Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
R Soc Open Sci ; 11(6): 231839, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100165

RESUMEN

Nanoparticle uptake by cells is a key parameter in their performance in biomedical applications. However, the use of quantitative, non-destructive techniques to obtain the amount of nanoparticles internalized by cells is still uncommon. We have studied the cellular uptake and the toxicity of core-shell maghemite-silica magnetic nanoparticles (MNPs), with a core diameter of 9 nm and a shell thickness of 3 nm. The internalization of the nanoparticles by mouse neuroblastoma 2a cells was evaluated by sensitive and non-destructive Superconducting Quantum Interference Device (SQUID) magnetometry and corroborated by graphite furnace atomic absorption spectroscopy. We were thus able to study the toxicity of the nanoparticles for well-quantified MNP uptake in terms of nanoparticle density within the cell. No significant variation in cell viability or growth rate was detected for any tested exposure. Yet, an increase in both the amount of mitochondrial superoxide and in the lysosomal activity was detected for the highest concentration (100 µg ml-1) and incubation time (24 h), suggesting the onset of a disruption in ROS homeostasis, which may lead to an impairment in antioxidant responses. Our results validate SQUID magnetometry as a sensitive technique to quantify MNP uptake and demonstrate the non-toxic nature of these core-shell MNPs under our culture conditions.

2.
Open Res Eur ; 4: 44, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148583

RESUMEN

Nitrogen-vacancy (NV) centers in diamond have emerged as promising quantum sensors due to their highly coherent and optically addressable spin states with potential applications in high-sensitivity magnetometry. Homogeneously addressing large ensembles of NV centers offers clear benefit in terms of sensing precision as well as in fundamental studies of collective effects. Such experiments require a spatially uniform, intense, and broadband microwave field that can be difficult to generate. Previous approaches, such as copper wires, loop coils, and planar structures, have shown limitations in field homogeneity, bandwidth, and integration in compact devices. In this paper, we present a coplanar waveguide (CPW) gold coil patterned on a 3 × 3 mm 2 diamond substrate, offering full integration, enhanced stability, and broad bandwidth suitable for various NV sensing applications. Coil fabricated on diamond offers several advantages for magnetometry with NV centers ensemble, including enhanced heat dissipation, seamless integration, scalability, and miniaturization potential. We optimize critical geometrical parameters to achieve a homogeneous magnetic field with a coefficient of variation of less than 6% over an area of 0.5 mm 2 and present experimental results confirming the performance of the proposed CPW coil.


In recent years, there has been significant interest in using nitrogen-vacancy (NV) centers in diamond as quantum sensors for high-sensitivity magnetometry. These NV centers, particularly the negatively charged ones, offer promising applications due to their coherent spin states that can be manipulated using microwave fields and optically detected magnetic resonance techniques. However, to improve measurement precision and signal-to-noise ratio, it's advantageous to address large ensembles of NV centers, which requires a spatially uniform, intense, and broadband microwave field. Various methods, such as copper wires, loop coils, and planar structures, have been explored to achieve this, but with limited capability. To address their limitations, a coplanar waveguide (CPW) gold coil patterned on a CVD diamond substrate is proposed. This design offers a highly homogeneous magnetic field, full integration with the diamond substrate, scalability, miniaturization, and efficient heat dissipation, making it a promising solution for NV magnetometry applications. Experimental results confirm its performance, making it a remarkable advancement in this area.

3.
Environ Geochem Health ; 46(8): 287, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970741

RESUMEN

The aim of the study was an assessment of the pollution level and identification of the antimony sources in soils in areas subjected to industrial anthropopressure from: transport, metallurgy and electrical waste recycling. The combination of soil magnetometry, chemical analyzes using atomic spectrometry (ICP-OES and ICP-MS), Sb fractionation analysis, statistical analysis (Pearson's correlation matrix, factor analysis) as well as Geoaccumulation Index, Pollution Load Index, and Sb/As factor allowed not only the assessment of soil contamination degree, but also comprehensive identification of different Sb sources. The results indicate that the soil in the vicinity of the studied objects was characterized by high values of magnetic susceptibility and thus, high contents of potentially toxic elements. The most polluted area was in the vicinity of electrical waste processing plants. Research has shown that the impact of road traffic and wearing off brake blocks, i.e. traffic anthropopression in general, has little effect on the surrounding soil in terms of antimony content. Large amounts of Pb, Zn, As and Cd were found in the soil collected in the vicinity of the heap after the processing of zinc-lead ores, the average antimony (11.31 mg kg-1) content was lower in the vicinity of the heap than in the area around the electrical and electronic waste processing plant, but still very high. Antimony in the studied soils was demobilized and associated mainly with the residual fraction.


Asunto(s)
Antimonio , Monitoreo del Ambiente , Contaminantes del Suelo , Suelo , Antimonio/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Suelo/química , Espectrofotometría Atómica/métodos , Residuos Electrónicos/análisis , Residuos Industriales/análisis
4.
ACS Nano ; 18(23): 15261-15269, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38820131

RESUMEN

Li-ion-based electric field control has been attracting significant attention, since it is able to penetrate deep into materials to exhibit diverse and controllable electrochemical processes, which offer more degrees of freedom to design multifunctional devices with low power consumption. As opposed to previous studies that mainly focused on single lithiation/delithiation mechanisms, we reveal three Li-ion modulation mechanisms in the same NiFe2O4 spinel ferrite by in situ magnetometry, i.e., intercalation, conversion, and space charge, which are respectively demonstrated in high, medium, and low voltage range. During the intercalation stage, the spinel structure is preserved, and a reversible modulation of magnetization arises from the charge transfer-induced variation of Fe valence states (Fe2+/Fe3+). Conversion-driven change in magnetization is the largest up to 89 emu g-1, due to the structural and magnetic phase transitions. Although both intercalation and conversion exhibit sluggish kinetics and long response times, the space charge manifests a faster switching speed and superior durability due to its interface electrostatic effect. These results not only provide a clear and comprehensive understanding on Li-based modulation mechanisms but also facilitate multifunctional and multiscenario applications, such as multistate memory, micromagnetic actuation, artificial synapse, and energy storage.

5.
J Magn Reson ; 362: 107665, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598992

RESUMEN

The NMRduino is a compact, cost-effective, sub-MHz NMR spectrometer that utilizes readily available open-source hardware and software components. One of its aims is to simplify the processes of instrument setup and data acquisition control to make experimental NMR spectroscopy accessible to a broader audience. In this introductory paper, the key features and potential applications of NMRduino are described to highlight its versatility both for research and education.

6.
Nanomaterials (Basel) ; 14(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38607168

RESUMEN

Ferrofluids containing magnetic nanoparticles represent a special class of magnetic materials due to the added freedom of particle tumbling in the fluids. We studied this process, known as Brownian relaxation, and its effect on the magnetic properties of ferrofluids with controlled magnetite nanoparticle sizes. For small nanoparticles (below 10 nm diameter), the Néel process is expected to dominate the magnetic response, whereas for larger particles, Brownian relaxation becomes important. Temperature- and magnetic-field-dependent magnetization studies, differential scanning calorimetry, and AC susceptibility measurements were carried out for 6 and 13.5 nm diameter magnetite nanoparticles suspended in water. We identify clear fingerprints of Brownian relaxation for the sample of large-diameter nanoparticles as both magnetic and thermal hysteresis develop at the water freezing temperature, whereas the samples of small-diameter nanoparticles remain hysteresis-free down to the magnetic blocking temperature. This is supported by the temperature-dependent AC susceptibility measurements: above 273 K, the data show a low-frequency Debye peak, which is characteristic of Brownian relaxation. This peak vanishes below 273 K.

7.
Sensors (Basel) ; 24(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38610303

RESUMEN

We investigate the magnetic field-dependent fluorescence lifetime of microdiamond powder containing a high density of nitrogen-vacancy centers. This constitutes a non-intensity quantity for robust, all-optical magnetic field sensing. We propose a fiber-based setup in which the excitation intensity is modulated in a frequency range up to 100MHz. The change in magnitude and phase of the fluorescence relative to B=0 is recorded where the phase shows a maximum in magnetic contrast of 5.8∘ at 13MHz. A lock-in amplifier-based setup utilizing the change in phase at this frequency shows a 100 times higher immunity to fluctuations in the optical path compared to the intensity-based approach. A noise floor of 20µT/Hz and a shot-noise-limited sensitivity of 0.95µT/Hz were determined.

8.
Front Plant Sci ; 15: 1352282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38525149

RESUMEN

We report on a cross-species proton-relaxometry study in ex vivo tree leaves using nuclear magnetic resonance (NMR) at 7µT. Apart from the intrinsic interest of probing nuclear-spin relaxation in biological tissues at magnetic fields below Earth field, our setup enables comparative analysis of plant water dynamics without the use of expensive commercial spectrometers. In this work, we focus on leaves from common Eurasian evergreen and deciduous tree families: Pinaceae (pine, spruce), Taxaceae (yew), Betulaceae (hazel), Prunus (cherry), and Fagaceae (beech, oak). Using a nondestructive protocol, we measure their effective proton T 2 relaxation times as well as track the evolution of water content associated with leaf dehydration. Newly developed "gradiometric quadrature" detection and data-processing techniques are applied in order to increase the signal-to-noise ratio (SNR) of the relatively weak measured signals. We find that while measured relaxation times do not vary significantly among tree genera, they tend to increase as leaves dehydrate. Such experimental modalities may have particular relevance for future drought-stress research in ecology, agriculture, and space exploration.

9.
Proc Natl Acad Sci U S A ; 121(7): e2320030121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38315861

RESUMEN

Transition metals and related compounds are known to exhibit high catalytic activities in various electrochemical reactions thanks to their intriguing electronic structures. What is lesser known is their unique role in storing and transferring electrons in battery electrodes which undergo additional solid-state conversion reactions and exhibit substantially large extra capacities. Here, a full dynamic picture depicting the generation and evolution of electrochemical interfaces in the presence of metallic nanoparticles is revealed in a model CoCO3/Li battery via an in situ magnetometry technique. Beyond the conventional reduction to a Li2CO3/Co mixture under battery operation, further decomposition of Li2CO3 is realized by releasing interfacially stored electrons from its adjacent Co nanoparticles, whose subtle variation in the electronic structure during this charge transfer process has been monitored in real time. The findings in this work may not only inspire future development of advanced electrode materials for next-generation energy storage devices but also open up opportunities in achieving in situ monitoring of important electrocatalytic processes in many energy conversion and storage systems.

10.
Sensors (Basel) ; 24(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38339463

RESUMEN

Quantum magnetometry based on optically detected magnetic resonance (ODMR) of nitrogen vacancy centers in diamond nano or microcrystals is a promising technology for sensitive, integrated magnetic-field sensors. Currently, this technology is still cost-intensive and mainly found in research. Here we propose one of the smallest fully integrated quantum sensors to date based on nitrogen vacancy (NV) centers in diamond microcrystals. It is an extremely cost-effective device that integrates a pump light source, photodiode, microwave antenna, filtering and fluorescence detection. Thus, the sensor offers an all-electric interface without the need to adjust or connect optical components. A sensitivity of 28.32nT/Hz and a theoretical shot noise limited sensitivity of 2.87 nT/Hz is reached. Since only generally available parts were used, the sensor can be easily produced in a small series. The form factor of (6.9 × 3.9 × 15.9) mm3 combined with the integration level is the smallest fully integrated NV-based sensor proposed so far. With a power consumption of around 0.1W, this sensor becomes interesting for a wide range of stationary and handheld systems. This development paves the way for the wide usage of quantum magnetometers in non-laboratory environments and technical applications.

11.
Materials (Basel) ; 17(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38255517

RESUMEN

Magnetite nanoparticles (MNPs) are highly favored materials for a wide range of applications, from smart composite materials and biosensors to targeted drug delivery. These multifunctional applications typically require the biofunctional coating of MNPs that involves various conjugation techniques to form stable MNP-biomolecule complexes. In this study, a cost-effective method is developed for the chlorostannate modification of MNP surfaces that provides efficient one-step conjugation with biomolecules. The proposed method was validated using MNPs obtained via an optimized co-precipitation technique that included the use of degassed water, argon atmosphere, and the pre-filtering of FeCl2 and FeCl3 solutions followed by MNP surface modification using stannous chloride. The resulting chlorostannated nanoparticles were comprehensively characterized, and their efficiency was compared with both carboxylate-modified and unmodified MNPs. The biorecognition performance of MNPs was verified via magnetic immunochromatography. Mouse monoclonal antibodies to folic acid served as model biomolecules conjugated with the MNP to produce nanobioconjugates, while folic acid-gelatin conjugates were immobilized on the test lines of immunochromatography lateral flow test strips. The specific trapping of the obtained nanobioconjugates via antibody-antigen interactions was registered via the highly sensitive magnetic particle quantification technique. The developed chlorostannate modification of MNPs is a versatile, rapid, and convenient tool for creating multifunctional nanobioconjugates with applications that span in vitro diagnostics, magnetic separation, and potential in vivo uses.

12.
Nano Lett ; 24(4): 1309-1315, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38258741

RESUMEN

Electrically percolating nanowire networks are among the most promising candidates for next-generation transparent electrodes. Scientific interest in these materials stems from their intrinsic current distribution heterogeneity, leading to phenomena like percolating pathway rerouting and localized self-heating, which can cause irreversible damage. Without an experimental technique to resolve the current distribution and an underpinning nonlinear percolation model, one relies on empirical rules and safety factors to engineer materials. We introduce Bose-Einstein condensate microscopy to address the longstanding problem of imaging active current flow in 2D materials. We report on performance improvement of this technique whereby observation of dynamic redistribution of current pathways becomes feasible. We show how this, combined with existing thermal imaging methods, eliminates the need for assumptions between electrical and thermal properties. This will enable testing and modeling individual junction behavior and hot-spot formation. Investigating both reversible and irreversible mechanisms will contribute to improved performance and reliability of devices.

13.
Curr Neurol Neurosci Rep ; 24(2): 35-46, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38148387

RESUMEN

PURPOSE OF THE REVIEW: Magnetoencephalography (MEG) is a functional neuroimaging technique that records neurophysiology data with millisecond temporal resolution and localizes it with subcentimeter accuracy. Its capability to provide high resolution in both of these domains makes it a powerful tool both in basic neuroscience as well as clinical applications. In neurology, it has proven useful in its ability to record and localize epileptiform activity. Epilepsy workup typically begins with scalp electroencephalography (EEG), but in many situations, EEG-based localization of the epileptogenic zone is inadequate. The complementary sensitivity of MEG can be crucial in such cases, and MEG has been adopted at many centers as an important resource in building a surgical hypothesis. In this paper, we review recent work evaluating the extent of MEG influence of presurgical evaluations, novel analyses of MEG data employed in surgical workup, and new MEG instrumentation that will likely affect the field of clinical MEG. RECENT FINDINGS: MEG consistently contributes to presurgical evaluation and these contributions often change the plan for epilepsy surgery. Extensive work has been done to develop new analytic methods for localizing the source of epileptiform activity with MEG. Systems using optically pumped magnetometry (OPM) have been successfully deployed to record and localize epileptiform activity. MEG remains an important noninvasive tool for epilepsy presurgical evaluation. Continued improvements in analytic methodology will likely increase the diagnostic yield of the test. Novel instrumentation with OPM may contribute to this as well, and may increase accessibility of MEG by decreasing cost.


Asunto(s)
Epilepsia , Magnetoencefalografía , Humanos , Magnetoencefalografía/métodos , Epilepsia/diagnóstico , Epilepsia/cirugía , Electroencefalografía/métodos , Neuroimagen , Neuroimagen Funcional
14.
ACS Nano ; 17(24): 25689-25696, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38050827

RESUMEN

Effective control and readout of qubits form the technical foundation of next-generation, transformative quantum information sciences and technologies. The nitrogen-vacancy (NV) center, an intrinsic three-level spin system, is naturally relevant in this context due to its excellent quantum coherence, high fidelity of operations, and remarkable functionality over a broad range of experimental conditions. It is an active contender for the development and implementation of cutting-edge quantum technologies. Here, we report magnetic domain wall motion driven local control and measurements of the NV spin properties. By engineering the local magnetic field environment of an NV center via nanoscale reconfigurable domain wall motion, we show that NV photoluminescence, spin level energies, and coherence time can be reliably controlled and correlated to the magneto-transport response of a magnetic device. Our results highlight the electrically tunable dipole interaction between NV centers and nanoscale magnetic structures, providing an attractive platform to realize interactive information transfer between spin qubits and nonvolatile magnetic memory in hybrid quantum spintronic systems.

15.
Heliyon ; 9(11): e21115, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37920503

RESUMEN

One of the essential geophysical concerns is the estimation of the physical and geometrical parameters of the reserve (geobody), which is done by exploiting the nonlinear inverse modeling of magnetic data. The present study includes preparing and modeling magnetic data to suggest the Baba Ali Iron ore deposit's drilling locations in NW Iran. The area is covered with 1000 points of geomagnetic reading with an almost 5 × 10 m2 regularly spaces grid trending WE. The areal and depth extent of the iron ore geobody was unknown. The Bhattacharyya method by MATLAB software coding was employed to underestimate the misfit function and re-construct potential field data, providing the most suitable fitting with measured magnetic data. In this order, the residual calculated anomaly exhibited an excellent two-dimensional conformation with forward modeling. Furthermore, 3D modeling correctly reconstructs the anomalies' productive resources' properties. After preparing full magnetic maps, the magnetic lenses distinguished in four anomalies of surface depths, 20, 50, and deeper than 50 m for this zone. This magnetite lens for the first zone was estimated based on analytical signal filters applied on the entire magnetic map so that the lens's depth is trivial and almost zero. Due to specific gravity calculated as 4.77 t/m3, initial storage capacity is suggested to be about 95,400 tons of magnetite, pyrite, and hematite minerals at most in an area about 6 Km2. Finally, to complete the preliminary explorations of the specified area, exploratory drilling is suggested for three points by inverse modeling. Regarding this study as the first try in magnetic reconnaissance step of Iron mineral exploration in the study area, there is no geological constraints available based on drilling evidences. However, the model is well satisfies the surface anomalies considering residual magnetic property.

16.
Front Neurol ; 14: 1257886, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38020602

RESUMEN

Rationale: Severe TBI (sTBI) is a devastating neurological injury that comprises a significant global trauma burden. Early comprehensive neurocritical care and rehabilitation improve outcomes for such patients, although better diagnostic and prognostic tools are necessary to guide personalized treatment plans. Methods: In this study, we explored the feasibility of conducting resting state magnetoencephalography (MEG) in a case series of sTBI patients acutely after injury (~7 days), and then about 1.5 and 8 months after injury. Synthetic aperture magnetometry (SAM) was utilized to localize source power in the canonical frequency bands of delta, theta, alpha, beta, and gamma, as well as DC-80 Hz. Results: At the first scan, SAM source maps revealed zones of hypofunction, islands of preserved activity, and hemispheric asymmetry across bandwidths, with markedly reduced power on the side of injury for each patient. GCS scores improved at scan 2 and by scan 3 the patients were ambulatory. The SAM maps for scans 2 and 3 varied, with most patients showing increasing power over time, especially in gamma, but a continued reduction in power in damaged areas and hemispheric asymmetry and/or relative diminishment in power at the site of injury. At the group level for scan 1, there was a large excess of neural generators operating within the delta band relative to control participants, while the number of neural generators for beta and gamma were significantly reduced. At scan 2 there was increased beta power relative to controls. At scan 3 there was increased group-wise delta power in comparison to controls. Conclusion: In summary, this pilot study shows that MEG can be safely used to monitor and track the recovery of brain function in patients with severe TBI as well as to identify patient-specific regions of decreased or altered brain function. Such MEG maps of brain function may be used in the future to tailor patient-specific rehabilitation plans to target regions of altered spectral power with neurostimulation and other treatments.

17.
Physiol Meas ; 44(11)2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37832564

RESUMEN

Objectives.(1) Develop a computational pipeline for three-dimensional fast neural magnetic detection electrical impedance tomography (MDEIT), (2) determine whether constant current or constant voltage is preferable for MDEIT, (3) perform reconstructions of simulated neural activity in a human head model with realistic noise and compare MDEIT to EIT and (4) perform a two-dimensional study in a saline tank for MDEIT with optically pumped magnetometers (OPMs) and compare reconstruction algorithms.Approach.Forward modelling and image reconstruction were performed with a realistic model of a human head in three dimensions and at three noise levels for four perturbations representing neural activity. Images were compared using the error in the position and size of the reconstructed perturbations. Two-dimensional MDEIT was performed in a saline tank with a resistive perturbation and one OPM. Six reconstruction algorithms were compared using the error in the position and size of the reconstructed perturbations.Main results.A computational pipeline was developed in COMSOL Multiphysics, reducing the Jacobian calculation time from months to days. MDEIT reconstructed images with a lower reconstruction error than EIT with a mean difference of 7.0%, 5.5% and 11% for three noise cases representing current noise, reduced current source noise and reduced current source and magnetometer noise. A rank analysis concluded that the MDEIT Jacobian was less rank-deficient than the EIT Jacobian. Reconstructions of a phantom in a saline tank had a best reconstruction error of 13%, achieved using 0th-order Tikhonov regularisation with simulated noise-based correction.Significance.This study demonstrated that three-dimensional MDEIT for neural imaging is feasible and that MDEIT reconstructed superior images to EIT, which can be explained by the lesser rank deficiency of the MDEIT Jacobian. Reconstructions of a perturbation in a saline tank demonstrated a proof of principle for two-dimensional MDEIT with OPMs and identified the best reconstruction algorithm.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía , Humanos , Tomografía/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Impedancia Eléctrica , Tomografía Computarizada por Rayos X , Fantasmas de Imagen , Algoritmos
18.
J Phys Condens Matter ; 36(1)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37738985

RESUMEN

We study the influence of defects in Co/Pt multilayers on the room-temperature magnetization reversal and relaxation mechanisms via angle-dependent magnetic viscosity and coercive field measurements. The data reveal a transition from pinning-dominated domain wall propagation to a sequence of pinning-dominated and uniform switching, with increasing tilt away from the normal direction. The leading role of the dendritic domain wall propagation in the nanogranular exchange-coupled films is corroborated by the scaling of relaxation times, the angular dependence of the coercive field, and Kerr microscopy.

19.
Nano Lett ; 23(17): 8099-8105, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37656017

RESUMEN

van der Waals (vdW) magnets, an emerging family of two-dimensional (2D) materials, have received tremendous attention due to their rich fundamental physics and significant potential for cutting-edge technological applications. In contrast to the conventional bulk counterparts, vdW magnets exhibit significant tunability of local material properties, such as stacking engineered interlayer coupling and layer-number dependent magnetic and electronic interactions, which promise to deliver previously unavailable merits to develop multifunctional microelectronic devices. As a further ingredient of this emerging topic, here we report nanoscale quantum sensing and imaging of the atomically thin vdW magnet chromium thiophosphate CrPS4, revealing its characteristic layer-dependent 2D static magnetism and dynamic spin fluctuations. We also show a large tunneling magnetoresistance in CrPS4-based spin filter vdW heterostructures. The excellent material stability and robust strategy against environmental degradation in combination with tailored magnetic properties highlight the potential of CrPS4 in developing state-of-the-art 2D spintronic devices for next-generation information technologies.

20.
J Magn Reson ; 353: 107496, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37320959

RESUMEN

We present an apparatus that applies Ramsey's method of separated oscillatory fields to proton spins in water molecules. The setup consists of a water circuit, a spin polarizer, a magnetically shielded interaction region with various radio frequency elements, and a nuclear magnetic resonance system to measure the spin polarization. We show that this apparatus can be used for Rabi resonance measurements and to investigate magnetic and pseudomagnetic field effects in Ramsey-type precision measurements with a sensitivity below 100 pT.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA