Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 897: 165438, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37437634

RESUMEN

In Mediterranean catchments, such as the Sorraia catchment in Portugal, it is expected that climate change will increase drought stress and the deterioration of water quality in reservoirs. Sustainable land management (SLM) practices are seen as an adaption measure for those problems, but the effectiveness on improving climate change impacted water availability and quality on catchment scale is still poorly understood. Therefore, this study aims to evaluate the effectiveness of SLM practices in adapting the impacts of climate change on water availability and quality of the Montargil and Maranhão reservoirs in the Sorraia catchment. A well-calibrated Soil Water Assessment Tool model is used to simulate four scenarios (2041-2071 and 2071-2100; representative climate pathways 4.5 and 8.5), to investigate the effects of climate change on total phosphorus load (TP) in streams, reservoir volume, irrigation use and water exploitation index (WEI). Results showed that WEI will not exceed any water stress level while reservoir water quality will worsen. In particular since the TP load in streams flowing into the reservoirs increases and the volume decreases, it is likely that the existing P limitation for eutrophication will be counteracted. Nevertheless, tested SLM practices were able to decrease the TP load in those streams and increase the reservoir volume under future climates. Overall, this study shows that the SLM practices are effective in adapting to the climate change effects regarding reservoir water quality, without worsening the water availability; thus, it is a promising tool that should be investigated further for application by e.g. local land-users and decision makers.

2.
Water Resour Res ; 59(1): e2022WR033304, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37034824

RESUMEN

River discharge has experienced diverse changes in the last decades due to modification of hydrological patterns, anthropogenic intervention, re-vegetation or annual and interannual climatic and atmospheric fluctuations. Assessing the recent changes in river discharge and understanding the main drivers of these changes is thus extremely important from theoretical and applied points of view. More specifically, here we want to draw attention toward the impacts of streamflow changes on reservoir storage and operation. We describe the hydrological dynamics of the Yesa reservoir draining catchment, located in the central Spanish Pyrenees, and characterize the reservoir operation modes over the last 60 years (1956-2020). We analyze concurrent climatic (precipitation, air temperature, drought index), atmospheric mechanisms, land cover (Normalized Different Vegetation Index) and discharge (inlet and outlet of Yesa reservoir) time-series. By using the wavelet transform methodology, we detect historical breakpoints in the hydrological dynamics at different time-scales. Distinctive periods are thus identified. More regular seasonal flows characterized the catchment's dynamics during the first decades of the study period, while the last decades were characterized by a high inter-annual variability. These changes are primarily attributed to the natural re-vegetation process that the catchment experienced. Furthermore, we related changes in atmospheric circulation with a decline of the long-term discharge temporal features. This research contributes to the understanding of long-term river discharge changes and helps to improve the reservoir management practices.

3.
J Environ Manage ; 299: 113593, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34467866

RESUMEN

Soil erosion and sediment transport are controlled by complex factors promoting variable responses in catchment's erosion rates and sediment yields. To mitigate eventual negative effects derived from altered fluxes, integrated catchment management plans should assess the sediment cascade from upstream erosive processes, sediment mobilization through hillslopes and within the channel, up to downstream sediment yields. This study links hydro-sedimentary dynamics with sediment fingerprinting source ascription in a mid-mountainous Mediterranean catchment during five hydrological years (2013-2018). Soil colour parameters and fallout radionuclides were used as tracers to predict dominant suspended sediment sources using (i) a Bayesian mixing model (MixSIAR) and (ii) an End Member Mixing Analysis (EMMA). MixSIAR suggested that crops were the dominant source in most of the collected samples. EMMA showed similar results, clustering all except one sediment samples close to the crop and channel bank signatures. In addition, a quantitative hysteresis index was calculated and floods were clustered in function of their hydro-sedimentary characteristics. Despite different patterns were associated to each of the four identified clusters (e.g. different sediment loads and maximum suspended sediment concentrations), correlation between sediment origin and hydro-sedimentary variables was not significant due to the little seasonal variation in source type ascription.


Asunto(s)
Sedimentos Geológicos , Suelo , Teorema de Bayes , Monitoreo del Ambiente , Inundaciones , Radioisótopos
4.
Sci Total Environ ; 543(Pt B): 924-36, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26170115

RESUMEN

Catchment flow regimes alteration is likely to be a prominent consequence of climate change projections in the Mediterranean. Here we explore the potential effects of climatic change on the flow regime of the Thau and the Chiba catchments which are located in Southern France and Northeastern Tunisia, respectively. The Soil and Water Assessment Tool (SWAT) hydrological model is forced with projections from an ensemble of 4 climate model (CM) to assess changes and uncertainty in relevant hydrological indicators related to water balance, magnitude, frequency and timing of the flow between a reference (1971-2000) and future (2041-2071) periods. Results indicate that both catchments are likely to experience a decrease in precipitation and increase in temperature in the future. Consequently, runoff and soil water content are projected to decrease whereas potential evapotranspiration is likely to increase in both catchments. Yet uncertain, the projected magnitudes of these changes are higher in the wet period than in the dry period. Analyses of extreme flow show similar trend in both catchments, projecting a decrease in both high flow and low flow magnitudes for various time durations. Further, significant increase in low flow frequency as a proxy for hydrological droughts is projected for both catchments but with higher uncertainty in the wet period than in the dry period. Although no changes in the average timing of maximum and minimum flow events for different flow durations are projected, substantial uncertainty remains in the hydrological projections. While the results in both catchments show consistent trend of change for most of the hydrologic indicators, the overall degree of alteration on the flow regime of the Chiba catchment is projected to be higher than that of the Thau catchment. The projected magnitudes of alteration as well as their associated uncertainty vary depending on the catchment characteristics and flow seasonality.

5.
Environ Int ; 64: 1-16, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24361512

RESUMEN

In the Mediterranean area, surface waters often have low discharge or renewal rates, hence metal contamination from industrialised catchments can have a high negative impact on the physico-chemical and biological water quality. In a context of climate and anthropological changes, it is necessary to provide an integrative approach for the prevention and control of metal pollution, in order to limit its impact on water resources, biodiversity, trophic network and human health. For this purpose, introduction of constructed wetlands (CWs) between natural aquatic ecosystems and industrialised zones or catchments is a promising strategy for eco-remediation. Analysis of the literature has shown that further research must be done to improve CW design, selection and management of wetland plant species and catchment organisation, in order to ensure the effectiveness of CWs in Mediterranean environments. Firstly, the parameters of basin design that have the greatest influence on metal removal processes must be identified, in order to better focus rhizospheric processes on specific purification objectives. We have summarised in a single diagram the relationships between the design parameters of a CW basin and the physico-chemical and biological processes of metal removal, on the basis of 21 mutually consistent papers. Secondly, in order to optimise the selection and distribution of helophytes in CWs, it is necessary to identify criteria of choice for the plant species that will best fit the remediation objectives and environmental and economic constraints. We have analysed the factors determining plant metal uptake efficiency in CWs on the basis of a qualitative meta-analysis of 13 studies with a view to determine whether the part played by metal uptake by plants is relevant in comparison with the other removal processes. Thirdly, we analysed the parameters to consider for establishing suitable management strategies for CWs and how they affect the whole CW design process. Finally, we propose monitoring and policy measures to facilitate the integration of CWs within Mediterranean industrialised catchments.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Ecosistema , Contaminación Ambiental/prevención & control , Metales Pesados , Humedales , Humanos , Residuos Industriales , Región Mediterránea , Fenómenos Fisiológicos de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA