Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 929: 172657, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38649041

RESUMEN

The incineration fly ash (IFA) resulting from municipal solid waste combustion is laden with heavy metals, necessitating proper treatment not only for environmental management but also to reclaim the metal values. The surge in non-traditional metals like cobalt as emerging contaminant within IFA samples further attracts to address this issue. In response, the hydrometallurgical recycling of a cobalt-bearing IFA has been studied. Thereby, approximately 98 % zinc and 96 % cobalt were leached using a 1.0 mol/L H2SO4 solution at 90 °C and 1 h of leaching time. In-depth analysis of the leaching process unveiled metals' dissolution primarily via the ion-exclusion mechanism, as evidenced by lower diffusion coefficients (between 10-9 and 10-11 m2/s) and activation energies (9.6-14.9 kJ/mol). Above 99 % separation of zinc from the cobalt-bearing leach liquor was achieved by extraction with 1.0 mol/L D2EHPA at an equilibrium pH below 3.0, followed by stripping with a 2.0 mol/L H2SO4 solution. Cobalt, remained in the raffinate was efficiently precipitated by adding a 20 % excess dosage of oxalic acid to the stoichiometric ratio of C2O42-:Co2+, resulting in only 5 mg/L cobalt left in the solution when precipitation occurred at a pH of 2.8. Additionally, the conversion of CoC2O4 to high-purity Co3O4 was conducted through heat-treatment at 600 °C. The resulting Co3O4 was mixed with Li2CO3 at a Li/Co molar ratio of 1.1, yielding a LiCoO2 precursor that exhibited good electrochemical properties with a capacity of 128 mAh/g, thus affirming the high quality of the recycled cobalt. A comprehensive life-cycle assessment of the recycling process revealed that cobalt precipitation alone contributes approximately 50 % of the total global warming potential (GWP = 4.2624 kg CO2-eq). Notably, this value is remarkably lower than the GWP reported for primary cobalt production, highlighting the environmentally-friendly approach of this recycling endeavor.

2.
Environ Sci Pollut Res Int ; 23(22): 22843-22851, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27568197

RESUMEN

Surfaces of fly ashes from three Swedish MSW incinerating plants were extensively characterized to better predict their involvement in the generation of persistent organic pollutants. The ashes were then subjected to thermal treatment at 400 °C in sealed glass ampoules to track the decomposition polychlorinated dibenzo-p-dioxins and furans (PCDD and PCDF). Temperature programmed desorption experiments in the 30-900 °C range also enabled monitoring of thermally decomposing ashes by Fourier Transform Infrared (FTIR) spectroscopy as well as thermally desorbing effluent gases by mass spectrometry. In addition, one ash was doped with 13C-labelled PCDD and PCDF to evaluate the potential of the experimental setup for elucidating the thermal desorption of the organic molecules. It was found that in ashes with high carbon content PCDD and PCDF decomposition were led pronounced, and that PCDD degraded more readily than PCDF.


Asunto(s)
Contaminantes Atmosféricos/análisis , Ceniza del Carbón/análisis , Dibenzofuranos Policlorados/análisis , Incineración/métodos , Dibenzodioxinas Policloradas/análisis , Residuos Sólidos/análisis , Carbono/análisis , Gases/análisis , Calor , Suecia
3.
Waste Manag ; 33(11): 2322-7, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23809619

RESUMEN

Heavy metals in fly ash from municipal solid waste incinerators are present in high concentrations. Therefore fly ash must be treated as a hazardous material. On the other hand, it may be a potential source of heavy metals. Zinc, lead, cadmium, and copper can be relatively easily removed during the thermal treatment of fly ash, e.g. in the form of chlorides. In return, wet extraction methods could provide promising results for these elements including chromium and nickel. The aim of this study was to investigate and compare thermal and hydrometallurgical treatment of municipal solid waste fly ash. Thermal treatment of fly ash was performed in a rotary reactor at temperatures between 950 and 1050°C and in a muffle oven at temperatures from 500 to 1200°C. The removal more than 90% was reached by easy volatile heavy metals such as cadmium and lead and also by copper, however at higher temperature in the muffle oven. The alkaline (sodium hydroxide) and acid (sulphuric acid) leaching of the fly ash was carried out while the influence of temperature, time, concentration, and liquid/solid ratio were investigated. The combination of alkaline-acidic leaching enhanced the removal of, namely, zinc, chromium and nickel.


Asunto(s)
Ceniza del Carbón/química , Metales Pesados/aislamiento & purificación , Calor , Incineración , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA