using the freeze-drying method for the purpose of Pb removal. The characterization of the GO-MMT composite was conducted using scanning electron microscopy, Fourier transform infrared spectrometry, and X-ray diffraction. The results from batch adsorption experiments revealed that the GO-MMT composite exhibited a superior capacity for Pb removal compared to MMT. Furthermore, a single factor experiment confirmed that the dosage of the GO-MMT composite or GO, pH, temperature, and reaction time all significantly influenced the adsorption of Pb by the GO-MMT composite, MMT, or GO. This superiority can be attributed to the presence of oxygen-containing functional groups, the site-blocking effect, and the ion exchange mechanism exhibited by the GO-MMT composite.


Asunto(s)
Grafito , Contaminantes Químicos del Agua , Bentonita/química , Plomo , Adsorción , Grafito/química , Contaminantes Químicos del Agua/química
11.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254102

RESUMEN

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Asunto(s)
Benzamidas , Carcinoma Epitelial de Ovario , Adhesión Celular , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Neoplasias Ováricas , Neoplasias Peritoneales , Animales , Femenino , Humanos , Ratones , Citoesqueleto de Actina/metabolismo , Anticuerpos Monoclonales , Carcinoma Epitelial de Ovario/metabolismo , Epitelio , Proteínas de la Matriz Extracelular/metabolismo , Fibronectinas , Histona Desacetilasa 1/metabolismo , Integrina alfa5 , Integrina beta1/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/metabolismo , Proteómica , Piridinas , Talina/genética , Talina/metabolismo , Histona Desacetilasa 2/metabolismo , Adhesión Celular/genética
12.
Gastrointest Endosc ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38280531

RESUMEN

BACKGROUND AND AIMS: The duodenum has been shown to play a key role in glucose homeostasis. Duodenal mucosal resurfacing (DMR) is an endoscopic procedure for patients with type 2 diabetes (T2D) in which the duodenal mucosa is hydrothermally ablated. DMR improves glycemic control, but the underlying mechanisms remain unclear. Here, we report changes in glucoregulatory hormones and indices of insulin sensitivity and beta cell function after DMR. METHODS: We included 28 patients on non-insulin glucose lowering medications who underwent open-label DMR and a mixed meal test (MMT) in Revita-1 or Revita-2. Inclusion criteria were hemoglobin A1c (HbA1c) 7.6-10.4% and BMI 24-40kg/m2. Baseline and 3-months MMT data included plasma glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP) concentrations. Glucoregulatory hormones, insulin sensitivity indices (homeostatic model assessment for insulin resistance [HOMA-IR], Matsuda index [MI] and hepatic insulin resistance [HIR]), and beta cell function (insulinogenic index [IGI], disposition index [DI] and insulin secretion rate [ISR]) were assessed. RESULTS: Fasting insulin, glucagon, and C-peptide decreased significantly. Insulin sensitivity (HOMA-IR, MI, and HIR) and beta cell function (DI and ISR) all improved significantly. Decline in postprandial glucose, mainly driven by a decrease in fasting levels, was observed, as well as a decline in postprandial glucagon whereas GLP-1 and GIP did not change. CONCLUSIONS: Insulin sensitivity and insulin secretion improved 3 months after DMR. It is unlikely that incretin changes are responsible for improved glucose control after DMR. These data add to the growing evidence validating the duodenum as a therapeutic target for patients with T2D.

13.
Adv Sci (Weinh) ; 11(1): e2302203, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37967345

RESUMEN

Macrophage-myofibroblast transition (MMT) is a newly discovered pathway for mass production of pro-tumoral cancer-associated fibroblasts (CAFs) in non-small cell lung carcinoma (NSCLC) in a TGF-ß1/Smad3 dependent manner. Better understanding its regulatory signaling in tumor microenvironment (TME) may identify druggable target for the development of precision medicine. Here, by dissecting the transcriptome dynamics of tumor-associated macrophage at single-cell resolution, a crucial role of a hematopoietic transcription factor Runx1 in MMT formation is revealed. Surprisingly, integrative bioinformatic analysis uncovers Runx1 as a key regulator in the downstream of MMT-specific TGF-ß1/Smad3 signaling. Stromal Runx1 level positively correlates with the MMT-derived CAF abundance and mortality in NSCLC patients. Mechanistically, macrophage-specific Runx1 promotes the transcription of genes related to CAF signatures in MMT cells at genomic level. Importantly, macrophage-specific genetic deletion and systemic pharmacological inhibition of TGF-ß1/Smad3/Runx1 signaling effectively prevent MMT-driven CAF and tumor formation in vitro and in vivo, representing a potential therapeutic target for clinical NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/farmacología , Miofibroblastos/metabolismo , Neoplasias Pulmonares/metabolismo , Macrófagos/metabolismo , Microambiente Tumoral
14.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 433-443, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37400684

RESUMEN

BACKGROUND: Dopamine receptor D2 (DRD2) TaqIA polymorphism has an influence on addiction treatment response and prognosis by mediating brain dopaminergic system efficacy. Insula is crucial for conscious urges to take drugs and maintain drug use. However, it remains unclear about the contribution of DRD2 TaqIA polymorphism to the regulation of insular on addiction behavioral and its relation with the therapeutic effect of methadone maintenance treatment (MMT). METHODS: 57 male former heroin dependents receiving stable MMT and 49 matched male healthy controls (HC) were enrolled. Salivary genotyping for DRD2 TaqA1 and A2 alleles, brain resting-state functional MRI scan and a 24-month follow-up for collecting illegal-drug-use information was conducted and followed by clustering of functional connectivity (FC) patterns of HC insula, insula subregion parcellation of MMT patients, comparing the whole brain FC maps between the A1 carriers and non-carriers and analyzing the correlation between the genotype-related FC of insula sub-regions with the retention time in MMT patients by Cox regression. RESULTS: Two insula subregions were identified: the anterior insula (AI) and the posterior insula (PI) subregion. The A1 carriers had a reduced FC between the left AI and the right dorsolateral prefrontal cortex (dlPFC) relative to no carriers. And this reduced FC was a poor prognostic factor for the retention time in MMT patients. CONCLUSION: DRD2 TaqIA polymorphism affects the retention time in heroin-dependent individuals under MMT by mediating the functional connectivity strength between left AI and right dlPFC, and the two brain regions are promising therapeutic targets for individualized treatment.


Asunto(s)
Dependencia de Heroína , Heroína , Humanos , Masculino , Heroína/uso terapéutico , Corteza Prefontal Dorsolateral , Polimorfismo Genético/genética , Dependencia de Heroína/diagnóstico por imagen , Dependencia de Heroína/tratamiento farmacológico , Dependencia de Heroína/genética , Metadona/uso terapéutico , Imagen por Resonancia Magnética , Receptores de Dopamina D2/genética
15.
Adv Sci (Weinh) ; 11(7): e2305991, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38087938

RESUMEN

Ti3 C2 Tx Quantum dots (QDs)/L-Ti3 C2 Tx fiber electrode (Q3 M7 ) with high capacitance and excellent flexibility is prepared by a wet spinning method. The assembled units Ti3 C2 Tx nanosheets (NSs) with large size (denoted as L-Ti3 C2 Tx ) is obtained by natural sedimentation screen raw Ti3 AlC2 , etching, and mechanical delamination. The pillar agent Ti3 C2 Tx QDs is fabricated by an ultrasound method. Q3 M7 fiber electrode gave a specific capacitance of 1560 F cm-3 , with a capacity retention rate of 79% at 20 A cm-3 , and excellent mechanical strength of 130 Mpa. A wide temperature all-solid-state the delaminated montmorillonite (F-MMT)/Polyvinyl alcohol (PVA) dimethyl sulfoxide (DMSO) flexible hydrogel (DHGE) (F-MMT/PVA DHGE) Q3 M7 fiber supercapacitor is assembled by using Q3 M7 fiber as electrodes and F-MMT/PVA DHGE as electrolyte and separator. It showed a volume specific capacitance of 413 F cm-3 at 0.5 A cm-3 , a capacity retention of 97% after 10 000 cycles, an energy density of 36.7 mWh cm-3 at a power density of 311 mW cm-3 , and impressive capacitance and flexibility over a wide temperature range of -40 to 60 °C. This work provides an effective strategy for designing and assembling wide temperature all-solid-state fiber supercapacitors with optimal balance of capacitive performance and flexibility.

16.
J Environ Manage ; 351: 119843, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38128209

RESUMEN

Heavy metal stabilization is an effective method to treat chromium in tannery sludge. Here we show that mainly investigated NaH2PO4 (MSP) and organic matter (OM) to stabilize chromium in tannery sludge. The experimental investigation revealed that the addition of montmorillonite (MMT) and MSP samples showed a significant increase in the percentage of reducible and oxidizable Cr in the former compared to the samples with the addition of MMT. This is attributed to the formation of Cr-O bond, which allows the MSP to undergo an inner-sphere complexation reaction with the metal oxide of Cr via ligand exchange. Significantly, the MSP moiety adsorbs on the surface of OM through monodentate, which increases the adsorption sites of OM for Cr6+ and promotes the reduction of Cr6+ to Cr3+. Moreover, PO43- reacts with Cr3+ to produce CrPO4 precipitation, thus reducing the free Cr3+ content. Finally, DFT calculations confirmed that a ternary system is formed between PO43-, OM, and Cr, and the binding energy is negative, which indicated that PO43- could co-stabilize Cr with OM.


Asunto(s)
Cromo , Metales Pesados , Cromo/química , Aguas del Alcantarillado/química , Residuos Industriales/análisis , Óxidos , Curtiembre
17.
Molecules ; 28(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38067642

RESUMEN

(1) Background: almond peels are rich in polyphenols such as catechin and epicatechin, which are important anti-free-radical agents, anti-inflammatory compounds, and capable of breaking down cholesterol plaques. This work aims to evaluate the biological and technological activity of a "green" dry aqueous extract from Sicilian almond peels, a waste product of the food industry, and to develop healthy nutraceuticals with natural ingredients. Eudraguard® Natural is a natural coating polymer chosen to develop atomized formulations that improve the technological properties of the extract. (2) Methods: the antioxidant and free radical scavenger activity of the extract was rated using different methods (DPPH assay, ABTS, ORAC, NO). The metalloproteinases of the extracts (MMP-2 and MMP-9), the enhanced inhibition of the final glycation products, and the effects of the compounds on cell viability were also tested. All pure materials and formulations were characterized using UV, HPLC, FTIR, DSC, and SEM methods. (3) Results: almond peel extract showed appreciable antioxidant and free radical activity with a stronger NO inhibition effect, strong activity on MMP-2, and good antiglycative effects. In light of this, a food supplement with added health value was formulated. Eudraguard® Natural acted as a swelling substrate by improving extract solubility and dissolution/release (4) Conclusions: almond peel extract has significant antioxidant activity and MMP/AGE inhibition effects, resulting in an optimal candidate to formulate safe microsystems with potential antimetabolic activity. Eudraguard® Natural is capable of obtaining spray-dried microsystems with an improvement in the extract's biological and technological characteristics. It also protects the dry extract from degradation and oxidation, prolonging the shelf life of the final product.


Asunto(s)
Antioxidantes , Prunus dulcis , Antioxidantes/farmacología , Antioxidantes/química , Metaloproteinasa 2 de la Matriz , Extractos Vegetales/farmacología , Extractos Vegetales/química , Suplementos Dietéticos , Radicales Libres/química
18.
Heliyon ; 9(12): e22916, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144265

RESUMEN

O-GlcNAcylation is a post-translational modification of proteins that regulates various biological processes. However, its involvement in peritoneal dialysis fibrosis remains unclear. This study aimed to investigate the impact of O-GlcNAcylation on human peritoneal mesothelial cells (HPMCs) cultured in control and high-glucose medium. To manipulate cellular conditions, we employed knockdown techniques targeting HIF-1α and OGT, along with the administration of pharmacological agents (PUGNAc, OSMI-1, MG-132, FG-4592, and HIF-1α inhibitor). Our findings revealed that elevated glucose levels increased global O-GlcNAcylation and the abundance of HIF-1α, α-SMA, fibronectin, and COL1A2. Conversely, the expression of E-Cadherin was decreased. Significantly, a positive correlation was observed between O-GlcNAcylation, HIF-1α, mesothelial-to-mesenchymal transition (MMT), and fibrosis in HPMCs. Notably, O-GlcNAcylation was found to regulate HIF-1α, thereby promoting MMT and fibrosis under high glucose conditions. Furthermore, we discovered that high glucose levels induced O-GlcNAcylation of HIF-1α, preventing its ubiquitination and proteasomal degradation. In summary, our study demonstrates the critical role of O-GlcNAcylation-mediated regulation of HIF-1α in MMT and fibrosis during peritoneal dialysis.

19.
Data Brief ; 51: 109668, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37876746

RESUMEN

The data given in the paper were obtained using CASTEP based on the density functional theory (DFT) applying a basis set of plane waves and PBE exchange-correlation functional. Van der Waals interactions were considered by the Grimme-D2 semi-empirical correction. The data include the optimized geometry and electronic properties of the equilibrium state of the non-hydrated cis- and trans-vacant variety of a Na-montmorillonite (MMT) and its state after the adsorption of water molecules. The data on hydration shells formed by the Na+ cation on the basal surface of MMT are also presented. The data are presented on the behavior of crystalline hydroxyl groups and water molecules during their adsorption. Data files of the optimized crystal structures and electronic properties can be read by the public text editors.

20.
Chemosphere ; 344: 140321, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37788748

RESUMEN

The preparation of Fe-MMT/WO3 composites by the hydrothermal method has been explored in this study for the construction of a chemical and photocatalytic catalyst for the reduction of U (VI). This research found that the visible light absorption and reduction potential of the Fe-MMT/WO3 composites were relatively superior compared to Fe-MMT and WO3 alone. Based on an evaluation of the performance of the Fe-MMT/WO3 composites under visible light irradiation, it was discovered that they had greater uranium extraction capacity, where the maximum extraction capacity of U (VI) was determined to be 1862.69 mg g-1, with removal efficiency reaching 93.32%. To investigate the electron transfer and U (VI) to U (IV) reduction mechanisms after the composite, XPS and DFT calculations were conducted. Results showed that Fe (II) is converted to a higher state Fe (III) and WO3 produce photoelectrons which together reduce U (VI) to U (IV). Moreover, the photoelectrons partially transferred to Fe-MMT with low reduction potential to reduce Fe (III) to Fe (II), allowing iron cycling during uranium extraction to be achieved.


Asunto(s)
Uranio , Hierro , Catálisis , Luz , Transporte de Electrón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA