Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(4): 415-425, 2024 Aug 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39049628

RESUMEN

Biodegradable magnesium-based metal guided bone regeneration (GBR) membranes possess excellent mechanical properties, biodegradability, and osteopromotive capabilities, making them ideal implants for the treatment of maxillofacial bone defects. This review summarizes the current status and future research trends related to magnesium-based GBR membranes. First, the research history and application fields of magnesium-based metals are introduced, and the advantages of the use of magnesium-based materials for GBR membranes, including their mechanical properties, biocompatibility, osteopromotive performance, and underlying mechanisms are discussed. Finally, this review addresses the current limitations of magnesium-based GBR membranes and their applications and prospects in the field of dentistry. In conclusion, considerable advancements have been in fundamental and translational research on magnesium-based GBR membranes, which lays a crucial foundation for the treatment of maxillofacial bone defects.


Asunto(s)
Materiales Biocompatibles , Regeneración Ósea , Magnesio , Humanos , Implantes Absorbibles , Regeneración Tisular Dirigida , Membranas Artificiales , Metales
2.
Heliyon ; 10(9): e30279, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711636

RESUMEN

Magnesium-based composites are a focal point in biomaterials research. However, the rapid degradation rate of magnesium alloys does not align with the healing time of bone tissue. Additionally, the host reaction caused by magnesium implantation hampers its full osteogenic potential. To maintain an appropriate microenvironment, it is important to enhance both corrosion resistance and osteogenic activity of the magnesium matrix. In this study, a composite scaffold composed of mineralized collagen and magnesium alloy was utilized to investigate the regulatory effect of mineralized collagen on mouse macrophages and evaluate its impact on mouse bone marrow mesenchymal stem cells in terms of osteogenesis, immune response, and macrophage-induced osteogenic differentiation. This experiment examined the biocompatibility of mouse bone marrow mesenchymal stem cells and macrophage-induced osteogenic differentiation in vitro, and examined the expression levels of relevant pathways proteins. Magnesium calcium alloys/mineralized collagen exhibited extensive spreading, facilitated by broad and abundant pseudopodia that firmly adhered them to the material surface and promoted growth and pseudopodia formation. The findings revealed that magnesium calcium alloy/mineralized collagen scaffold materials induced osteogenic differentiation mainly through M2 polarization of macrophages. This effect was mainly mediated by promoting the integrin α2ß1-FAK-ERK1/2 signaling pathways and inhibiting the RANK signaling pathways.

3.
R Soc Open Sci ; 9(3): 211544, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35360355

RESUMEN

A novel Mg(II) metal-organic framework (Mg-MOF) was synthesized based on the ligand of 2,2'-bipyridine-4,4'-dicarboxylic acid. Single-crystal X-ray structural analysis confirmed that three-dimensional-nanostructure Mg-MOFs formed a monoclinic system with a channel size of 15.733 Å × 23.736 Å. N2 adsorption isotherm, Fourier transform infrared spectroscopy, thermogravimetric analysis and high-resolution transmission electron microscopy were performed to characterize the thermal stability and purity of the Mg-MOFs. The adsorption studies on four typical volatile organic compounds (VOCs) emitted during wood drying showed that Mg-MOFs have noteworthy adsorption capacities, especially for benzene and ß-pinene with adsorptions of 182.26 mg g-1 and 144.42 mg g-1, respectively. In addition, the adsorption of Mg-MOFs mainly occurred via natural adsorption, specifically, multi-layer physical adsorption, accompanied by chemical forces, which occurred in the pores where the VOCs molecules combined with active sites. As an adsorbent, Mg-MOFs exhibit versatile behaviour for toxic gas accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA