Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(3): 102279, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39188304

RESUMEN

The role of CD4+ T cells in the induction of protective CD8+ T cells by mRNA lipid nanoparticle (LNP) vaccines is unknown. We used B6 or Tlr9 -/- mice depleted or not of CD4+ T cells and LNP vaccines loaded with mRNAs encoding the ectromelia virus (ECTV) MHC class I H-2 Kb-restricted immunodominant CD8+ T cell epitope TSYKFESV (TSYKFESV mRNA-LNPs) or the ECTV EVM158 protein, which contains TSYKFESV (EVM-158 mRNA-LNPs). Following prime and boost with 10 µg of either vaccine, Kb-TSYKFESV-specific CD8+ T cells fully protected male and female mice from ECTV at 29 (both mRNA-LNPs) or 90 days (EVM158 mRNA-LNPs) post boost (dpb) independently of CD4+ T cells. However, at 29 dpb with 1 µg mRNA-LNPs, males had lower frequencies of Kb-TSYKFESV-specific CD8+ T cells and were much less well protected than females from ECTV, also independently of CD4+ T cells. At 90 dpb with 1 µg EVM158 mRNA-LNPs, the frequencies of Kb-TSYKFESV-specific CD8+ T cells in males and females were similar, and both were similarly partially protected from ECTV, independently of CD4+ T cells. Therefore, at optimal or suboptimal doses of mRNA-LNP vaccines, CD4+ T cell help is unnecessary to induce protective anti-poxvirus CD8+ T cells specific to a dominant epitope. At suboptimal doses, protection of males requires more time to develop.

2.
Mol Ther Nucleic Acids ; 35(3): 102283, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39165562

RESUMEN

The implementation of targeted molecular therapies and immunotherapy in melanoma vastly improved the therapeutic outcome in patients with limited efficacy of surgical intervention. Nevertheless, a large fraction of patients with melanoma still remain refractory or acquire resistance to these new forms of treatment, illustrating a need for improvement. Here, we report that the clinically relevant combination of mitogen-activated protein (MAP) kinase pathway inhibitors dabrafenib and trametinib synergize with RIG-I agonist-induced immunotherapy to kill BRAF-mutated human and mouse melanoma cells. Kinase inhibition did not compromise the agonist-induced innate immune response of the RIG-I pathway in host immune cells. In a melanoma transplantation mouse model, the triple therapy outperformed individual therapies. Our study suggests that agonist-induced activation of RIG-I with its synthetic ligand 3pRNA could vastly improve tumor control in a substantial fraction of patients with melanoma receiving MAP kinase inhibitors.

3.
Mol Ther Nucleic Acids ; 35(3): 102271, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39176177

RESUMEN

Amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, presents considerable challenges in both diagnosis and treatment. It is categorized into sporadic and familial amyotrophic lateral sclerosis (fALS); the latter accounts for approximately 10% of cases and is primarily inherited in an autosomal dominant manner. This review summarizes the molecular genetics of fALS, highlighting key mutations that contribute to its pathogenesis, such as mutations in SOD1, FUS, and C9orf72. Central to this discourse is exploring antisense oligonucleotides (ASOs) that target these genetic aberrations, providing a promising therapeutic strategy. This review provides a detailed overview of the molecular mechanisms underlying fALS and the potential therapeutic value of ASOs, offering new insights into treating neurodegenerative diseases.

4.
Mol Ther Nucleic Acids ; 35(3): 102268, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39171140

RESUMEN

Acute myeloid leukemia (AML) cells resist differentiation stimuli despite high expression of innate immune receptors, such as Toll-like receptor 9 (TLR9). We previously demonstrated that targeting Signal Transducer and Activator of Transcription 3 (STAT3) using TLR9-targeted decoy oligodeoxynucleotide (CpG-STAT3d) increases immunogenicity of human and mouse AML cells. Here, we elucidated molecular mechanisms of inv(16) AML reprogramming driven by STAT3-inhibition/TLR9-activation in vivo. At the transcriptional levels, AML cells isolated from mice after intravenous administration of CpG-STAT3d or leukemia-targeted Stat3 silencing and TLR9 co-stimulation, displayed similar upregulation of myeloid cell differentiation (Irf8, Cebpa, Itgam) and antigen-presentation (Ciita, Il12a, B2m)-related genes with concomitant reduction of leukemia-promoting Runx1. Single-cell transcriptomics revealed that CpG-STAT3d induced multilineage differentiation of AML cells into monocytes/macrophages, erythroblastic and B cell subsets. As shown by an inducible Irf8 silencing in vivo, IRF8 upregulation was critical for monocyte-macrophage differentiation of leukemic cells. TLR9-driven AML cell reprogramming was likely enabled by downregulation of STAT3-controlled methylation regulators, such as DNMT1 and DNMT3. In fact, the combination of DNA methyl transferase (DNMT) inhibition using azacitidine with CpG oligonucleotides alone mimicked CpG-STAT3d effects, resulting in AML cell differentiation, T cell activation, and systemic leukemia regression. These findings highlight immunotherapeutic potential of bi-functional oligonucleotides to unleash TLR9-driven differentiation of leukemic cells by concurrent STAT3 and/or DNMT inhibition.

5.
Mol Ther Nucleic Acids ; 35(3): 102256, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39045515

RESUMEN

Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.

6.
Mol Ther Nucleic Acids ; 35(3): 102258, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39045516

RESUMEN

Ocular neurodegenerative diseases like glaucoma lead to progressive retinal ganglion cell (RGC) loss, causing irreversible vision impairment. Neuroprotection is needed to preserve RGCs across debilitating conditions. Nerve growth factor (NGF) protein therapy shows efficacy, but struggles with limited bioavailability and a short half-life. Here we explore a novel approach to address this deficiency by utilizing circular RNA (circRNA)-based therapy. We show that circRNAs exhibit an exceptional capacity for prolonged protein expression and circRNA-expressed NGF protects cells from glucose deprivation. In a mouse optic nerve crush model, lipid nanoparticle (LNP)-formulated circNGF administered intravitreally protects RGCs and axons from injury-induced degeneration. It also significantly outperforms NGF protein therapy without detectable retinal toxicity. Furthermore, single-cell transcriptomics revealed LNP-circNGF's multifaceted therapeutic effects, enhancing genes related to visual perception while reducing trauma-associated changes. This study signifies the promise of circRNA-based therapies for treating ocular neurodegenerative diseases and provides an innovative intervention platform for other ocular diseases.

7.
Mol Ther Nucleic Acids ; 35(3): 102237, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38993932

RESUMEN

Gapmer antisense oligonucleotides (ASOs) hold therapeutic promise for allele-specific silencing, but face challenges in distinguishing between mutant and wild-type transcripts. This study explores new design strategies to enhance ASO specificity, focusing on a common dominant mutation in COL6A3 gene associated with Ullrich congenital muscular dystrophy. Initial gapmer ASO design exhibited high efficiency but poor specificity for the mutant allele. We then adopted a mixmer design, incorporating additional RNA bases based on computational predictions of secondary structures for both mutant and wild-type alleles, aiming to enhance ASO accessibility to mutant transcripts. The mixmer ASO design demonstrated up to a 3-fold increase in specificity compared with the classical gapmer design. Further refinement involved introducing a nucleotide mismatch as a structural modification, resulting in a 10-fold enhancement in specificity compared with the gapmer design and a 3-fold over the mixmer design. Additionally, we identified for the first time a potential role of the RNA-induced silencing complex (RISC), alongside RNase H1, in gapmer-mediated silencing, in contrast with what was observed with mixmer ASOs, where only RNase H1 was involved. In conclusion, this study presents a novel design concept for allele-specific ASOs leveraging mRNA secondary structures and nucleotide mismatching and suggests a potential involvement of RISC in gapmer-mediated silencing.

8.
Mol Ther Nucleic Acids ; 35(2): 102161, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38978695

RESUMEN

An increasing number of antisense oligonucleotides (ASOs) have been approved for clinical use. However, improvements of both efficacy and safety in the central nervous system (CNS) are crucial for the treatment with CNS diseases. We aimed to overcome the crucial issues by our development of various gapmer ASOs with a novel nucleoside derivative including a 2',4'-BNA/LNA with 9-(aminoethoxy)phenoxazine (BNAP-AEO). The various gapmer ASOs with BNAP-AEO were evaluated for thermal stability, in vitro and in vivo efficacy, and acute CNS toxicity. Thermal stability analysis of the duplexes with their complementary RNAs showed that ASOs with BNAP-AEO had a higher binding affinity than those without BNAP-AEO. In vitro assays, when transfected into neuroblastoma cell lines, demonstrated that ASOs with BNAP-AEO, had a more efficient gene silencing effect than those without BNAP-AEO. In vivo assays, involving intracerebroventricular injections into mice, revealed ASOs with BNAP-AEO potently suppressed gene expression in the brain. Surprisingly, the acute CNS toxicity in mice, as assessed through open field tests and scoring systems, was significantly lower for ASOs with BNAP-AEO than for those without BNAP-AEO. This study underscores the efficient gene-silencing effect and low acute CNS toxicity of ASOs incorporating BNAP-AEO, indicating the potential for future therapeutic applications.

9.
Mol Ther Nucleic Acids ; 35(3): 102246, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39027419

RESUMEN

Huntington's disease (HD) is an autosomal dominant disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in one copy of the HTT gene (mutant HTT, mHTT). The unaffected HTT gene encodes wild-type HTT (wtHTT) protein, which supports processes important for the health and function of the central nervous system. Selective lowering of mHTT for the treatment of HD may provide a benefit over nonselective HTT-lowering approaches, as it aims to preserve the beneficial activities of wtHTT. Targeting a heterozygous single-nucleotide polymorphism (SNP) where the targeted variant is on the mHTT gene is one strategy for achieving allele-selective activity. Herein, we investigated whether stereopure phosphorothioate (PS)- and phosphoryl guanidine (PN)-containing oligonucleotides can direct allele-selective mHTT lowering by targeting rs362273 (SNP3). We demonstrate that our SNP3-targeting molecules are potent, durable, and selective for mHTT in vitro and in vivo in mouse models. Through comparisons with a surrogate for the nonselective investigational compound tominersen, we also demonstrate that allele-selective molecules display equivalent potency toward mHTT with improved durability while sparing wtHTT. Our preclinical findings support the advancement of WVE-003, an investigational allele-selective compound currently in clinical testing (NCT05032196) for the treatment of patients with HD.

10.
Mol Ther Nucleic Acids ; 35(3): 102254, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39071952

RESUMEN

Allergic contact dermatitis is a prevalent occupational disease with limited therapeutic options. The chemokine CCL22, a ligand of the chemokine receptor CCR4, directs the migration of immune cells. Here, it is shown that genetic deficiency of CCL22 effectively ameliorated allergic reactions in contact hypersensitivity (CHS), a commonly used mouse model of allergic contact dermatitis. For the pharmacological inhibition of CCL22, DNA aptamers specific for murine CCL22 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). Nine CCL22-binding aptamers were initially selected and functionally tested in vitro. The 29-nt DNA aptamer AJ102.29m profoundly inhibited CCL22-dependent T cell migration and did not elicit undesired Toll-like receptor-dependent immune activation. AJ102.29m efficiently ameliorated CHS in vivo after systemic application. Moreover, CHS-associated allergic symptoms were also reduced following topical application of the aptamer on the skin. Microscopic analysis of skin treated with AJ102.29m ex vivo demonstrated that the aptamer could penetrate into the epidermis and dermis. The finding that epicutaneous application of the aptamer AJ102.29m in a cream was as effective in suppressing the allergic reaction as intraperitoneal injection paves the way for therapeutic use of aptamers beyond the current routes of systemic administration.

11.
Mol Ther Nucleic Acids ; 35(2): 102223, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38948330

RESUMEN

The development of messenger RNA (mRNA) vaccines and therapeutics necessitates the production of high-quality in vitro-transcribed mRNA drug substance with specific critical quality attributes (CQAs), which are closely tied to the uniformity of linear DNA template. The supercoiled plasmid DNA is the precursor to the linear DNA template, and the supercoiled DNA percentage is commonly regarded as a key in-process control (IPC) during the manufacturing of linear DNA template. In this study, we investigate the influence of supercoiled DNA percentage on key mRNA CQAs, including purity, capping efficiency, double-stranded RNA (dsRNA), and distribution of poly(A) tail. Our findings reveal a significant impact of supercoiled DNA percentage on mRNA purity and in vitro transcription yield. Notably, we observe that the impact on mRNA purity can be mitigated through oligo-dT chromatography, alleviating the tight range of DNA supercoiled percentage to some extent. Overall, this study provides valuable insights into IPC strategies for DNA template chemistry, manufacturing, and controls (CMC) and process development for mRNA drug substance.

12.
Mol Ther Nucleic Acids ; 35(2): 102221, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38868363

RESUMEN

Colorectal cancer (CRC) is one of the most common malignancies and a relevant cause of cancer-related deaths worldwide. Dysregulation of microRNA (miRNA) expression has been associated with the development and progression of various cancers, including CRC. Among them, miR-221 emerged as an oncogenic driver, whose high expression is associated with poor patient prognosis. The present study was conceived to investigate the anti-CRC activity of miR-221 silencing based on early clinical data achieved from a first-in-human study by our group. Going back from bedside to bench, we demonstrated that LNA-i-miR-221 reduces cell viability, induces apoptosis in vitro, and impairs tumor growth in preclinical in vivo models of CRC. Importantly, we disclosed that miR-221 directly targets TP53BP2, which, together with TP53INP1, is known as a positive regulator of the TP53 apoptotic pathway. We found that (1) both these genes are overexpressed following miR-221 inhibition, (2) the strong anti-tumor activity of LNA-i-miR-221 was selectively observed on TP53 wild-type cells, and (3) this activity was reduced in the presence of the TP53-inhibitor Pifitrin-α. Our data pave the way to further investigations on TP53 functionality as a marker predictive of response to miR-221 silencing, which might be relevant for clinical applications.

13.
Mol Ther Nucleic Acids ; 35(2): 102224, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38933259

RESUMEN

Locked nucleic acids (LNAs) are a subtype of antisense oligonucleotides (ASOs) that are characterized by a bridge within the sugar moiety. LNAs owe their robustness to this chemical modification, which as the name suggests, locks it in one conformation. This perspective includes two components: a general overview on ASOs from one side and on delivery issues focusing on lipid nanoparticles (LNPs) on the other side. Throughout, a screening of the ongoing clinical trials involving ASOs is given, as well as a take on the versatility and challenges of using LNAs. Finally, we highlight the potential of LNPs as carriers for the successful delivery of LNAs.

14.
Mol Ther Nucleic Acids ; 35(2): 102230, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38938759

RESUMEN

Small interfering RNAs (siRNAs) are revolutionizing the treatment of liver-associated indications. Yet, robust delivery to extrahepatic tissues remains a challenge. Conjugating lipids (e.g., docosanoic acid [DCA]) to siRNA supports extrahepatic delivery, but tissue accumulation remains lower than that achieved in liver by approved siRNA therapeutics. Early evidence suggests that functionalizing DCA with a head group (e.g., phosphatidylcholine [PC]) may enhance delivery to certain tissues. Here, we report the first systematic evaluation of the effect of PC head group chemistry on the extrahepatic distribution of DCA-conjugated siRNAs. We show that functionalizing DCA with a PC head group enhances siRNA accumulation in heart, muscle, lung, pancreas, duodenum, urinary bladder, and fat. Varying the size of the linker between the phosphate and choline moiety of the PC head group altered the extrahepatic accumulation of siRNA, with the optimal linker length being different for different tissues. Increasing PC head group valency also improved extrahepatic accumulation in a tissue-specific manner. This study demonstrates the structural impact of the PC moiety on the biodistribution of lipid-conjugated siRNA and introduces multiple novel PC variants for the chemical optimization of DCA-conjugated siRNA. These chemical variants can be used in the context of other lipids to increase the repertoire of conjugates for the extrahepatic distribution of siRNAs.

15.
Mol Ther Nucleic Acids ; 35(3): 102227, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38939051

RESUMEN

Effective therapeutics are necessary for managing severe COVID-19 disease despite the availability of vaccines. Small interfering RNA (siRNA) can silence viral genes and restrict SARS-CoV-2 replication. Cell-penetrating peptides is a robust method for siRNA delivery, enhancing siRNA stability and targeting specific receptors. We developed a peptide HE25 that blocks SARS-CoV-2 replication by various mechanisms, including the binding of multiple receptors involved in the virus's internalization, such as ACE2, integrins and NRP1. HE25 not only acts as a vehicle to deliver the SARS-CoV-2 RNA-dependent RNA polymerase siRNA into cells but also facilitates their internalization through endocytosis. Once inside endosomes, the siRNA is released into the cytoplasm through the Histidine-proton sponge effect and the selective cleavage of HE25 by cathepsin B. These mechanisms effectively inhibited the replication of the ancestral SARS-CoV-2 and the Omicron variant BA.5 in vitro. When HE25 was administered in vivo, either by intravenous injection or inhalation, it accumulated in lungs, veins and arteries, endothelium, or bronchial structure depending on the route. Furthermore, the siRNA/HE25 complex caused gene silencing in lung cells in vitro. The SARS-CoV-2 siRNA/HE25 complex is a promising therapeutic for COVID-19, and a similar strategy can be employed to combat future emerging viral diseases.

16.
Mol Ther Nucleic Acids ; 35(2): 102195, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38741614

RESUMEN

G protein-coupled receptors (GPCRs) are the major targets of existing drugs for a plethora of human diseases and dominate the pharmaceutical market. However, over 50% of the GPCRs remain undruggable. To pursue a breakthrough and overcome this situation, there is significant clinical research for developing RNA-based drugs specifically targeting GPCRs, but none has been approved so far. RNA therapeutics represent a unique and promising approach to selectively targeting previously undruggable targets, including undruggable GPCRs. However, the development of RNA therapeutics faces significant challenges in areas of RNA stability and efficient in vivo delivery. This review presents an overview of the advances in RNA therapeutics and the diverse types of nanoparticle RNA delivery systems. It also describes the potential applications of GPCR-targeted RNA drugs for various human diseases.

17.
Mol Ther Nucleic Acids ; 35(2): 102206, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38803421

RESUMEN

Huntington's disease (HD) is an incurable neurodegenerative disorder caused by genetic expansion of a CAG repeat sequence in one allele of the huntingtin (HTT) gene. Reducing expression of the mutant HTT (mutHTT) protein has remained a clear therapeutic goal, but reduction of wild-type HTT (wtHTT) is undesirable, as it compromises gene function and potential therapeutic efficacy. One promising allele-selective approach involves targeting the CAG repeat expansion with steric binding small RNAs bearing central mismatches. However, successful genetic encoding requires consistent placement of mismatches to the target within the small RNA guide sequence, which involves 5' processing precision by cellular enzymes. Here, we used small RNA sequencing (RNA-seq) to monitor the processing precision of a limited set of CAG repeat-targeted small RNAs expressed from multiple scaffold contexts. Small RNA-seq identified expression constructs with high-guide strand 5' processing precision and promising allele-selective inhibition of mutHTT. Transcriptome-wide mRNA-seq also identified an allele-selective small RNA with a favorable off-target profile. These results support continued investigation and optimization of genetically encoded repeat-targeted small RNAs for allele-selective HD gene therapy and underscore the value of sequencing methods to balance specificity with allele selectivity during the design and selection process.

18.
Mol Ther Nucleic Acids ; 35(2): 102198, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38745854

RESUMEN

The CD3/T cell receptor (TCR) complex is responsible for antigen-specific pathogen recognition by T cells, and initiates the signaling cascade necessary for activation of effector functions. CD3 agonistic antibodies are commonly used to expand T lymphocytes in a wide range of clinical applications, including in adoptive T cell therapy for cancer patients. A major drawback of expanding T cell populations ex vivo using CD3 agonistic antibodies is that they expand and activate T cells independent of their TCR antigen specificity. Therapeutic agents that facilitate expansion of T cells in an antigen-specific manner and reduce their threshold of T cell activation are therefore of great interest for adoptive T cell therapy protocols. To identify CD3-specific T cell agonists, several RNA aptamers were selected against CD3 using Systematic Evolution of Ligands by EXponential enrichment combined with high-throughput sequencing. The extent and specificity of aptamer binding to target CD3 were assessed through surface plasma resonance, P32 double-filter assays, and flow cytometry. Aptamer-mediated modulation of the threshold of T cell activation was observed in vitro and in preclinical transgenic TCR mouse models. The aptamers improved efficacy and persistence of adoptive T cell therapy by low-affinity TCR-reactive T lymphocytes in melanoma-bearing mice. Thus, CD3-specific aptamers can be applied as therapeutic agents which facilitate the expansion of tumor-reactive T lymphocytes while conserving their tumor specificity. Furthermore, selected CD3 aptamers also exhibit cross-reactivity to human CD3, expanding their potential for clinical translation and application in the future.

19.
Mol Ther Nucleic Acids ; 35(2): 102178, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38617974

RESUMEN

Collagen VI-related dystrophies (COL6-RDs) are a group of severe, congenital-onset muscular dystrophies for which there is no effective causative treatment. Dominant-negative mutations are common in COL6A1, COL6A2, and COL6A3 genes, encoding the collagen α1, α2, and α3 (VI) chains. They act by incorporating into the hierarchical assembly of the three α (VI) chains and consequently produce a dysfunctional collagen VI extracellular matrix, while haploinsufficiency for any of the COL6 genes is not associated with disease. Hence, allele-specific transcript inactivation is a valid therapeutic strategy, although selectively targeting a pathogenic single nucleotide variant is challenging. Here, we develop a small interfering RNA (siRNA) that robustly, and in an allele-specific manner, silences a common glycine substitution (G293R) caused by a single nucleotide change in COL6A1 gene. By intentionally introducing an additional mismatch into the siRNA design, we achieved enhanced specificity toward the mutant allele. Treatment of patient-derived fibroblasts effectively reduced the levels of mutant transcripts while maintaining unaltered wild-type transcript levels, rescuing the secretion and assembly of collagen VI matrix by reducing the dominant-negative effect of mutant chains. Our findings establish a promising treatment approach for patients with the recurrent dominantly negative acting G293R glycine substitution.

20.
Mol Ther Nucleic Acids ; 35(2): 102184, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38665220

RESUMEN

Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA