Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Intervalo de año de publicación
1.
Polymers (Basel) ; 16(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38337274

RESUMEN

Waste-tire textile fibers (WTTF) represent a challenge for the recycling industry since there are currently very few alternatives for their use. In this study, an evaluation of the effect of a new additive developed in two granular formats from WTTF on the fatigue behavior of asphalt mixtures was performed. For the first format of the WTTF-based additive, its effect was evaluated on hot-mix asphalt (HMA), while for the second format of the additive, the effects were evaluated on stone mastic asphalt (SMA). This second format represents an alternative that allows for the total replacement of the cellulose stabilizing additive used in the reference mix. The evaluation of fatigue damage in the mixes was performed using the four-point bending beam (4PB) test specified in European standard EN 12697-24. The test results show that the asphalt mixtures manufactured with WTTF-based additives exhibited a higher capacity to resist load cycles before failure compared to the reference mixtures. Likewise, once the asphalt mixtures were evaluated in a pavement structure by means of an empirical mechanistic analysis, the pavement structures composed of asphalt mixtures with WTTF-based additives showed significant improvements in their durability for the different load axes evaluated. For an average thickness of 15 cm of asphalt mix of a pavement-type structure, the use of the WTTF additive increases the durability of the structures by up to 129% and 112% compared to the HMA and SMA reference mixtures, respectively. These results show that both formats of the WTTF-based admixture improve the fatigue damage resistance of the HMA and SMA asphalt mixtures.

2.
Polymers (Basel) ; 15(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37050318

RESUMEN

Stone Mastic Asphalts (SMA) are asphalt mixes with discontinuous granulometry and a high content of asphalt binder. In order to prevent draindown of the asphalt binder and ensure good performance, these mixes must be strengthened with cellulose or mineral fibres and/or polymer additives. This study was designed to evaluate the effect of a granular additive based on waste tyre textile fibres (WTTF), developed as a replacement for cellulose commercial additives in SMA mixes. Use of the WTTF-based additive will encourage the development of sustainable mixes by recycling a by-product of end-of-life tyres (ELT), which currently constitute a major environmental problem around the world. To this end, in the present experimental study we evaluated the replacement of cellulose-based commercial fibre with different percentages of WTTF-based additive (0%, 50%, 75%, 100%) in an SMA asphalt mix. The following design and performance properties were evaluated: resistance to cracking, stiffness modulus, sensitivity to moisture, and resistance to permanent deformation. The results indicated that replacing 100% of the cellulose commercial additive in the SMA mix by the WTTF-based additive allowed the mix to meet its design properties and showed good performance in the mechanical properties evaluated, with behaviour similar to that of the reference SMA mix.

3.
Materials (Basel) ; 14(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34947380

RESUMEN

Microwave heating of asphalt pavement is a promising technique to reduce the maintenance and increase the service life of materials through self-healing of cracks. Previous studies have shown that microwave heating technology at high temperatures could damage the bitumen of asphalt mixture, which is an unwanted effect of the crack-healing technique. In this study, the effects of microwave heating and long-term aging on the rheological and chemical properties of recovered bitumen were quantified using a frequency sweep test and Fourier Transform Infrared Spectrometry analysis, respectively. The main results indicate that microwave heating has no significant effect on the aging performance of G* and δ for aged asphalt mixtures. However, for newer bitumens, the rheological properties G* and δ show minor changes after microwave heating was applied. Overall, this study confirms that microwave heating is a potential alternative for maintenance of asphalt pavements, without severely affecting the rheological and chemical properties of bitumen.

4.
Materials (Basel) ; 12(2)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30658452

RESUMEN

In most cases, stone mastic asphalt (SMA) mixtures placed in thin layers and subjected to stress develop early cracks (potentially resulting from being improperly affixed to the underlying layer, placed over previously cracked asphalt pavement, or placed over Portland cement concrete slabs). However, the filler used in SMA production is very influential on the performance of the mix. Fillers used in this type of mixture have a low plastic index or are inert (calcium carbonate or lime), so it is important to understand the effect of each material on the possible fissuring and cracking process of the SMA mixture. The objective of this study is to present an evaluation of the behavior of SMA asphalt mixtures with different types of filler and at different temperatures using the semicircular bend (SCB) fracture energy test. This research compares results between fracture energy and different types of filler in SMA asphalt mixtures at temperatures ranging from -10 to 25 °C.

5.
Electron. j. biotechnol ; Electron. j. biotechnol;13(6): 1-2, Nov. 2010. ilus, tab
Artículo en Inglés | LILACS | ID: lil-591905

RESUMEN

Mastic, one of the best natural varnishes, is frequently used as protective and finishing layer or as component of oleo-resinous media in paintings, both in the past and currently. However, this resin is affected by complex deterioration processes which can change its characteristics and thus the visual aspect of works of art. The alteration processes caused by radiation have been widely studied, but there is a lack of information on the biodeterioration of this natural product. In this paper, fungi from collections as well as from oil paintings of the Fine Arts Museum of Granada (Spain) were inoculated onto slides covered with mastic. The samples, after an incubation period of 15 days, were analysed by gas chromatography-mass spectrometry (GC-MS) to identify the chemical changes undergone, and a visual monitoring of the samples was performed to determine the formation of mycelia onto solidified resins. Major changes were detected in Chrysonilia sitophila, Phoma herbarum, and P. chrysogenum, showing evidence of alteration processes caused or favoured by these microorgamisms.


Asunto(s)
Hongos , Pintura/microbiología , Triterpenos/análisis , Biodegradación Ambiental , Cromatografía de Gases y Espectrometría de Masas , Pinturas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA