Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 36(32)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38701833

RESUMEN

In this work we report magnetic properties of the orthorhombic perovskite Lu0.9Sr0.1Cr0.5Fe0.5O3synthesized by a wet chemical method. As in LuCr0.5Fe0.5O3the compound with Sr shows the magnetization reversal phenomenon, but the magnetic order and the compensation temperature occur at higher temperatures. Interestingly, in M vs H curves a hysteresis loop is observed when Cr4+and Cr3+ions coexist as a consequence of the aliovalent substitution of Lu3+by Sr2+in the B sites of the perovskite. To explain this behavior, we performed numerical simulations with a magnetic model for Lu1-xSrxCr0.5Fe0.5O3perovskites withx= 0 andx= 0.1. We found that the ferromagnetic coupling of Fe3+and Cr4+through superexchange interactions (according the empiric Goodenough-Kanamori-Anderson rules) increases the magnetization at high fields and that the presence of ferromagnetic clusters explains the hysteretic behavior found in simulations.

2.
J Phys Condens Matter ; 36(1)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37703900

RESUMEN

The magnetization reversal (MR) of the layered Ni4-xZnxNb2O9ferrimagnetic compounds, withx=0,0.25,0.50and 0.75, is studied in this work using Monte Carlo (MC) simulations and mean field (MF) calculations. First, we analyze the parent compound to set the parameters of our simulations; testing together MC simulations, MF calculations, and MR experiments reported by Bollettaet al(2022J. Appl. Phys.132153901). Then using two different approaches we fit the MR curves of the series of compounds finding a quite good agreement between MC simulations and the experiments. According to these results, Zn substitutions change the relative contribution to the magnetization of the different layers. Here we present two possible hypotheses to explain this effect; one involving a heterogeneous distribution of Zn2+among the layers, and the other related to distortions of the NiO6octahedra.

3.
Sensors (Basel) ; 23(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36772460

RESUMEN

Fe3Co67Cr3Si15B12 ribbons with a high degree of flexibility and excellent corrosion stability were produced by rapid quenching technique. Their structural, magnetic, and thermomagnetic (Anomalous Nernst Effect) properties were studied both in an as-quenched (NR) state and after stress annealing during 1 h at the temperature of 350 °C and a specific load of 230 MPa (AR). X-ray diffraction was used to verify the structural characteristics of our ribbons. Static magnetic properties were explored by inductive technique and vibrating sample magnetometry. The thermomagnetic curves investigated through the Anomalous Nernst Effect are consistent with the obtained magnetization results, presenting a linear response in the thermomagnetic signal, an interesting feature for sensor applications. Additionally, Anomalous Nernst Effect coefficient SANE values of 2.66µV/K and 1.93µV/K were estimated for the as-quenched and annealed ribbons, respectively. The interplay of the low magnetostrictive properties, soft magnetic behavior, linearity of the thermomagnetic response, and flexibility of these ribbons place them as promising systems to probe curved surfaces and propose multifunctional devices, including magnetic field-specialized sensors.

4.
Nanotechnology ; 34(16)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36689765

RESUMEN

Three dimensional magnetic textures are a cornerstone in magnetism research. In this work, we analyze the stabilization and dynamic response of a magnetic hopfion hosted in a toroidal nanoring with intrinsic Dzyaloshinskii-Moriya interaction simulating FeGe. Our results evidence that unlike their planar counterparts, where perpendicular magnetic anisotropies are necessary to stabilize hopfions, the shape anisotropy originated on the torus symmetry naturally yields the nucleation of these topological textures. We also analyze the magnetization dynamical response by applying a magnetic field pulse to differentiate among several magnetic patterns. Finally, to understand the nature of spin wave modes, we analyze the spatial distributions of the resonant mode amplitudes and phases and describe the differences among bulk and surface modes. Importantly, hopfions lying in toroidal nanorings present a non-circularly symmetric poloidal resonant mode, which is not observed in other systems hosting hopfions.

5.
Plants (Basel) ; 11(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35736738

RESUMEN

It is known that poorly performed fertigation directly impacts on tomato production and biometric components. In addition, consumers are also affected by interrelated characteristics that interfere with the acceptability of the fruit, such as the physicochemical parameters and nutrients in the fruit. Thus, eco-friendly technologies, such as irrigation with ultra-low frequency electromagnetic treated-water, which attenuates the inadequate management of fertigation, are essential to improve marketable fruit yields. Thus, the objective of the present work was to investigate the impact of treated water with very low-frequency electromagnetic resonance fields in physical, chemical and nutritional parameters at different nutrient solution strengths in tomato fruits. In this study, experiments were carried out in randomized blocks and five doses of fertigation were used (1.5; 2.5; 4.0; 5.5; and 7.0 dS m−1), employing two types of water: electromagnetically treated and untreated. It can be seen that the fertigation affected some parameters, mainly the number of fruits with blossom-end rot, fruit size, and weight. Variance analysis (ANOVA) was performed with the subsequent use of the Tukey test. In all statistical tests, a confidence level of 95% was considered. The soluble solids content increased by 28% as a function of the fertigation doses. The electromagnetically treated water reduced the number of fruits with blossom-end rot by 35% (p < 0.05). Overall, electromagnetic water improved the physicochemical quality parameters and the nutritional status of tomato fruits. Thus, this study demonstrated that green technology could leverage tomato fruit production and quality.

6.
Brain Behav ; 12(3): e2490, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35103410

RESUMEN

BACKGROUND: Diffuse axonal injury (DAI) is a frequent mechanism of traumatic brain injury (TBI) that triggers a sequence of parenchymal changes that progresses from focal axonal shear injuries up to inflammatory response and delayed axonal disconnection. OBJECTIVE: The main purpose of this study is to evaluate changes in the axonal/myelinic content and the brain volume up to 12 months after TBI and to correlate these changes with neuropsychological results. METHODS: Patients with DAI (n = 25) were scanned at three time points after trauma (2, 6, and 12 months), and the total brain volume (TBV), gray matter volume, and white matter volume (WMV) were calculated in each time point. The magnetization transfer ratio (MTR) for the total brain (TB MTR), gray matter (GM MTR), and white matter (WM MTR) was also quantified. In addition, Hopkins verbal learning test (HVLT), Trail Making Test (TMT), and Rey-Osterrieth Complex Figure test were performed at 6 and 12 months after the trauma. RESULTS: There was a significant reduction in the mean TBV, WMV, TB MTR, GM MTR, and WM MTR between time points 1 and 3 (p < .05). There was also a significant difference in HVLT-immediate, TMT-A, and TMT-B scores between time points 2 and 3. The MTR decline correlated more with the cognitive dysfunction than the volume reduction. CONCLUSION: A progressive axonal/myelinic rarefaction and volume loss were characterized, especially in the white matter (WM) up to 1 year after the trauma. Despite that, specific neuropsychological tests revealed that patients' episodic verbal memory, attention, and executive function improved during the study. The current findings may be valuable in developing long-term TBI rehabilitation management programs.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesión Axonal Difusa , Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Cognición , Lesión Axonal Difusa/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Pruebas Neuropsicológicas
7.
Nanomaterials (Basel) ; 11(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34947752

RESUMEN

Geometrically modulated magnetic nanowires are a simple yet efficient strategy to modify the magnetic domain wall propagation since a simple diameter modulation can achieve its pinning during the nanowire magnetization reversal. However, in dense systems of parallel nanowires, the stray fields arising at the diameter interface can interfere with the domain wall propagation in the neighboring nanowires. Therefore, the magnetic behavior of diameter-modulated nanowire arrays can be quite complex and depending on both short and long-range interaction fields, as well as the nanowire geometric dimensions. We applied the first-order reversal curve (FORC) method to bi-segmented Ni nanowire arrays varying the wide segment (45-65 nm diameter, 2.5-10.0 µm length). The FORC results indicate a magnetic behavior modification depending on its length/diameter aspect ratio. The distributions either exhibit a strong extension along the coercivity axis or a main distribution finishing by a fork feature, whereas the extension greatly reduces in amplitude. With the help of micromagnetic simulations, we propose that a low aspect ratio stabilizes pinned domain walls at the diameter modulation during the magnetization reversal. In this case, long-range axial interaction fields nucleate a domain wall at the nanowire extremities, while short-range ones could induce a nucleation at the diameter interface. However, regardless of the wide segment aspect ratio, the magnetization reversal is governed by the local radial stray fields of the modulation near null magnetization. Our findings demonstrate the capacity of distinguishing between complex magnetic behaviors involving convoluted interaction fields.

8.
Sensors (Basel) ; 21(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34577350

RESUMEN

We investigated the magnetization dynamics through the magnetoimpedance effect in an integrated YIG/Pt-stripline system in the frequency range of 0.5 up to 2.0 GHz. Specifically, we explore the dependence of the dynamic magnetic behavior on the field orientation by analyzing beyond the traditional longitudinal magnetoimpedance effect of the transverse and perpendicular setups. We disclose here the strong dependence of the effective damping parameter on the field orientation, as well as verification of the very-low damping parameter values for the longitudinal and transverse configurations. We find considerable sensitivity results, bringing to light the facilities to integrate ferrimagnetic insulators in current and future technological applications.

9.
J Phys Condens Matter ; 33(22)2021 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-33607649

RESUMEN

We report on the growth of Mn5Ge3thin films on Ge(001) substrates following two methods: solid phase epitaxy (SPE) and reactive deposition epitaxy (RDE). We have varied the thickness of the films, in order to study the magnetization and anisotropy evolution. A strongly enhanced magnetization of 1580 kA m-1, compared to 1200 ± 150 kA m-1for films grown on Ge(111), has been measured on ultrathin films of 5 nm grown by RDE. Thicker films exhibited magnetizations <750 kA m-1. The films grown by SPE also exhibit strong magnetization of 1490 kA m-1and a drop of magnetization by increasing the film thickness. The effective magnetic anisotropy exhibits a more complex behavior: increases on the SPE films and decreases on the RDE films while increasing the thickness of the films. Magnetostatic and interfacial anisotropies were considered and calculated. The results are discussed in terms of the growth methods and microstructure of the films.

10.
Heliyon ; 6(1): e03111, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31909275

RESUMEN

Zinc/aluminum layered double hydroxide (LDH) particles were prepared by alkaline precipitation in the presence of dysprosium and dysprosium/gadolinium cations. The particles formed were stable against exchange reactions with folate or glucuronate ions since these organic ions exclusively functionalized the external surface of the layered double hydroxides. While the dysprosium derivatives reached magnetization susceptibilities between 2.06 × 10-5 and 2.20 × 10-5 cm3/g, the samples simultaneously containing dysprosium and gadolinium decreased to a range between 1.08 × 10-5 and 1.73 × 10-5 cm3/g. This last sample was tested as a magnetic resonance imaging contrast agent and demonstrated a reduction in T1 and T2 relaxation times in a linear dependence with the LDH concentration. The oxidative stress assays in rat liver mitochondria demonstrated the low toxicity of the composition simultaneously containing dysprosium and gadolinium as well as the functionalization product with glucuronate ions, suggesting the potential of these particles to design alternative MRI contrast agents.

11.
Chemosphere ; 212: 853-862, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30193234

RESUMEN

Diclofenac sodium (DCF) is frequently detected as a non-steroidal pharmaceutical in the aquatic environment. In this study, the degradation of DCF in two heterogeneous systems, pre-magnetization Fe0/H2O2 (Pre-Fe0/H2O2) and Fe0/H2O2 system, was comparably studied. Our findings proved that Pre-Fe0 could significantly improve the degradation and dechlorination of DCF due to the change of Fe0 characteristics after pre-magnetization. Compared with Fe0/H2O2 process, Pre-Fe0/H2O2 process has 2.1-7.0 times higher rate constant for DCF degradation at different H2O2 dosages (0.25-2.0 mM), initial pH (3.0-6.0) and Fe0 dosages (0.25-1.5 mM). The characterizations by X-ray Photoelectron Spectroscopy and Electron Paramagnetic Resonance confirmed that the enhancement attributed to the increase of Fe0 corrosion and fast generation of OH. In addition, preliminary degradation mechanism was elucidated by major products identification using UPLC-MS, through which the degradation intermediates, such as 4-hydroxy-diclofenac or 5-hydroxydiclofenac, 2,6-dichloroaniline, phenylacetic acid, 1,3-dichlorobenzene and 2-aminophenylacetic acid were identified. Hydroxylation, decarboxylation, CN bond cleavage and ring-opening involving the attack of OH or other substances, were the main degradation mechanism. Therefore, Pre-Fe0/H2O2 process, which does not need extra energy and costly reagents, is an efficient and environmental-friendly process to degrade DCF.


Asunto(s)
Diclofenaco/química , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química , Diclofenaco/análogos & derivados , Magnetismo
12.
Data Brief ; 19: 965-987, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29900393

RESUMEN

We provide lithostratigraphic and magnetostratigraphic data derived from a Plio-Pleistocene continental sediment sequence underlying the Altiplano plateau at La Paz, Bolivia. The record comprises six sections along the upper Río La Paz valley, totaling over one kilometre of exposure and forming a ~20-km transect oblique to the adjacent Cordillera Real. Lithostratigraphic characterization includes lithologic and stratigraphic descriptions of units and their contacts. We targeted gravel and diamicton units for paleomagnetic sampling to address gaps in the only previous magnetostratigraphic study from this area. Paleomagnetic data - magnetic susceptibility and primary remanent magnetization revealed by progressive alternating field demagnetization - are derived from 808 individually oriented samples of flat-lying, fine-grained sediments. The datasets enable characterization of paleo-surfaces within the sequence, correlation between stratigraphic sections, and differentiation of asynchronous, but lithologically similar units. Correlation of the composite polarity sequence to the geomagnetic polarity time scale supports a range of late Cenozoic paleoenvironmental topics of regional to global importance: the number and ages of early glaciations in the tropical Andes; interhemispheric comparison of paleoclimate during the Plio-Pleistocene climatic transition; timing of and controls on inter-American faunal exchange; and the variability of Earth's paleomagnetic field.

13.
Childs Nerv Syst ; 33(6): 921-931, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28382436

RESUMEN

PURPOSE: We investigate the effects of environmental enrichment (EE) on morphological alterations in different brain structures of pup rats submitted to hydrocephalus condition. METHODS: Hydrocephalus was induced in 7-day-old pup rats by injection of 20% kaolin into the cisterna magna. Ventricular dilatation and magnetization transfer to analyze myelin were assessed by magnetic resonance. Hydrocephalic and control rats exposed to EE (n = 10 per group) were housed in cages with a tunnel, ramp, and colored plastic balls that would emit sound when touched. The walls of the housing were decorated with colored adhesive tape. Moreover, tactile and auditory stimulation was performed daily throughout the experiment. Hydrocephalic and control rats not exposed to EE (n = 10 per group) were allocated singly in standard cages. All animals were weighed daily and exposed to open-field conditions every 2 days until the end of the experiment when they were sacrificed and the brains removed for histology and immunohistochemistry. Solochrome cyanine staining was performed to assess the thickness of the corpus callosum. The glial fibrillary acidic protein method was used to evaluate reactive astrocytes, and the Ki67 method to assess cellular proliferation in the subventricular zone. RESULTS: The hydrocephalic animals exposed to EE showed better performance in Open Field tests (p < 0.05), while presenting lower weight gain. In addition, these animals showed better myelination as revealed by magnetization transfer (p < 0.05). Finally, the EE group showed a reduction in reactive astrocytes by means of glial fibrillary acidic protein immunostaining and preservation of the proliferation potential of progenitor cells. CONCLUSION: The results suggest that EE can protect the developing brain against damaging effects caused by hydrocephalus.


Asunto(s)
Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/prevención & control , Ambiente , Hidrocefalia/diagnóstico por imagen , Factores de Edad , Animales , Animales Recién Nacidos , Lesiones Encefálicas/patología , Conducta Exploratoria/fisiología , Hidrocefalia/patología , Masculino , Ratas , Ratas Wistar
14.
J Med Imaging (Bellingham) ; 1(3): 031005, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26158047

RESUMEN

Early diagnoses of Alzheimer's disease (AD) would confer many benefits. Several biomarkers have been proposed to achieve such a task, where features extracted from magnetic resonance imaging (MRI) have played an important role. However, studies have focused exclusively on morphological characteristics. This study aims to determine whether features relating to the signal and texture of the image could predict mild cognitive impairment (MCI) to AD progression. Clinical, biological, and positron emission tomography information and MRI images of 62 subjects from the AD neuroimaging initiative were used in this study, extracting 4150 features from each MRI. Within this multimodal database, a feature selection algorithm was used to obtain an accurate and small logistic regression model, generated by a methodology that yielded a mean blind test accuracy of 0.79. This model included six features, five of them obtained from the MRI images, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index. The groups were statistically different ([Formula: see text]). These results demonstrated that MRI features related to both signal and texture add MCI to AD predictive power, and supported the ongoing notion that multimodal biomarkers outperform single-modality ones.

15.
Materials (Basel) ; 4(1): 37-54, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-28879975

RESUMEN

Inductance spectroscopy is a particular formulation variant of the well known complex impedance formalism typically used for the electric characterization of dielectric, ferroelectric, and piezoelectric materials. It has been successfully exploited as a versatile tool for characterization of the magnetization dynamics in amorphous ribbons and wires by means of simple experiments involving coils for sample holding and impedance analyzer equipment. This technique affords the resolution of the magnetization processes in soft magnetic materials, in terms of reversible deformation of pinned domain walls, domain wall displacements and spin rotation, for which characteristic parameters such as the alloy initial permeability and the relaxation frequencies, indicating the dispersion of each process, can be defined. Additionally, these parameters can be correlated with chemical composition variation, size effects and induced anisotropies, leading to a more physical insight for the understanding of the frequency dependent magnetic response of amorphous alloys, which is of prime interest for the development of novel applications in the field of telecommunication and sensing technologies. In this work, a brief overview, together with recent progress on the magnetization dynamics of amorphous ribbons, wires, microwires and biphase wires, is presented and discussed for the intermediate frequency interval between 10 Hz and 13 MHz.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA