Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.821
Filtrar
1.
Plant Dis ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39172527

RESUMEN

Plenodomus biglobosus (Pb), a causal agent of blackleg of rapeseed, is composed of several subspecies, including 'australensis' (Pba), 'brassicae' (Pbb) and 'canadensis' (Pbc). Besides rapeseed, Pb can infect many wild cruciferous plants (WCPs), such as flixweed (Descurainia sophia) and pennycress (Thlaspi arvense), which may become the infection source for blackleg of rapeseed. However, Pb on WCPs has not been well investigated in China. This study identified the blackleg fungi on two WCPs in Sayram Lake and Zhaosu County in Xinjiang of China: flixweed (15 isolates) and pennycress (1 isolate) as well as on rapeseed (971 isolates). They belonged to Pba (11), Pbb (18) and Pbc (958). Pba occurred on flixweed (10) and pennycress (1) only in Sayram Lake, whereas Pbb and Pbc occurred on flixweed (1 and 4 isolates, respectively) and rapeseed (17 and 954 isolates, respectively) in Zhaosu County. Then, virulence of 16 isolates from flixweed and pennycress was determined on rapeseed. Their genomes were sequenced and used to identify the mating-type idiomorphs and to analyze population genetic structure. Results showed that all of the 16 isolates were virulent to rapeseed. Only MAT1-1 was detected in 11 Pba isolates, implying that Pba may lack sexual reproduction. The 16 isolates from two WCPs were divided into four genetic groups: Group I for Pbc (4 isolates), Group II for Pbb (1 isolate), and Group III (3 isolates) and IV (8 isolates) for Pba. The findings about the single mating-type in Pba and its limited geographic distribution provided a case showing the importance of sexual reproduction in epidemics of Pb. To the best of our knowledge, this is the first report of Pba, Pbb and Pbc on flixweed, and Pba on pennycress in China.

2.
Zoology (Jena) ; 166: 126198, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39173303

RESUMEN

Sexual activity (mating) negatively affects immune function in various insect species across both sexes. In Drosophila melanogaster females, mating increases susceptibility to pathogenic challenges and encourages within-host pathogen proliferation. This effect is pathogen and host genotype dependent. We tested if mating-induced increased susceptibility to infections is more, or less, severe in hosts experimentally adapted to pathogenic infection. We selected replicate D. melanogaster populations for increased post-infection survival following infection with a bacterial pathogen, Enterococcus faecalis. We found that females from the selected populations were better at surviving a pathogenic infection compared to the females from the control populations. This was true in the case of both the pathogen used for selection and other novel pathogens (i.e., pathogens the hosts have not encountered in recent history). Additionally, the negative effect of mating on post-infection survival was limited to only the females from control populations. Therefore, we have demonstrated that experimental selection for increased post-infection survival ameliorates negative effects of mating on host susceptibility to infections.

3.
Biology (Basel) ; 13(8)2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39194570

RESUMEN

Sexual reproduction in ascomycetes is controlled by the mating-type (MAT) locus. (Pseudo)homothallic reproduction has been hypothesized on the basis of genetic data from Hirsutella sinensis (Genotype #1 of Ophiocordyceps sinensis). However, the differential occurrence and differential transcription of mating-type genes in the MAT1-1 and MAT1-2 idiomorphs were found in the genome and transcriptome assemblies of H. sinensis, and the introns of the MAT1-2-1 transcript were alternatively spliced with an unspliced intron I that contains stop codons. These findings reveal that O. sinensis reproduction is controlled at the genetic, transcriptional, and coupled transcriptional-translational levels. This study revealed that mutant mating proteins could potentially have various secondary structures. Differential occurrence and transcription of the a-/α-pheromone receptor genes were also found in H. sinensis. The data were inconsistent with self-fertilization under (pseudo)homothallism but suggest the self-sterility of H. sinensis and the requirement of mating partners to achieve O. sinensis sexual outcrossing under heterothallism or hybridization. Although consistent occurrence and transcription of the mating-type genes of both the MAT1-1 and MAT1-2 idiomorphs have been reported in natural and cultivated Cordyceps sinensis insect-fungi complexes, the mutant MAT1-1-1 and α-pheromone receptor transcripts in natural C. sinensis result in N-terminal or middle-truncated proteins with significantly altered overall hydrophobicity and secondary structures of the proteins, suggesting heterogeneous fungal source(s) of the proteins and hybridization reproduction because of the co-occurrence of multiple genomically independent genotypes of O. sinensis and >90 fungal species in natural C. sinensis.

4.
Virulence ; 15(1): 2395833, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39177034

RESUMEN

BACKGROUND: Fatty acid metabolism constitutes a significant and intricate biochemical process within microorganisms. Cytochrome P450 (CYP450) enzymes are found in most organisms and occupy a pivotal position in the metabolism of fatty acids. However, the role of CYP450 enzyme mediated fatty acid metabolism in the pathogenicity of pathogenic fungi remains unclear. METHODS: In this study, a CYP450 enzyme-encoding gene, SsCYP86, was identified in the sugarcane smut fungus Sporisorium scitamineum and its functions were characterized using a target gene homologous recombination strategy and metabonomics. RESULTS: We found that the expression of SsCYP86 was induced by or sugarcane wax or under the condition of mating/filamentation. Sexual reproduction assay demonstrated that the SsCYP86 deletion mutant was defective in mating/filamentation and significantly reduced its pathogenicity. Further fatty acid metabolomic analysis unravelled the levels of fatty acid metabolites were reduced in the SsCYP86 deletion mutant. Exogenous addition of fatty acid metabolites cis-11-eicosenoic acid (C20:1N9), pentadecanoic acid (C15:0), and linolenic acid (C18:3N3) partially restored the mating/filamentation ability of the SsCYP86 deletion mutant and restored the transcriptional level of the SsPRF1, a pheromone response transcription factor that is typically down-regulated in the absence of SsCYP86. Moreover, the constitutive expression of SsPRF1 in the SsCYP86 deletion mutant restored its mating/filamentation. CONCLUSION: Our results indicated that SsCyp86 modulates the SsPRF1 transcription by fatty acid metabolism, and thereby regulate the sexual reproduction of S. scitamineum. These findings provide insights into how CYPs regulate sexual reproduction in S. scitamineum.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Ácidos Grasos , Proteínas Fúngicas , Enfermedades de las Plantas , Ácidos Grasos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/microbiología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación Fúngica de la Expresión Génica , Saccharum/microbiología , Virulencia , Reproducción
5.
Behav Genet ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133418

RESUMEN

The roles of brain asymmetry in Drosophila are diverse, encompassing the regulation of behavior, the creation of memory, neurodevelopment, and evolution. A comprehensive examination of the Drosophila brain has the potential to enhance our understanding of the functional significance of brain asymmetry in cognitive and behavioral processes, as well as its role in evolutionary perspectives. This study explores the influence of brain asymmetry on interval timing behaviors in Drosophila, with a specific focus on the asymmetric body (AB) structure. Despite being bilaterally symmetric, the AB exhibits functional asymmetry and is located within the central complex of the fly brain. Interval timing behaviors, such as rival-induced prolonged mating duration: longer mating duration behavior (LMD) and sexual experience-mediated shorter mating duration behavior (SMD), are essential for Drosophila. We utilize genetic manipulations to selectively activate or inhibit AB neurons and evaluates their impact on LMD and SMD behaviors. The results indicate that specific populations of AB neurons play unique roles in orchestrating these interval timing behaviors. Notably, inhibiting GAL4R38D01-labeled AB neurons disrupts both LMD and SMD, while GAL4R42C09 neuron inhibition affects only LMD. Moreover, hyperexcitation of GAL4R72A10-labeled AB neurons perturbs SMD. Our study identifies NetrinB (NetB) and Abdominal-B (Abd-B) are important genes for AB neurons in LMD and highlights the role of 5-HT1B neurons in generating LMD through peptidergic Pigment-dispersing factor (PDF) signaling. In summary, this study underscores the importance of AB neuron asymmetry in mediating interval timing behaviors and provides insights into the underlying mechanisms of memory formation and function in Drosophila.

6.
bioRxiv ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39091748

RESUMEN

Self-fertile Caenorhabditis nematodes carry a surprising number of Medea elements, alleles that act in heterozygous mothers and cause death or developmental delay in offspring that don't inherit them. At some loci, both alleles in a cross operate as independent Medeas, affecting all the homozygous progeny of a selfing heterozygote. The genomic coincidence of Medea elements and ancient, deeply coalescing haplotypes, which pepper the otherwise homogeneous genomes of these animals, raises questions about how these apparent gene-drive elements persist for long periods of time. Here I investigate how mating system affects the evolution of Medeas, and their paternal-effect counterparts, peels. Despite an intuition that antagonistic alleles should induce balancing selection by killing homozygotes, models show that, under partial selfing, antagonistic elements experience positive frequency dependence: the common allele drives the rare one extinct, even if the rare one is more penetrant. Analytical results for the threshold frequency required for one allele to invade a population show that a very weakly penetrant allele, one whose effects would escape laboratory detection, could nevertheless prevent a much more penetrant allele from invading under high rates of selfing. Ubiquitous weak antagonistic Medeas and peels could then act as localized barriers to gene flow between populations, generating genomic islands of deep coalescence. Analysis of gene expression data, however, suggest that this cannot be the whole story. A complementary explanation is that ordinary ecological balancing selection generates ancient haplotypes on which Medeas can evolve, while high homozygosity in these selfers minimizes the role of gene drive in their evolution.

7.
Biol Lett ; 20(8): 20240292, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106945

RESUMEN

Human disturbances can prompt natural anti-predator behaviours in animals, affecting how energy is traded off between immediate survival and reproduction. In our study of male squaretail groupers (Plectropomus areolatus) in India's Lakshadweep archipelago, we investigated the impact of fishing pressure on anti-predatory responses and reproductive behaviours by comparing a fished and unfished spawning aggregation site and tracking responses over time at the fished site. Using observational sampling and predator exposure experiments, we analysed fear responses (flight initiation distance, return time), as well as time spent in vigilance, courtship and territorial defence. Unpaired males at fished sites were twice as likely to flee from simulated predators and took longer to return to mating territories. In contrast, paired males at both sites took greater risks during courtship, fleeing later than unpaired males, but returned earlier at the unfished site compared with the fished site. Our findings suggest that high fishing pressure reduces reproductive opportunities by increasing vigilance and compromising territorial defence, potentially affecting mate selection cues. Altered behavioural trade-offs may mitigate short-term capture risk but endanger long-term population survival through altered reproductive investment. Human extractive practices targeting animal reproductive aggregations can have disruptive effects beyond direct removal, influencing animal behaviours crucial for population survival.


Asunto(s)
Explotaciones Pesqueras , Reproducción , Animales , Masculino , Reproducción/fisiología , India , Conducta Sexual Animal/fisiología , Territorialidad
8.
Proc Biol Sci ; 291(2028): 20240613, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106960

RESUMEN

Lunar rhythms shape spawning phenology and subsequent risks and rewards for early life-history stages in the sea. Here, we consider a perplexing spawning phenology of the sixbar wrasse (Thalassoma hardwicke), in which parents spawn disproportionately around the new moon, despite the low survival of these larvae. Because primary sex determination in this system is highly plastic and sensitive to social environments experienced early in development, we ask whether this puzzling pattern of spawning is explained by fitness trade-offs associated with primary sexual maturation. We used otoliths from 871 fish to explore how spawning on different phases of the moon shapes the environments and phenotypes of settling larvae. Offspring that were born at the new moon were more likely to settle (i) before other larvae, (ii) at a larger body size, (iii) at an older age, (iv) to the best quality sites, and (v) as part of a social group-all increasing the likelihood of primary maturation to male. Selection of birthdates across life stage transitions suggests that the perplexing spawning phenology of adults may reflect an evolutionarily stable strategy that includes new moon spawning for compensatory benefits later in life, including preferential production of primary males at certain times.


Asunto(s)
Arrecifes de Coral , Luna , Perciformes , Animales , Perciformes/fisiología , Masculino , Femenino , Procesos de Determinación del Sexo , Reproducción , Maduración Sexual , Larva/fisiología , Larva/crecimiento & desarrollo
9.
J Econ Entomol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137237

RESUMEN

The genus Bombus (bumble bees) includes approximately 265 species, many of which are in decline in North America and Europe. To estimate colony abundance of bumble bees in natural and agricultural habitats, sibship relationships are often reconstructed from genetic data with the assumption that colonies have 1 monandrous queen. However, some species such as the North American common eastern bumble bee (Bombus impatiens Cresson) can display low levels of polyandry, which may bias estimates of colony abundance based on monandrous sibship reconstructions. To accurately quantify rates of polyandry in wild and commercially mated queens of this species, we empirically estimated mating frequencies using a novel statistical model and genotypes from 730 bees. To genotype individuals, we used a highly polymorphic set of microsatellites on colonies established from 20 wild-caught gynes and 10 commercial colonies. We found multiple fathers in 3 of the wild colonies and 3 of the commercial colonies. This resulted in average effective mating frequencies of 1.075 ±â€…0.18 and 1.154 ±â€…0.25 for wild and commercial colonies, respectively. These findings agree with previous reports of low rates of polyandry for B. impatiens. Using a large empirical dataset, we demonstrate that assuming monandry for colony abundance estimation in species that violate this assumption results in an overestimation of the number of colonies. Our results emphasize the importance of studying mating frequencies in social species of conservation concern and economic importance for the accuracy of colony abundance estimation and for understanding their ecology and sociobiology.

10.
J Hered ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39171640

RESUMEN

The ability to self-fertilize often varies among closely related hermaphroditic plant species, though, variation can also exist within species. In the North American Arabidopsis lyrata, the shift from self-incompatibility (SI) to selfing established in multiple regions independently, mostly since recent postglacial range expansion. This has made the species an ideal model for the investigation of the genomic underpinnings of the breakdown of SI and its population genetic consequences. By comparing nearby selfing and outcrossing populations across the entire species' geographic distribution, we investigated variation at the self-incompatibility (S-)locus and across the genome. Furthermore, a diallel crossing experiment on one mixed-mating population was performed to gain insight in the genetics of mating system variation. We confirmed that the breakdown of SI had evolved in several S-locus backgrounds. The diallel suggested the involvement of binuclearly expressed parental genes with dominance relations. Though, the population-level genome-wide association study did not single out clear-cut candidate genes but several regions with one near the S-locus. On the implication side, selfing as compared to outcrossing populations had less than half of the genomic diversity, while the number of runs of homozygosity and their length scaled with the degree of inbreeding. The results highlight that mating system shifts to selfing, its genetic underpinning and the likely negative genomic consequences for evolutionary potential can be strongly interlinked with past range dynamics.

11.
Ecol Evol ; 14(8): e70149, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39157663

RESUMEN

Mating systems, influenced by the social and ecological environment and individual attributes, are fundamental components of animal social organisation, impacting behaviour, animal distribution, ecosystem processes, individual reproductive success, and population dynamics. Bats are of particular interest for studies of mating systems as they are thought to exhibit a greater diversity in mating systems than any other mammalian order, and thus make great models for improving our fundamental understanding of causes and consequences of social organisation. Here, we review the current knowledge of bat mating systems. Our analyses show that research on bat mating systems has not kept pace with research on bats in general and that traditional typologies do not accommodate the mating system of several species. Therefore, we propose an alternative, functional framework to categorise mating systems of bats and by extension of other taxa. We argue that mating systems can be classified according to a male reproductive skew continuum, with an increasing skew from monogamy to true lekking. We include an additional category of lek-like mating system along the continuum to account for previous trans-categorical cases that have the appearance of resource defence but are functionally akin to a lek. The new framework has a total of seven categories: promiscuity, monogamy, female defence polygyny, resource defence polygyny, a lek-like mating system, exploded classical lek, and clustered classical lek. Applying this framework to bats reveals that lek mating systems are more prevalent in bats than previously recognised. It is our aim that this review and the proposed framework provide a greater understanding of bat mating systems particularly and provoke research into the factors that shape mating systems across animal taxa more generally.

12.
Elife ; 132024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39158559

RESUMEN

Haldane's rule occupies a special place in biology as one of the few 'rules' of speciation, with empirical support from hundreds of species. And yet, its classic purview is restricted taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit acknowledgement of generalized hypotheses about Haldane's rule that frame sex bias in hybrid dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane's rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane's rule is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex determination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena about hybrids across diverse sexual systems, beyond classic Haldane's rule, will help to derive a more general understanding of the contributing forces and mechanisms that lead to predictable sex biases in evolutionary divergence and speciation.


Asunto(s)
Procesos de Determinación del Sexo , Procesos de Determinación del Sexo/genética , Masculino , Animales , Femenino , Cromosomas Sexuales/genética , Hibridación Genética , Especiación Genética , Evolución Biológica
13.
Parasit Vectors ; 17(1): 362, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39183365

RESUMEN

BACKGROUND: Understanding the relationship between blood-feeding and mating is important in effectively managing the most well-adapted vector insect, Aedes aegypti (Linnaeus). Although extensive studies have investigated the behavioural aspects of Aedes such as blood-feeding, mating, and their relationship, several knowledge gaps still exist. Therefore, the present study was undertaken to determine the possibility of successful mating by unfed, engorged, and partially to fully gravid (up to 5 days after blood-feeding with fully developed eggs) female Ae. aegypti mosquitoes and production of viable eggs. METHODS: Mating of sexually mature adult Aedes aegypti was allowed in three different ways. In control 1, the females were allowed to mate before taking blood meal, and in control 2, the females were not at all allowed to mate. In the experiment, the females were separated into six categories, viz. D-0 to D-5. In D-0, the females were allowed to mate immediately after the bloodmeal and, in D-1, the females were allowed to mate on the first day of blood feeding, likewise, the females of D-2, D-3, D-4 and D-5 were allowed to mate on 2nd, 3rd, 4th and 5th day of blood feeding. Ovitrap was uniformly kept on the 4th day of blood feeding for the cages D-0 to D-3 for 1 h and then removed and for the cages D-4, and D-5, the ovitrap was kept on 4th and 5th day of blood feeding for 1h immediately after mating. The total number of eggs and the total number of hatching were counted. In the subsequent days, the entire experiment was replicated two times with different cohorts of mosquitoes, and the mean value of three experiments was used to draw Excel bars with 5% error bars and also for the statistical analysis. RESULTS: It was found that mating just before oviposition was sufficient to produce 1581 eggs (70% compared with control) and fertilize 1369 eggs (85% compared with total eggs laid), which is far higher than the 676 non-hatching (unfertilized) eggs (30%) laid by unmated females. Although mating is not essential for producing eggs, our study shows that even brief exposure to the semen and seminal fluids greatly enhances the oviposition and hatching efficiency, even if the mating occurs just before oviposition. However, those females mating before blood-feeding and those mating after blood-feeding produced 2266 and 2128 eggs, with hatching rates of 96.78% and 95.54%, respectively. Hence, the retention time of seminal fluid in the female seems to influence the number of eggs laid and the number of eggs hatched. CONCLUSIONS: In general, mating is possible in Ae. aegypti even minutes before oviposition and is sufficient to produce a greater number of viable eggs.


Asunto(s)
Aedes , Conducta Alimentaria , Mosquitos Vectores , Oviposición , Conducta Sexual Animal , Animales , Aedes/fisiología , Femenino , Mosquitos Vectores/fisiología , Conducta Alimentaria/fisiología , Oviposición/fisiología , Masculino , Reproducción , Óvulo/fisiología
14.
J Evol Biol ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177780

RESUMEN

Socially plastic behaviours are widespread among animals and can have a significant impact on fitness. Here we investigated whether the socially plastic responses of female Drosophila melanogaster can evolve in predictable ways following long term manipulation of adult sex ratio and adult nutrient availability. Previous reports show that female D. melanogaster respond plastically to their same-sex social environment, and lay significantly fewer eggs after mating when previously exposed to other females. In this study, we tested two hypotheses, using females drawn from lines with an evolutionary history of exposure to variation in adult sex ratio (male biased, female biased or equal sex ratio) and adult nutritional environment (high or low quality). The first was that a history of elevated competition in female-biased regimes would select for increased plastic fecundity responses in comparison to females from other lines. The second was that these responses would also be magnified under poor nutritional resource regimes. Neither hypothesis was supported. Instead, we found that plastic fecundity responses were retained in females from all lines, and did not differ significantly across any of them. The lack of differences does not appear to be due to insufficient selection, as we did observe significant evolutionary responses in virgin egg laying patterns according to sex ratio and nutritional regime. The lack of variation in the magnitude of predicted plasticity is consistent with the idea that the costs of maintaining plasticity are low, benefits high, and that plasticity itself can be relatively hard wired.

15.
Sci Rep ; 14(1): 19655, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179757

RESUMEN

The black soldier fly (BSF) Hermetia illucens (Diptera: Stratiomyidae) plays a significant role at the larval stage in the circular economy due to its ability to convert organic waste into valuable products for energy, food, feed, and agricultural applications. Many data are available on larval development and biomass generation, but basic research on this species is lacking and little is known about adult biology, in particular about the cues involved in sexual recognition. In the present study, using various instruments (stereomicroscope, scanning and transmission electron microscope, hyperspectral camera and spectrophotometer), wing ultrastructure of both sexes was analysed, reflectance and transmission spectra of the wings were measured and behavioural bioassays were carried out to measure male response to specific visual stimuli. The collected data showed the existence of sexual dimorphism in the wings of H. illucens due to iridescent structural colouration generated by a multilayer of melanin located in the dorsal lamina of the central part of the wing. Wing sexual dimorphism is particularly evident regarding the strong emission of blue light of female wings. Blue colour induces in males a strong motivation to mate. The obtained results can help to improve and optimize the breeding techniques of BSF.


Asunto(s)
Dípteros , Pigmentación , Caracteres Sexuales , Alas de Animales , Animales , Masculino , Femenino , Dípteros/fisiología , Color , Conducta Sexual Animal/fisiología
16.
BMC Plant Biol ; 24(1): 794, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169281

RESUMEN

BACKGROUND: The theory of Condition Dependent Sex predicts that - everything else being equal - less fit individuals would outcross at higher rates compared with fitter ones. Here we used the mixed mating plant Lamium amplexicaule, capable of producing both self-pollinating closed flowers (CL), alongside open flowers (CH) that allow cross pollination to test it. We investigated the effects of abiotic stress - salt solution irrigation - on the flowering patterns of plants and their offspring. We monitored several flowering and vegetative parameters, including the number and distribution of flowers, CH fraction, and plant size. RESULTS: We found that stressed plants show an increased tendency for self-pollination and a deficit in floral and vegetative development. However, when parentally primed, stressed plants show a milder response. Un-stressed offspring of stressed parents show reversed responses and exhibit an increased tendency to outcross, and improve floral and vegetative development. CONCLUSIONS: In summary, we found that stress affects the reproduction strategy in the plants that experienced the stress and in subsequent offspring through F2 generation. Our results provide experimental evidence supporting a transgenerational extension to the theories of fitness associate sex and dispersal, where an individual's tendency for sex and dispersal may depend on the stress experienced by its parents.


Asunto(s)
Flores , Polinización , Reproducción , Flores/fisiología , Flores/crecimiento & desarrollo , Lamiales/fisiología , Lamiales/crecimiento & desarrollo , Estrés Fisiológico
17.
Evol Lett ; 8(4): 539-549, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39100230

RESUMEN

Almost all life on earth is facing environmental change, and understanding how populations will respond to these changes is of urgent importance. One factor that is known to affect the speed by which a population can evolve when faced with changes in the environment is strong sexual selection. This increases the adaptive capacity of a population by increasing reproductive skew toward well-adapted (usually) males who will, on average, be best able to compete for matings. This effect could potentially be disrupted when males pursue alternative reproductive tactics (ARTs), whereby males within a species exhibit qualitatively different behaviors in their pursuit of matings. ARTs are diverse, but one common class is those expressed through condition-dependent polyphenism such that high-quality, well-adapted males compete aggressively for mates and low-quality, poorly adapted males attempt to acquire matings via other, nonaggressive behaviors. Here, using an individual-based modeling approach, we consider the possible impacts of ARTs on adaptation and evolutionary rescue. When the ART is simultaneous, meaning that low-quality males not only engage in contests but also pursue other tactics, adaptive capacity is reduced and evolutionary rescue, where a population avoids extinction by adapting to a changing environment, becomes less likely. This is because the use of the ART allows low-quality males to contribute more maladaptive genes to the population than would happen otherwise. When the ART is fixed, however, such that low-quality males will only use the alternative tactic and do not engage in contests, we find the opposite: adaptation happens more quickly and evolutionary rescue when the environment changes is more likely. This surprising effect is caused by an increase in the mating success of the highest quality males who face many fewer competitors in this scenario-counterintuitively, the presence of males pursuing the ART increases reproductive skew toward those males in the best condition.

18.
Horm Behav ; 165: 105613, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39121710

RESUMEN

The timing of exposure to the steroid hormone, testosterone, produces activational and organizational effects in vertebrates. These activational and organizational effects are hypothesized to relate with the number of female mating partners and reproductive success in males. We tested this hypothesis by examining 151 wild degu (Octodon degus) males across a 10-year study. We quantified the association between adult serum testosterone levels (i.e., an indirect index of adult activational effects) and anogenital distance (AGD) length (i.e., a direct index of fetal organizational effects), and their interaction on the number of female mating partners and reproductive success. We found no evidence of an association between adult male serum testosterone levels and the number of female mating partners, or between adult male serum testosterone levels and reproductive success. However, male AGD was positively associated with reproductive success, but not so with the number of female mating partners. Additionally, the positive association between male AGD and male reproductive success was mediated by the number of mates. Our findings do not support major roles of activational or organizational effects of testosterone on the number of female mating partners and its consequences on male reproductive success. Instead, our results suggest that compared with individual male attributes, the female social environment plays a more important role in driving male reproductive success.

19.
Oecologia ; 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174734

RESUMEN

Reproductive interference is defined as an interspecific interaction that reduces fitness via mating processes. Although its ecological and evolutionary consequences have attracted much attention, how reproductive interference affects the population genetic structures of interacting species is still unclear. In flowering plants, recent studies found that self-pollination can mitigate the negative effects of reproductive interference. Selfing-biased seed production is expected to increase population-level inbreeding and the selfing rate, and limits gene flow via pollinator outcrossing among populations. We examined the population genetics of the mixed-mating annual herb Commelina communis f. ciliata, focusing on reproductive interference by the sympatric competing congener C. communis using microsatellite markers. First, we found that almost all C. c. f. ciliata populations had relatively high inbreeding coefficients. Then, comparing sympatric and allopatric populations, we found evidence that reproductive interference from a competing congener increased the inbreeding coefficient and selfing rate. Allopatric populations exhibit varied selfing rates while almost all sympatric populations exhibit extremely high selfing rates, suggesting that population selfing rates were also influenced by unexamined factors, such as pollinator limitation. Besides, our findings revealed that reproductive interference from a competing congener did not limit gene flow among populations. We present the first report on how reproductive interference affects the genetic aspects of populations. Our results suggested that the high selfing rate of C. c. f. ciliata promotes its sympatric distribution with C. communis, even in the presence of reproductive interference, although it is not clear whether reproductive interference directly causes the high selfing rate.

20.
Ecol Evol ; 14(8): e70190, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39165540

RESUMEN

Social monogamy is the prevalent mating system in birds, but alternative strategies of extra-pair paternity (EPP) and conspecific brood parasitism (CBP) occur in many species. Raptors are virtually absent in discussions of broad taxonomic reviews regarding EPP and CBP likely because these strategies are mostly absent or at low frequency; CBP is unreported in solitary nesting raptors. In contrast, we found high frequencies of EPP (16%-31%) and CBP (15%-26%) nests among three populations of Cooper's Hawks (Accipiter cooperii) across the northern breeding range of this solitary nesting, socially monogamous species. EPP and CBP combined occurred in 42%-46% of all nests among populations and hence unexpectedly were nearly equivalent to proportions of genetically monogamous nests. Select covariates failed to predict presence of EPP and CBP in part because virtually all extra-pair adults were uncaught and likely were floaters. We found no support for the hypothesis that territorial females traded copulations for food to maximize energy intake for increased production. Our unique discoveries enhance knowledge of the extent and diversity of alternative breeding strategies among groups of avian and other animal species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA