Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39274867

RESUMEN

To improve the magnetic properties of iron-based soft magnetic composites (SMCs), polytetrafluoroethylene (PTFE) with excellent heat resistance, electrical insulation, and extremely high electrical resistivity was chosen as an insulating coating material for the preparation of iron-based SMCs. The effects of PTFE content, compaction pressure, and annealing treatment on the magnetic properties of Fe/PTFE SMCs were investigated in detail. The results demonstrate that the PTFE insulating layer is successfully coated on the surface of iron powders, which effectively reduces the core loss, increases the resistivity, and improves the frequency stability and the quality factor. Under the combined effect of optimal PTFE content, compaction pressure, and annealing treatment, the iron-based SMCs exhibit a high effective permeability of 56, high saturation magnetization of 192.9 emu/g, and low total core losses of 355 mW/cm3 and 1705 mW/cm3 at 50 kHz for Bm = 50 mT and 100 mT. This work provides a novel insulating coating layer that optimizes magnetic properties and is advantageous for the development of iron-based SMCs. In addition, it also provides a comprehensive understanding of the relationship between process parameters and magnetic properties, which is of great guiding significance for scientific research and industrial production.

2.
Materials (Basel) ; 17(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39203217

RESUMEN

Optimizing the interface between a magnetic powder matrix and an oxide-insulating layer is an effective method to improve the permeability and lower eddy current loss of iron-based soft magnetic composites. In this study, in order to improve the bonding strength of the substrate and insulation layer, soft magnetic composites were prepared by pressing and heat treating with reduced iron powder as a magnetic matrix, high-temperature MgO nanoparticles as insulating coating, and phenolic resin as an adhesive. The effects of MgO content on the microstructure and magnetic properties of the composites were investigated. The results of a scanning electron microscopy and an energy-dispersive spectrometer analysis corroborate that the results obtained regarding the frequency characteristics and the resistivity of the iron powder agree with the scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) analysis and confirm their improvement by the presence of an insulating layer of MgO. The resistivity of the sample coated with 4 wt.% MgO is nearly 45 times higher than that of the uncoated sample under the same conditions. The MgO-insulating film formed on the surface of iron powder makes the coated sample have low effective grain size, high resistivity, and low magnetic loss at a high frequency. At 1 kHz, the magnetic loss of the 4 wt.% MgO-coated sample is reduced by 77.3%, and the magnetic loss is only 5.8% compared with the uncoated sample at 50 kHz. This magnetic loss separation study shows that the addition of MgO insulation material can effectively reduce the eddy current loss of the magnetic powder core. The 4 wt.% MgO-coated sample has the lowest hysteresis loss factor and relatively low eddy current loss factor, so it can be determined that the addition of 4 wt.% MgO is the optimum content to attain a low magnetic loss.

3.
Materials (Basel) ; 17(16)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39203317

RESUMEN

Soft magnetic composite cores were produced by spark plasma sintering (SPS) from Ni3Fe@ZnFe2O4 and NiFeMo@ZnFe2O4 pseudo-core-shell powders. In the Fe-Ni alloys@ZnFe2O4 pseudo-core-shell composite powders, the core is a large nanocrystalline Permalloy or Supermalloy particle obtained by mechanical alloying, and the shell is a pseudo continuous layer of Zn ferrite particles. The pseudo-core-shell powders have been compacted by SPS at temperatures between 500-700 °C, with a holding time of 0 min. Several techniques were used for the characterisation of the powders and sintered compacts: X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, magnetic hysteresis measurements (DC and AC), and electrical resistivity. The electrical resistivity is stabilised at values of about 7 × 10-3 Ω·m for sintering temperatures between 600-700 °C and this value is three orders of magnitude higher than the electrical resistivity of sintered Fe compacts. The best relative initial permeability was obtained for the Supermalloy/ZnFe2O4 composite compacts sintered at 600 °C, which decreases linearly for the entire frequency range studied, from around 95 to 50. At a frequency of 2000 Hz, the power losses are smaller than 1.5 W/kg. At a frequency of 10 kHz, the power losses are larger, but they remain at a reduced level. In the case of Supermalloy/ZnFe2O4 composite compact SPS-ed at 700 °C, the specific power losses are even lower than 5 W/kg. The power losses' decomposition proved that intra-particle losses are the main type of losses.

4.
Adv Mater ; : e2409173, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210650

RESUMEN

Magnetic soft grippers have attracted intensive interest due to their untethered controllability, rapid response, and biological safety. However, manipulating living objects requires a simultaneous increase in shape adaptability and gripping force, which are typically mutually exclusive. Increasing the magnetic particle content enhances the magnetic strength but also increases the elastic modulus, leading to low adaptability and high impact force. Here, a porous magnetic soft gripper (PMSG) is developed by integrating a porous structure into a magnetic silicone elastomer. The design of porous hard magnetic composite is characterized by high magnetization, low modulus, and rough surface. It offers the PMSG good compliance, high gripping force, and low impact force at fast gripping. The PMSG is capable of performing a variety of tasks, including the fast and gentle grasping of delicate living objects. The study provides insight into the design of novel magnetic grippers and may offer a promising outlook for biomedical or scientific applications in the manipulation of delicate organisms.

5.
Chemosphere ; 362: 142732, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950746

RESUMEN

Industrial wastewater containing heavy metal Cr(VI) seriously affects the health of organisms and may even lead to cancer. Developing efficient adsorbents that can quickly separate heavy metals is crucial for treating wastewater. In this study, magnetic multiwalled carbon nanotubes (MMWCNTs) with moderate particle size and abundant surface active sites were prepared by coating multiwalled carbon nanotubes with magnetic nanoparticles. The results of FTIR, XRD, TG, VSM, BET, and EDS showed MWCNTs completely encapsulated on the surface of the magnetic nanoparticles, with a particle size of approximately 30 nm. Oxygenated groups provided abundant surface active sites and formed numerous mesopores. The response surface methodology was used to optimize the adsorbent dose, adsorption contact time and adsorption temperature, and the removal rate of Cr(VI) was more than 95%. The quasi-second order kinetics and Freundlich adsorption isotherm model explained the adsorption process to Cr(VI). MMWCNTs interacted with Cr(VI) through electrostatic attraction, reduction reactions, complexation, and other means. The extensive hydrogen bonding of the green solvent deep eutectic solvent (DES) was employed to desorb the MMWCNTs and desorption rate exceed 90%. Even after five adsorption-regeneration cycles, the adsorbent maintained a high capacity. In conclusion, these novel MMWCNTs, as efficient adsorbents paired with DES desorption, hold broad potential for application in the treatment of Cr(VI)-contaminated wastewater.


Asunto(s)
Cromo , Disolventes Eutécticos Profundos , Nanotubos de Carbono , Aguas Residuales , Contaminantes Químicos del Agua , Nanotubos de Carbono/química , Cromo/química , Cromo/aislamiento & purificación , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Adsorción , Cinética , Disolventes Eutécticos Profundos/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
6.
Materials (Basel) ; 17(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38730780

RESUMEN

This paper verified the possibility of applying chitosan and/or ferulic acid or polycaprolactone (PCL)-based coatings to polydimethylsiloxane/neodymium-iron-boron (PDMS/NdFeB) composites using the spin-coating method. The surface modification of magnetic composites by biofunctional layers allows for the preparation of materials for biomedical applications. Biofunctional layered magnetic composites were obtained in three steps. The spin-coating method with various parameters (time and spin speed) was used to apply different substances to the surface of the composites. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were used to analyze the thickness and surface topography. The contact angle of the obtained surfaces was tested. Increasing spin speed and increasing process time for the same speed resulted in decreasing the composite's thickness. The linear and surface roughness for the prepared coatings were approximately 0.2 µm and 0.01 µm, respectively, which are desirable values in the context of biocompatibility. The contact angle test results showed that both the addition of chitosan and PCL to PDMS have reduced the contact angle θ from 105° for non-coated composite to θ~59-88° depending on the coating. The performed modifications gave promising results mainly due to making the surface hydrophilic, which is a desirable feature of projected biomaterials.

7.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727379

RESUMEN

A novel magnetic composite made of Peruvian pyroclastic dust material decorated with maghemite nanoparticles was synthesized and characterized using a variety of analytic techniques. The 13 nm maghemite nanoparticles were grown on the pyroclastic dust using the conventional coprecipitation chemical route. A short-term acute assay was developed to study the ecotoxicological behavior of the water flea, Daphnia magna. A 24 h-lethal concentration (LC50) value equal to 123.6 mg L-1 was determined only for the magnetic composite. While the pyroclastic dust material did not exhibit a lethal concentration, it caused morphologically significant changes (p < 0.05) for heart and tail parameters at high concentrations. Morphologies exposed to the magnetic composite above the 24 h-LC50 revealed less tolerance and significant changes in the body, heart, antenna, and eye. Hence, it affects biomarker growth and swimming. The reproduction rate was not affected by the raw pyroclastic dust material. However, the number of individuals showed a decrease with increasing composite concentrations. The present study indicates the LC50 value, which can be used as a reference concentration for in-situ water cleaning with this material without damaging or changing the Daphnia magna ecosystem.

8.
3D Print Addit Manuf ; 11(2): e638-e654, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38689922

RESUMEN

This study proposes a novel and simple fabrication method of magnetic microfibers, employing filament stretching three-dimensional (3D) printing, and demonstrates the capacity of four-dimensional (4D) printing of the proposed magnetic microfibers. A ferromagnetic 3D printing filament is prepared by the mixture of neodymium-iron-boron (NdFeB) and polylactic acid (PLA), and we investigate the characteristics of the ferromagnetic filament by mixing ratio, magnetic properties, mechanical properties, and rheological properties through experiments. By thermal extrusion of the ferromagnetic filament through a 3D printer nozzle, various thicknesses (80-500 µm) and lengths (less than ∼5 cm) of ferromagnetic microfibers are achieved with different printing setups, such as filament extrusion amount and printing speed. The printed ferromagnetic microfibers are magnetized to maintain a permanent magnetic dipole moment, and 4D printing can be achieved by the deformations of the permanently magnetized microfibers under magnetic fields. We observe that the mixing ratio, the thickness, and the length of the magnetized microfibers provide distinct deformation of the microfiber for customization of 4D printings. This study exhibits that the permanently magnetized microfibers have a great potential for smart sensors and actuators. Furthermore, we briefly present an application of our proposed magnetic microfibers for bionic motion actuators with various unique undulating and oscillating motions.

9.
Materials (Basel) ; 17(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673079

RESUMEN

Recently, researchers have focused on improving motor performance and efficiency. To manufacture motors with performance and efficiency higher than those of motors manufactured through the additive process, compressibility verification through the parameter control of soft magnetic composites (SMCs) is essential. To this end, this study aims to select suitable powders for manufacturing high-performance, high-efficiency motors by exploring powder mixing ratios and milling times. Through physical property tests, the optimal mixing ratio is predicted using the Multi-Particle Finite Element Method (MPFEM) and powder compression molding analysis, and compressibility is predicted in view of the influence of a change in particle size as a function of the powder mixing ratio and milling time. In addition, based on the result of a comparative analysis of density through experiments and an analysis of internal defects through SEM, a 50:50 mixing ratio of hybrid atomizing and gas atomizing powders milled for 3 h provided the best compressibility. Therefore, the use of SMC cores fabricated using powder compression molding is expected to improve motor performance and efficiency.

10.
Polymers (Basel) ; 16(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38475395

RESUMEN

Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.

11.
Polymers (Basel) ; 16(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38337242

RESUMEN

Particle- or fiber-reinforced polymer composites with controlled orientations are attracting interest and applications producing innovative materials, biological constructs, and energy devices. To gain the controlled orientations, filed-assisted synthesis is widely selected for its easy operation and control. In this paper, we designed magnetic field-assisted equipment and synthesized a magnetic polymer composite Fe3O4/PMMA with a well-arranged layers structure by combining the magnetic field with atom transfer radical polymerization (ATRP). During the polymerization of polymer composites, the magnetic nanoparticles were surrounded by monomers. With the growth of polymer chains, the magnetic particles pushed polymer chains to move according to a specific direction and form a well-arranged structure under the magnetic fields. The existence of a well-arranged layered structure of the composites gives potential guidance for controlling the micro-structure by adding an extra field during the polymerization process. The experimental results provided a possible design to influence the macroscale properties through control of the micro-structure of polymer composites.

12.
Materials (Basel) ; 17(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38399113

RESUMEN

This research focuses on the production process of soft magnetic composites in the form of 3D bulk compacts made from insulated powder particles using different milling parameters, aiming to enhance their magnetic properties and to study an innovative method of the powder surface "smoothing" technique. A structure analysis using scanning electron microscopy (SEM), EDS, and optical microscopy is also included. We found out that the samples made by the innovative method have lower density values. This can be caused by a more consistent SiO2 insulation layer on highly pure iron powder particles. A correlation between the mechanical smoothing method and better insulation of powder particles can help to provide eco-friendlier solutions for the preparation of soft magnetic composites, such as less usage of reagents and more consistent coverage of powder particles with lower final insulation thickness. The magnetic properties of these compacts are evaluated by coercive field, permeability, and loss measurements. The particle-level smoothing technique in some cases can reduce the value of coercivity up to 20%. For some samples, the ball-to-powder ratio has a bigger impact on magnetic properties than surface treatment, which can be caused by an increased amount of insulation in the SMC compacts.

13.
ACS Appl Mater Interfaces ; 16(10): 13139-13149, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38415664

RESUMEN

Lifetime-reconfigurable soft robots have emerged as a new class of robots, emphasizing the unmet needs of futuristic sustainability and security. Trigger-transient materials that can both actuate and degrade on-demand are crucial for achieving life-reconfigurable soft robots. Here, we propose the use of transient and magnetically actuating materials that can decompose under ultraviolet light and heat, achieved by adding photo-acid generator (PAG) and magnetic particles (Sr-ferrite) to poly(propylene carbonate) (PPC). Chemical and thermal analyses reveal that the mechanism of PPC-PAG decomposition occurs through PPC backbone cleavage by the photo-induced acid. The self-assembled monolayer (SAM) encapsulation of Sr-ferrite preventing the interaction with the PAG allowed the transience of magnetic soft actuators. We demonstrate remotely controllable and degradable magnetic soft kirigami actuators using blocks with various magnetized directions. This study proposes novel approaches for fabricating lifetime-configurable magnetic soft actuators applicable to diverse environments and applications, such as enclosed/sealed spaces and security/military devices.

14.
Materials (Basel) ; 17(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38276473

RESUMEN

High entropy alloy nanopowders were successfully prepared by liquid-phase reduction methods and their applications were preliminarily discussed. The prepared high entropy alloy nanopowders consisted of FeNi alloy spherical powders and NiFeCoCrY alloy spherical powders with a particle size of about 100 nm. The powders have soft magnetic properties, the saturation magnetization field strength were up to 5000 Qe and the saturation magnetization strength Ms was about 17.3 emu/g. The powders have the excellent property of low high-frequency loss in the frequency range of 0.3-8.5 GHz. When the thickness of the powders coating was 5 mm, the powders showed excellent absorption performance in the Ku band; and when the thickness of the powders coating was 10 mm; the powders showed good wave-absorbing performance in the X band. The powders have good moulding, and the powders have large specific surface area, so that the magnetic powder core composites could be prepared under low pressure and without coating insulators, and the magnetic powder cores showed excellent frequency-constant magnetization and magnetic field-constant magnetization characteristics. In the frequency range of 1~100 KHz; the µm of the magnetic powder core heat-treated at 800 °C reached 359, the µe was about 4.6 and the change rate of µe with frequency was less than 1%, meanwhile; the magnetic powder core still maintains constant µe value under the action of the external magnetic field from 0 to 12,000 A/m. The high entropy alloy nanopowders have a broad application prospect in soft magnetic composites.

15.
J Colloid Interface Sci ; 658: 997-1008, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38171049

RESUMEN

Novel magnetic MnFe2O4@honey locust-derived carbon (MnFe2O4@HL) composites were synthesized via an in-situ hydrothermal precipitation method, and were characterized as an excellent Fenton-like catalyst for tetracycline (TC) degradation. Results showed that the vast majority of TC was mineralized in hydrogen peroxide (H2O2)/MnFe2O4@HL system after 120 min of reaction time with 92.3% of removal efficiency and the removal of 71.3% of total organic carbon (TOC). Systematic characterization approaches including scanning electron microscope (SEM), energy-dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and vibrating sample magnetometry (VSM) were introduced to reveal the microstructure and properties of magnetic MnFe2O4@HL composites. Hydroxyl radicals (•OH) were identified as the major reactive oxygen species (ROS) via the quenching experiments and electron spin resonance (ESR) analysis, while superoxide radicals (·O2-) played a negligible role. The dual cycles of both Fe3+/Fe2+ and Mn3+/Mn2+ were significant enhanced through the bimetallic redox effect and the electron transfer effect of the carbon-based functional group, accelerating the generation of •OH. The removal of TC was still up to 79.3% after five reuses of magnetic composites, demonstrating the MnFe2O4@HL with excellent stability and reuse performance. The influence of various experimental control conditions involving initial pH, catalyst and H2O2 dosage, temperature, as well as common anions (Cl-, NO3-, and HCO3-) on the degradation of TC were finally evaluated. This study provides an efficient in-situ generation method of emerging magnetic materials, and systematically reveals its mechanism of homogeneous Fenton-like catalysis, which shows promising applications for the degradation of environmental contaminants.

16.
Small ; 20(6): e2305272, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37702152

RESUMEN

The magnetomechanical actuation of micropillars is developed for the contactless manipulation of miniaturized actuators and microtextured surfaces. Anisotropic geometry of micropillars can significantly enhance the magnetic actuation compared with their isotropic counterparts by directional stress distributions. However, this strategy is not viable for triangular micropillars owing to insufficient anisotropy. In this study, a significant improvement in the magnetic actuation of triangular micropillars using composite magnetic particles is reported. A minute and optimal amount of hard magnetic gamma-ferrite nanorods are hybridized with soft magnetic iron microspheres to generate synergistic effects of magnetic coupling and percolation phenomenon on the magnetic actuation of polymer composites. The addition of 1 wt% face-centered cubic-phased gamma-ferrite nanorods suppresses the magnetic coupling interference of body-centered cubic-phased iron microspheres. Furthermore, the nanorods reduce the percolation threshold by participating in the percolation of the microspheres. A systematic compositional study on the magnetization and magnetorheological properties reveals that the coupling effect dominates the percolation effect at a low magnetic field, whereas the percolation effect governs the magnetic actuation at a high magnetic field. This hybrid approach can help in designing material constituents for effective magnetic actuators and robotic systems that can sensitively respond to an external magnetic field.

17.
Small ; 20(10): e2304152, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37888807

RESUMEN

The magnetic coupling of a set of SrFe12 O19 /CoFe2 O4 nanocomposites is investigated. Advanced electron microscopy evidences the structural coherence and texture at the interfaces of the nanostructures. The fraction of the lower anisotropy phase (CoFe2 O4 ) is tuned to assess the limits that define magnetically exchange-coupled interfaces by performing magnetic remanence, first-order reversal curves (FORCs), and relaxation measurements. By combining these magnetometry techniques and the structural and morphological information from X-ray diffraction, electron microscopy, and Mössbauer spectrometry, the exchange intergranular interaction is evidenced, and the critical thickness within which coupled interfaces have a uniform reversal unraveled.

18.
Materials (Basel) ; 16(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37959525

RESUMEN

Additive manufacturing is a very rapidly developing industrial field. It opens many possibilities for the fast fabrication of complex-shaped products and devices, including functional materials and smart structures. This paper presents an overview of polymer 3D printing technologies currently used to produce magnetic materials and devices based on them. Technologies such as filament-fused modeling (FDM), direct ink writing (DIW), stereolithography (SLA), and binder jetting (BJ) are discussed. Their technological features, such as the optimal concentration of the filler, the shape and size of the filler particles, printing modes, etc., are considered to obtain bulk products with a high degree of detail and with a high level of magnetic properties. The polymer 3D technologies are compared with conventional technologies for manufacturing polymer-bonded magnets and with metal 3D technologies. This paper shows prospective areas of application of 3D polymer technologies for fabricating the magnetic elements of complex shapes, such as shim elements with an optimized shape and topology; advanced transformer cores; sensors; and, in particular, the fabrication of soft robots with a fast response to magnetic stimuli and composites based on smart fillers.

19.
Molecules ; 28(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37959840

RESUMEN

A magnetic adsorbent based on a C-nanofiber (Fe3O4@C-NFs) nanocomposite was synthesized using a simple one-pot co-precipitation method. The characterized results showed that the obtained C-nanofiber-coated magnetic nanoparticles had many attractive features such as a large specific surface area and a highly interwoven and branched mesoporous structure, as well as distinguished magnetism. The nanocomposite was then used as an adsorbent in the magnetic solid phase extraction (MSPE) of four typical tetracyclines (oxytetracycline, tetracycline, chlortetracycline, and doxycycline) in aquatic products. The TCs in the extract were determined using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Experimental variables of MSPE, including the sorbent amount, pH condition, adsorption and desorption time, and desorption solvent, were investigated and optimized systematically. The method validation indicated that the developed method showed good linearity (R2 > 0.995) in the range of 1.0-200 ng/mL. The average recoveries at the spiked levels ranged from 90.7% to 102.7% with intra-day and inter-day relative standard deviations (RSDs, n = 6) ranging from 3.72% to 8.17% and 4.20% to 9.69%, respectively. The limit of detection (LOD) and limit of quantification (LOQ) for the four kinds of TCs were 0.7 µg/kg and 2.0 µg/kg, respectively. Finally, MSPE based on C-nanofiber-coated magnetic nanoparticles was successfully applied to TC analysis in real aquatic products (grass carp, large yellow croaker, snakehead, mandarin fish, Penaeus vannamei, swimming crab, etc.). Compared with traditional extraction methods, the proposed method for TC analysis in aquatic products is more sensitive, effective, recyclable, and environmentally friendly.


Asunto(s)
Compuestos Heterocíclicos , Nanofibras , Animales , Tetraciclinas/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Antibacterianos , Compuestos Heterocíclicos/análisis , Extracción en Fase Sólida/métodos , Fenómenos Magnéticos , Límite de Detección
20.
Materials (Basel) ; 16(17)2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37687726

RESUMEN

The effect of carbonyl iron powder, FeSiCr alloy powder, and annealed FeSiAl alloy powder, both individually and in binary combinations, on the density, microstructure, and magnetic properties (including permeability and power loss) of inductors manufactured by molding compaction was investigated in this study. The investigation demonstrates that hysteresis loss dominates power loss in the tested frequency range. Due to higher compacted density and reduced coercivity, adding 50% carbonyl iron powder to annealed powder resulted in the lowest hysteresis loss, allowing for domain wall movement. On the other hand, adding 50% FeSiCr alloy powder to annealed powder resulted in higher hysteresis loss due to impurity components hindering domain wall motion. Due to extreme plastic deformation, the carbonyl iron powder and FeSiCr alloy powder combinations displayed the most significant hysteresis loss. Eddy current loss followed the same trends as hysteresis loss in the mixtures. This study provides important insights for refining the soft magnetic composite design to obtain higher magnetic performance, while minimizing power loss.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA