Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 532
Filtrar
1.
J Environ Sci (China) ; 147: 714-725, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003084

RESUMEN

In this study, an efficient stabilizer material for cadmium (Cd2+) treatment was successfully prepared by simply co-milling olivine with magnesite. Several analytical methods including XRD, TEM, SEM and FTIR, combined with theoretical calculations (DFT), were used to investigate mechanochemical interfacial reaction between two minerals, and the reaction mechanism of Cd removal, with ion exchange between Cd2+ and Mg2+ as the main pathway. A fixation capacity of Cd2+ as high as 270.61 mg/g, much higher than that of the pristine minerals and even the individual/physical mixture of milled olivine and magnesite, has been obtained at optimized conditions, with a neutral pH value of the solution after treatment to allow its direct discharge. The as-proposed Mg-based stabilizer with various advantages such as cost benefits, green feature etc., will boosts the utilization efficiency of natural minerals over the elaborately prepared adsorbents.


Asunto(s)
Cadmio , Compuestos de Hierro , Compuestos de Magnesio , Silicatos , Contaminantes Químicos del Agua , Cadmio/química , Contaminantes Químicos del Agua/química , Compuestos de Magnesio/química , Silicatos/química , Compuestos de Hierro/química , Adsorción , Modelos Químicos , Purificación del Agua/métodos
2.
Materials (Basel) ; 17(18)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39336199

RESUMEN

The increase in environmental pollution due to the development of industry and human activity has resulted in intensive development of research on the possibility of its purification. A very effective method is the pollutants' adsorption from the air and water environment. For adsorption to be effective, materials with a specific structure and a well-developed surface decorated with numerous functionalities, e.g., biocarbons (BC), are necessary. An effective method of activating biocarbons is mechanochemical milling, an environmentally friendly procedure. This paper describes the possibility of using mechanochemical activation (MChA) of non-porous biocarbons to develop surface and porosity for their use in processes of pollutant adsorption. BC was characterized based on N2 adsorption, thermogravimetry (TGA), SEM/EDS imaging, Fourier (ATR-FTIR) and Raman spectroscopies, as well as titration using the Boehm method and determination of zeta potential. The adsorption capacity of BC for methylene blue (MB) was studied. It was proven that the solvent-free MChA made it possible to obtain microporous biocarbons, causing an intensive increase in the surface area and pore volume and the generation of oxygen functionalities. The biocarbons had predominantly acidic (mainly carboxylic) or basic functionalities and exhibited an amorphous structure. BC proved to be effective in adsorbing MB from aqueous solutions.

3.
J Vasc Surg Venous Lymphat Disord ; : 101967, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270843

RESUMEN

OBJECTIVE: The short-term anatomical success rates of mechanochemical ablation using the Clarivein device (Merit Medical) in the treatment of great saphenous vein (GSV) incompetence are high. However, the anatomical success rates seem to drop over time. The aim of this study was to determine the long-term outcomes of GSV treatment using the Clarivein and to assess whether specific anatomical features better correlate with clinical or quality of life (QoL)-related outcomes. METHODS: This is a single-center, prospective cohort study in follow-up of a multicenter, randomized controlled trial, using Clarivein with liquid polidocanol for the treatment of GSV incompetence. The primary outcome was anatomical success (AS), defined as compete occlusion or a recanalized segment, irrespective of reflux, of <10 cm in length. In addition, reflux-free anatomical success (RF-AS) was determined and defined as a complete occlusion or a recanalized segment with <10 cm of reflux. Clinical success was assessed using the Venous Clinical Severity Score (VCSS), and QoL was assessed using the Dutch version of the Aberdeen Varicose Vein Questionnaire (DAVVQ) and the 36-Item Short Form Health Survey (SF-36). Subgroup analyses were performed based on whether AS or RF-AS was achieved or not. RESULTS: A total of 109 patients (115 limbs) were included. The mean follow-up time was 8.4 ± 0.9 years (range, 5.5-10.3 years). AS was seen in 60.5% of limbs, and RF-AS was seen in 72.8% of limbs. Compared with baseline, the overall mean VCSS improved from 5.3 ± 2.4 to 4.1 ± 2.4, and the overall median DAVVQ score from 13.1 (interquartile range [IQR], 7.3-19.4) to 10.5 (IQR, 4.8-15.8) (P < .001). Improvement in VCSS was only significant in patients with successful treatment: 5.5 ± 2.4 to 3.7 ± 2.5 (P < .001) if AS was achieved and 5.0 ± 1.7 to 4.5 ± 1.9 (P = .20) if AS was not achieved. The same results were found for DAVVQ scores: 13.5 (IQR, 8.7-20.6) to 10.3 (IQR, 3.0-14.5) (P < .01) if AS was achieved and 12.9 (IQR, 8.3-19.3) to 10.8 (IQR, 6.7-18.2) (P = .35) if AS was not achieved. Regarding the overall SF-36 scores, the domains of vitality, mental health, and general health worsened significantly. CONCLUSIONS: In over 8 years of follow-up, anatomical success after the treatment of GSV incompetence using the Clarivein device decreased to 60.5%. However, clinical scores and disease-specific QoL still improved significantly compared with baseline. We found no convincing evidence that the absence of reflux correlates better with clinical and QoL-related outcomes compared with recanalization irrespective of reflux.

4.
Materials (Basel) ; 17(17)2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39274600

RESUMEN

Solid-state shear milling (S3M) equipment is an evolution from traditional stone mills, enabling the processing of polymer materials and fillers through crushing, mixing, and mechanochemical reactions at ambient temperature. Due to the complex structure of the mill-pan, empirical data alone are insufficient to give a comprehensive understanding of the physicochemical interactions during the milling process. To provide an in-depth insight of the working effect and mechanism of S3M equipment, finite element method (FEM) analysis is employed to simulate the milling dynamics, which substantiates the correlation between numerical outcomes and experimental observations. A model simplification strategy is proposed to optimize calculation time without compromising accuracy. The findings in this work demonstrate the S-S bond breakage mechanism behind stress-induced devulcanization and suggest the structural optimizations for enhancing the devulcanization and pulverization efficiency of S3M equipment, thereby providing a theoretical foundation for its application in material processing.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39319858

RESUMEN

Multiple insect lineages have successfully reinvaded the aquatic environment, evolving to complete either part or all of their life cycle submerged in water. While these insects vary in their reliance on atmospheric oxygen, with many having the ability to extract dissolved oxygen directly from the water, all retain an internal air-filled respiratory system, their tracheal system, due to their terrestrial origins. However, carrying air within their tracheal system, and even augmenting this volume with additional air bubbles carried on their body, dramatically increases their buoyancy which can make it challenging to remain submerged. But by manipulating this air volume a few aquatic insects can deliberately alter or regulate their position in the water column. Unlike cephalopods and teleost fish that control the volume of gas within their hydrostatic organs by either using osmosis to pull liquid from a rigid chamber or secreting oxygen at high pressure to inflate a flexible chamber, insects have evolved hydrostatic control mechanisms that rely either on the temporary stabilization of a compressible air-bubble volume using O2 unloaded from hemoglobin, or the mechanical expansion and contraction of a gas-filled volume with rigid, gas-permeable walls. The ability to increase their buoyancy while submerged separates aquatic insects from the buoyancy compensation achieved by other air-breathing aquatic animals which also use air within their respiratory systems to offset their submerged weight. The mechanisms they have evolved to achieve this are unique and provide new insights into the function and evolution of mechanochemical systems.

6.
Artículo en Inglés | MEDLINE | ID: mdl-39322931

RESUMEN

Industrial effluents, especially those containing dyes, have become the main cause of contamination of water resources. In this context, Brazilian bentonite/MgO composites, with excellent adsorptive properties, were prepared and investigated for their effectiveness in removing cationic and anionic dyes from aqueous solutions. The new adsorbents were obtained using Brazilian bentonites and MgO using the mechanochemical method followed by heat treatment (at 700 °C for 4 h). Different characterization techniques were used for the chemical, mineralogical, thermal, surface, and morphological analysis of the raw clays and the composites. The experimental adsorption isotherms were quantified under different conditions of initial concentration, contact time, pH, adsorbent dosage, and temperature variation to interpret the adsorption mechanism of the crystal violet (CV) and Congo red (CR) dyes. The modeling results were obtained from the empirical Sips equation and Pseudo Second Order (PSO) kinetics, indicating that the adsorption of molecules is a heterogeneous phenomenon that occurs in a monolayer on the surface (ns > 1), with the adsorption rate determined by chemisorption. The composites showed the best removal efficiency performance compared to the raw bentonites, with an increase of 12% for the CV dye and 46% for the CR dye. In addition, the qmax values obtained were 423.02 mg/g and 479.86 mg/g (AM01). This research underscores the potential of Brazilian bentonite/MgO composites as a promising solution for the removal of cationic and anionic dyes from water, offering hope for future applications in the field of environmental engineering and materials science.

7.
Small Methods ; : e2401046, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235553

RESUMEN

In all-solid-state batteries, a solid electrolyte with high ionic conductivity is required for fast charging, uniform lithium deposition, and increased cathode capacity. Lithium argyrodite with BH4 - substitution has promising potential due to its higher ionic conductivity compared to argyrodites substituted with halides. In this study, Li5.25PS4.25(BH4)1.75, characterized by a high ionic conductivity of 13.8 mS cm-1 at 25 °C, is synthesized via wet ball-milling employing o-xylene. The investigation focused on optimizing wet ball-milling parameters such as ball size, xylene content, drying temperature, as well as the amount of BH4 - substitution in argyrodite. An all-solid-state battery prepared using Li5.25PS4.25(BH4)1.75 as the electrolyte and LiNbO3 coated NCM811 as the cathode exhibits an initial coulombic efficiency of 90.2% and maintains 93.9% of its initial capacity after 100 cycles at fast charging rate (5C). It is anticipated that the application of this wet mechanochemical synthesis will contribute further to the commercialization of all-solid-state batteries using BH4-substituted argyrodites.

8.
J Hazard Mater ; 479: 135677, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39226688

RESUMEN

Municipal solid waste incineration fly ash (MSWI-FA) is a hazardous by-product of the incineration process, characterized by elevated levels of heavy metals, chlorides, and dioxins. With a composition high in calcium but low in silicon/aluminum, MSWI-FA exhibits a poor immobilization effect, high energy demands, and limited pozzolanic activity when it is disposed of or reutilized alone. Conversely, alumina-/silica-containing waste (ASW) presents a chemical composition rich in SiO2 and/or Al2O3, offering an opportunity for synergistic treatment with MSWI-FA to facilitate its harmless disposal and resource recovery. Despite the growing interest in co-treatment of MSWI-FA and ASW in recent years, a comprehensive evaluation of ASW's roles in this process remains absent from the existing literature. Therefore, this study endeavors to examine the advancement in the co-treatment of MSWI-FA and ASW, with the focus on three key aspects, i.e., elucidating the immobilization mechanisms by which ASW improves the solidification/stabilization of MSWI-FA, exploring the synergies between MSWI-FA and ASW in various thermal and mechanochemical treatments, and highlighting the benefits of incorporating ASW in the production of MSWI-FA-based building materials. Additionally, in the pursuit of sustainable solid waste management, this review identifies research gaps and delineates future prospects for the co-treatment of MSWI-FA and ASW.

9.
bioRxiv ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39131399

RESUMEN

Kinesin motor proteins hydrolyze ATP to produce force for spindle assembly and vesicle transport, performing essential functions in cell division and motility, but the structural changes required for force generation are uncertain. We now report high-resolution structures showing new transitions in the kinesin mechanochemical cycle, including power stroke fluctuations upon ATP binding and a post-hydrolysis state with bound ADP + free phosphate. We find that rate-limiting ADP release occurs upon microtubule binding, accompanied by central ß-sheet twisting, which triggers the power stroke - stalk rotation and neck mimic docking - upon ATP binding. Microtubule release occurs with ß-strand-to-loop transitions, implying that ß-strand refolding induces Pi release and the recovery stroke. The strained ß-sheet during the power stroke and strand-to-loop transitions identify the ß-sheet as the long-sought motor spring.

10.
Angew Chem Int Ed Engl ; : e202411536, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207262

RESUMEN

30 Seconds to success! - The Wittig reaction, a fundamental and extensively utilized reaction in organic chemistry, enables the efficient conversion of carbonyl compounds to olefins using phosphonium salts. Traditionally, meticulous reaction setup, including the pre-formation of a reactive ylide species via deprotonation of a phosphonium salt, is crucial for achieving high-yielding reactions under classical solution-based conditions. In this report, we present an unprecedented protocol for an ultra-fast mechanically induced Wittig reaction under solvent-free and ambient conditions, often eliminating the need for tedious ylide pre-formation under strict air and moisture exclusion. A range of aldehydes and ketones were reacted with diverse phosphonium salts under high-energy ball milling conditions, frequently giving access to the respective olefins in only 30 seconds.

11.
Phlebology ; : 2683555241276554, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167828

RESUMEN

Background: Mechanical occlusion chemically assisted ablation (MOCA) of incompetent saphenous veins has been utilized since its FDA approval in 2008. However, only recently have longer-term three and 5 year clinical follow up data become available. This updated information necessitates a societal update to guide treatment and ensure optimal patient outcomes. Method: The American Vein and Lymphatic Society convened an expert panel to write a Position Statement with explanations and recommendations for the appropriate use of MOCA for patients with venous insufficiency. Result: This Position Statement was produced by the expert panel with recommendations for appropriate use, treatment technique, outcomes review, and potential adverse events. These recommendations were reviewed, edited, and approved by the Guidelines Committee of the Society. Conclusions: MOCA is effective in alleviating symptoms and a safe treatment option for venous insufficiency. It obviates the need for tumescent anesthesia, has less procedural discomfort and lower risk of thermal nerve or skin injury. It may be used in both the below knee distal GSV as well as the SSV. However, it is associated with significantly lower rates of vessel closure and higher recanalization rates compared to both RFA and EVLA and is less cost effective than thermal techniques. It is an available option for those in whom thermal ablation is not suitable.

12.
Adv Sci (Weinh) ; 11(33): e2404071, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38958542

RESUMEN

α-halo alkylboronic esters, acting as ambiphilic synthons, play a pivotal role as versatile intermediates in fields like pharmaceutical science and organic chemistry. The sequential transformation of carbon-boron and carbon-halogen bonds into a broad range of carbon-X bonds allows for programmable bond formation, facilitating the incorporation of multiple substituents at a single position and streamlining the synthesis of complex molecules. Nevertheless, the synthetic potential of these compounds is constrained by limited reaction patterns. Additionally, the conventional methods often necessitate the use of bulk toxic solvents, exhibit sensitivity to air/moisture, rely on expensive metal catalysts, and involve extended reaction times. In this report, a ball milling technique is introduced that overcomes these limitations, enabling the external catalyst-free multicomponent coupling of aryl diazonium salts, alkenes, and simple metal halides. This approach offers a general and straightforward method for obtaining a diverse array of α-halo alkylboronic esters, thereby paving the way for the extensive utilization of these synthons in the synthesis of fine chemicals.

13.
Methods Enzymol ; 701: 387-424, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39025577

RESUMEN

The Helfrich free energy is widely used to model the generation of membrane curvature due to different physical and chemical components. The governing equations resulting from the energy minimization procedure are a system of coupled higher order partial differential equations. Simulations of membrane deformation for obtaining quantitative comparisons against experimental observations require computational schemes that will allow us to solve these equations without restrictions to axisymmetric coordinates. Here, we describe one such tool that we developed in our group based on discrete differential geometry to solve these equations along with examples.


Asunto(s)
Proteínas de la Membrana , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Membrana Celular/metabolismo , Membrana Celular/química , Modelos Biológicos , Termodinámica , Simulación por Computador , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
14.
Small ; : e2404283, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016994

RESUMEN

Efficient sodium ion storage in graphite is as yet unattainable, because of the thermodynamic instability of sodium ion intercalates-graphite compounds. In this work, sodium fluorozirconate (Na3ZrF7, SFZ) functionalized graphite (SFZ-G) is designed and prepared by the in situ mechanochemical silicon (Si) replacement of sodium fluorosilicate (Na2SiF6, SFS) and functionalization of graphite at the same time. During the mechanochemical process, the atomic Si in SFS is directly replaced by atomic zirconium (Zr) from the zirconium oxide (ZrO2) balls and container in the presence of graphite, forming SFZ-G. The resulting SFZ-G, working as an anode material for sodium ion storage, shows a significantly enhanced capacity of 418.7 mAh g-1 at 0.1 C-rate, compared to pristine graphite (35 mAh g-1) and simply ball-milled graphite (BM-G, 200 mAh g-1). In addition, the SFZ-G exhibits stable sodium-ion storage performance with 86% of its initial capacity retention after 1000 cycles at 2.0 C-rate.

15.
Materials (Basel) ; 17(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063868

RESUMEN

Lead toxicity has hindered the wide applications of lead halide perovskites in optoelectronics and bioimaging. A significant amount of effort has been made to synthesize lead-free halide perovskites as alternatives to lead halide perovskites. In this work, we demonstrate the feasibility of synthesizing CsSnI3-based powders mechanochemically with dual light emissions under ambient conditions from CsI and SnI2 powders. The formed CsSnI3-based powders are divided into CsSnI3-dominated powders and CsSnI3-contained powders. Under the excitation of ultraviolet light of 365 nm in wavelength, the CsSnI3-dominated powders emit green light with a wavelength centered at 540 nm, and the CsSnI3-contained powders emit orange light with a wavelength centered at 608 nm. Both the CsSnI3-dominated and CsSnI3-contained powders exhibit infrared emission with the peak emission wavelengths centered at 916 nm and 925 nm, respectively, under a laser of 785 nm in wavelength. From the absorbance spectra, we obtain bandgaps of 2.32 eV and 2.08 eV for the CsSnI3-dominated and CsSnI3-contained powders, respectively. The CsSnI3-contained powders exhibit the characteristics of thermal quenching and photoelectrical response under white light.

16.
Cell Rep ; 43(7): 114513, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39003736

RESUMEN

Psoriasis is an intractable immune-mediated disorder that disrupts the skin barrier. While studies have dissected the mechanism by which immune cells directly regulate epidermal cell proliferation, the involvement of dermal fibroblasts in the progression of psoriasis remains unclear. Here, we identified that signals from dendritic cells (DCs) that migrate to the dermal-epidermal junction region enhance dermal stiffness by increasing extracellular matrix (ECM) expression, which further promotes basal epidermal cell hyperproliferation. We analyzed cell-cell interactions and observed stronger interactions between DCs and fibroblasts than between DCs and epidermal cells. Using single-cell RNA (scRNA) sequencing, spatial transcriptomics, immunostaining, and stiffness measurement, we found that DC-secreted LGALS9 can be received by CD44+ dermal fibroblasts, leading to increased ECM expression that creates a stiffer dermal environment. By employing mouse psoriasis and skin organoid models, we discovered a mechano-chemical signaling pathway that originates from DCs, extends to dermal fibroblasts, and ultimately enhances basal cell proliferation in psoriatic skin.


Asunto(s)
Proliferación Celular , Células Dendríticas , Fibroblastos , Psoriasis , Psoriasis/patología , Psoriasis/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Animales , Células Dendríticas/metabolismo , Ratones , Humanos , Matriz Extracelular/metabolismo , Galectinas/metabolismo , Ratones Endogámicos C57BL , Piel/patología , Piel/metabolismo
17.
Materials (Basel) ; 17(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38998228

RESUMEN

The 1:1 resveratrol-piperazine cocrystal was successfully synthesized and scaled-up to 300 g scale with the mechanochemical method, as a result of investigating key process parameters, namely the solvent and the grinding time. The use of water, ethanol or ethanol-water mixtures and reaction times up to 50 min were evaluated relative to the dry grinding process. Cocrystal formation and purity were monitored through X-ray diffraction and calorimetry measurements. The dry grinding resulted in an incomplete cocrystal formation, while the use of water or water-ethanol mixture yielded a monohydrate solid phase. Pure ethanol was found to be the optimal solvent for large-scale cocrystallization, as it delivered cocrystals with high crystallinity and purity after 10-30 min grinding time at the laboratory scale. Notably, a relatively fast reaction time (30-60 min) was sufficient for the completion of cocrystallization at larger scales, using a planetary ball mill and a plant reactor. Also, the obtained cocrystal increases the aqueous solubility of resveratrol by 6%-16% at pH = 6.8. Overall, this study highlights the potential of solvent-assisted mechanochemical synthesis as a promising new approach for the efficient production of pure resveratrol-piperazine cocrystals.

18.
Materials (Basel) ; 17(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38998390

RESUMEN

This paper focuses on high-entropy spinels, which represent a rapidly growing group of materials with physicochemical properties that make them suitable for hydrogen energy applications. The influence of high-pressure pure hydrogen on the chemical stability of three high-entropy oxide (HEO) sinter samples with a spinel structure was investigated. Multicomponent HEO samples were obtained via mechanochemical synthesis (MS) combined with high-temperature thermal treatment. Performing the free sintering procedure on powders after MS at 1000 °C for 3 h in air enabled achieving single-phase (Cr0.2Fe0.2Mg0.2Mn0.2Ni0.2)3O4 and (Cu0.2Fe0.2Mg0.2Ni0.2Ti0.2)3O4 powders with a spinel structure, and in the case of (Cu0.2Fe0.2Mg0.2Ti0.2Zn0.2)3O4, a spinel phase in the amount of 95 wt.% was achieved. A decrease in spinel phase crystallite size and an increase in lattice strains were established in the synthesized spinel powders. The hydrogenation of the synthesized samples in a high-pressure hydrogen atmosphere was investigated using Sievert's technique. The results of XRD, SEM, and EDS investigations clearly showed that pure hydrogen at temperatures of up to 250 °C and a pressure of up to 40 bar did not significantly impact the structure and microstructure of the (Cr0.2Fe0.2Mg0.2Mn0.2Ni0.2)3O4 ceramic, which demonstrates its potential for application in hydrogen technologies.

19.
ChemSusChem ; 17(18): e202401055, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38924618

RESUMEN

The development of green and environmentally friendly synthesis methods of electrocatalysts is a crucial aspect in decarbonizing energy generation. In this study, eco-friendly mechanochemical synthesis of perovskite metal oxide-carbon black composites is proposed using different conditions and additives such as KOH. Furthermore, the optimization of ball milling conditions, including time and rotational speed, is studied. The mechanochemical synthesis in solid-state conditions without additives produces electrocatalysts that exhibit the highest bifunctional electrochemical activity towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Moreover, this synthesis demonstrates a lower Environmental Impact Factor (E-factor), indicating its greener nature, and due to its simplicity, it has a great potential for scalability. The obtained bifunctional electrocatalysts have been tested in a rechargeable zinc-air battery (ZAB) for 22 h with similar performance compared to the commercial catalyst (Pt/C) at significantly lower cost. These promising findings are attributed to the enhanced interaction between the perovskite metal oxide and carbon material and the improved dispersion of the perovskite metal oxide on the carbon materials.

20.
J Environ Manage ; 363: 121254, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850909

RESUMEN

Despite being composed of recyclable materials, the main technological challenge of multilayer carton packs involves the efficient decompatibilization of the cellulosic, polymeric, and metallic phases. Here, a simple two-step mechanochemical process is described that uses only aqueous media and mechanical force to promote phase separation in order to fully recycle multi-layer carton packaging. The first step produces value-added micro- and nanocellulose, while in the second step, aluminum is extracted, forming precipitated aluminum and aluminum oxyhydroxides. Solid polyethylene (PE) remains with a degree of purity defined by the process efficiency. The results show that cellulose is efficiently extracted and converted into micro- and nanocellulose after 15 min of milling. In the second stage, approximately 90% of the aluminum is extracted from the PE after 15 min of milling. Due to the separation and drying medium conditions, the finely divided particles of extracted aluminum also have oxyhydroxides in their composition. It is believed that a passivation layer forms on the metallic aluminum particle. The techno-economic analysis revealed a positive net present value (NPV) of $17.5 million, with a minimum selling price of 1.62 USD/kg of cellulose. The environmental analysis concluded that most of the environmental impact of the process is associated with the entry of carton packages into the system, incorporating a small environmental load related to the industrial process. The results indicate a promising option toward a circular economy and carbon neutrality.


Asunto(s)
Celulosa , Reciclaje , Celulosa/química , Aluminio/química , Polietileno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA