Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569507

RESUMEN

Unravelling the mechanisms of action of disinfectants is essential to optimise dosing regimes and minimise the emergence of antimicrobial resistance. In this work, we examined the mechanisms of action of a commonly used disinfectant-benzalkonium chloride (BAC)-over a significant pathogen-L. monocytogenes-in the food industry. For that purpose, we used modelling at multiple scales, from the cell membrane to cell population inactivation. Molecular modelling revealed that the integration of the BAC into the membrane requires three phases: (1) the approaching of BAC to the cellular membrane, (2) the absorption of BAC to its surface, and (3) the integration of the compound into the lipid bilayer, where it remains at least for several nanoseconds, probably destabilising the membrane. We hypothesised that the equilibrium of adsorption, although fast, was limiting for sufficiently large BAC concentrations, and a kinetic model was derived to describe time-kill curves of a large population of cells. The model was tested and validated with time series data of free BAC decay and time-kill curves of L. monocytogenes at different inocula and BAC dose concentrations. The knowledge gained from the molecular simulation plus the proposed kinetic model offers the means to design novel disinfection processes rationally.


Asunto(s)
Desinfectantes , Listeria monocytogenes , Desinfección , Compuestos de Benzalconio/farmacología , Microbiología de Alimentos , Simulación de Dinámica Molecular , Cinética , Desinfectantes/farmacología
2.
Environ Sci Pollut Res Int ; 30(15): 42738-42752, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36166127

RESUMEN

Clean water shortage is a major global problem due to escalating demand resulting from increasing human population growth and industrial activities, decreasing freshwater resources and persistent droughts. Recycling and reuse of wastewater by adopting efficient reclamation techniques can help solve this problem. However, wastewater contains a wide range of pollutants, which require removal before it may be reused. Adsorption and membrane processes are two successful treatments used to remove most of these pollutants. Their efficiency increases when these processes are integrated as observed, for example in a submerged membrane adsorption hybrid system (SMAHS). It uses coarse air bubbling/sparging to produce local shear which minimises reversible membrane fouling, improves performance and extends the life of the membrane. Additionally, the adsorbent acts as a buoyant media that produces an extra shearing effect on the membrane surface, reduces membrane resistance and increases flux. In addition, it adsorbs the organics that would otherwise deposit on and cause fouling of the membrane. The use of activated carbon (AC) adsorbent in SMAHS is very effective in removing most pollutants including natural organic matter (NOM) and organic micropollutants (OMPs) from wastewaters and membrane concentrate wastes, the latter being a serious problem in practical applications of the reverse osmosis process. However, certain NOM fractions and OMPs (i.e. hydrophilic and negatively charged ones) are not efficiently removed by AC. Other adsorbents need to be explored for their effective removal.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Aguas Residuales , Agua , Purificación del Agua/métodos , Adsorción , Contaminantes Químicos del Agua/análisis , Carbón Orgánico
3.
Heliyon ; 8(12): e12105, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36536917

RESUMEN

Polydopamine-based composites have attracted much attention due to polydopamine (PDA) similarity to 3,4-dihydroxy-L-phenylalanine (DOPA), a key structure that produces superior adhesion stem from mussel foot silk protein. Considering that PDA is rich in highly active functional groups such as catechol groups and amine groups etc., it is desirable to provide a large number of active sites through various strong interactions just like hydrogen bonding, electrostatic interactions, π-π stacking interactions, coordination or chelation, thereby removing pollutants such as heavy metals or organic synthetic dyes from industrial waste water. In fact, the introduction of PDA into wastewater treatment materials will greatly improve the pH usage range, accuracy, and biocompatibility of adsorbent, which has generated the interest of water treatment materials researchers. In this review article, based on the two methods of adsorption and degradation commonly used in water treatment, which mainly refer to separation of heavy metal ions and degradation of organic pollutants, we describe the special role of PDA in the process of removing pollutants from industrial wastewater materials in recent years. A brief summary and some key issues in water treatment field and must be considered in future research is given in the finally. We hope to provide researchers with ideas based on the outstanding advantages of PDA composite materials in the treatment of pollutants in wastewater, so that the role of PDA can be better explored.

4.
Membranes (Basel) ; 12(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35736253

RESUMEN

Although dye removal from wastewater streams has been investigated via several approaches using adsorbents, resins, or membranes, it is still hard to avoid the fact that dyes are persistently left in the adsorption materials or washing solutions used to regenerate the used adsorbents. In particular, given that cleaning agents are composed of acid/base, organic solvents, or electrolytes, dye adsorption and adsorbent regeneration processes leave behind more hard-to-manage wastewater containing dyes. In this study, we demonstrated that cold plasma (CP) treatment, which is one of the advanced oxidation processes (AOPs), can be used for zero discharge of dyes and regeneration of a washing solution in a membrane-based dye removal process. Specifically, CP treatment was found to successfully remove dyes released from a washing process to regenerate a used membrane, thereby effectively recycling a cleaning solution. As a result, the regenerated washing solution was more favorable for the adsorbed dyes' elution, leading to the successful regeneration of a used membrane without a significant loss of dye removal efficiency. This fact was evidenced by a comparative study on the effect of CP treatment on the reusability of membranes and washing solutions and the kinetic analysis of the AOP of the desorbed dyes. We hope that this study contributes to opening a new door for environmentally friendly and sustainable dye removal.

5.
Methods Mol Biol ; 2405: 137-150, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35298812

RESUMEN

The amphipathic α-helix is a common motif for peptide adsorption to membranes. Many physiologically relevant events involving membrane-adsorbed peptides occur over time and size scales readily accessible to coarse-grain molecular dynamics simulations. This methodological suitability, however, comes with a number of pitfalls. Here, I exemplify a multi-step adsorption equilibration procedure on the antimicrobial peptide Magainin 2. It involves careful control of peptide freedom to promote optimal membrane adsorption before other interactions are allowed. This shortens preparation times prior to production simulations while avoiding divergence into unrealistic or artifactual configurations.


Asunto(s)
Membrana Dobles de Lípidos , Péptidos , Membrana Dobles de Lípidos/química , Membranas , Simulación de Dinámica Molecular , Péptidos/química , Estructuras de las Plantas
6.
Chemosphere ; 287(Pt 3): 132260, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34543907

RESUMEN

Cementitious membrane (CM) is a promising microfiltration membrane with low cost for raw materials and low energy consumption of non-sintering fabrication process. A novel carbon-cementitious microfiltration membrane (CCM) was fabricated with powdered activated carbon (PAC) as an additive based on CM, to solve the low mechanical strength of CM during multiple practical uses. While maintaining adequate pure water flux and porosity, the mechanical strength of the membrane was greatly improved to ensure the stability of the membrane in the filtration process. The bending strength of the CCM was 2-3 times higher than that of CM. 10 wt% CCM has the smallest critical pore size and optimal permeability, which was chosen to be the optimal PAC doping ratio. The X-ray diffraction and FT-IR results indicated that the addition of PAC did not change the mineral composition of cement hydration products, and the appropriate amount of PAC acted as a nucleation site and accelerated hydration. The effect of size effect on bending strength was more obvious with the decrease of membrane thickness. In the membrane adsorption experiments of benzophenone-4, nitrobenzene and p-chloronitrobenzene, the CCM exhibited prominent adsorption properties than CM. These results broaden the application scope of microfiltration membranes in water treatment process.


Asunto(s)
Carbón Orgánico , Purificación del Agua , Adsorción , Membranas Artificiales , Polvos , Espectroscopía Infrarroja por Transformada de Fourier
7.
Water Res ; 199: 117148, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33979740

RESUMEN

Composite adsorbent-ultrafiltration membranes for micropollutant removal are an interesting concept, although water matrix compounds, such as organic matter (OM), may interfere with micropollutant adsorption. To prevent this interference, the adsorbents such as single-walled carbon nanotubes (SWCNTs) can be deposited on the permeate side of an ultrafiltration membrane (UF) that can retain OM. In this study, the 'shielding' effect by different UF MWCOs of such an SWCNT-UF composite was evaluated for nine different types of OM. All nine OM types competed with 17ß-estradiol (E2) for adsorption to varying extents, and tannic acid (TA, 1.7 kDa) reduced E2 adsorption by SWCNT-UF most drastically. TA interference mechanisms included direct competition with hormones for adsorption sites, and indirect competition via TA-hormone interactions. TA was not fully retained by the composite membrane with an MWCO range of 3-100 kDa, resulting in ineffective shielding. In contrast, humic acid was mostly retained by the composite with low MWCO of 3-10 kDa and allowed high E2 adsorption. This study demonstrates that tailoring composite membranes by carefully choosing UF MWCO can prevent interference of OM types in micropollutant adsorption by permeate-side adsorbents.


Asunto(s)
Nanotubos de Carbono , Purificación del Agua , Adsorción , Hormonas , Membranas Artificiales , Esteroides , Ultrafiltración
8.
ACS Nano ; 15(3): 4518-4533, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33619957

RESUMEN

Herein, a functional class of microenvironment-associated nanomaterials is reported for improving the second near-infrared (NIR-II) imaging and photothermal therapeutic effect on intracranial tumors via a spontaneous membrane-adsorption approach. Specific peptides, photothermal agents, and biological alkylating agents were designed to endow the nanogels with high targeting specificity, photothermal properties, and pharmacological effects. Importantly, the frozen scanning electron microscopy technology (cryo-SEM) was utilized to observe the self-association of nanomaterials on tumor cells. Interestingly, the spontaneous membrane-adsorption behavior of nanomaterials was captured through direct imaging evidence. Histological analysis showed that the cross-linking adhesion in intracranial tumor and monodispersity in normal tissues of the nanogels not only enhanced the retention time but also ensured excellent biocompatibility. Impressively, in vivo data confirmed that the microenvironment-associated nanogels could significantly enhance brain tumor clearance rate within a short treatment timeframe (only two weeks). In short, utilizing the spontaneous membrane-adsorption strategy can significantly improve NIR-II diagnosis and phototherapy in brain diseases while avoiding high-risk complications.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas , Adsorción , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/terapia , Humanos , Nanogeles , Fototerapia , Microambiente Tumoral
9.
Environ Sci Pollut Res Int ; 28(42): 59063-59075, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32277417

RESUMEN

Arsenic is among the major drinking water contaminants affecting populations in many countries because it causes serious health problems on long-term exposure. Two low-cost micro-sized iron oxyhydroxide-based adsorbents (which are by-products of the industrial production process of granular adsorbents), namely, micro granular ferric hydroxide (µGFH) and micro tetravalent manganese feroxyhyte (µTMF), were applied in batch adsorption kinetic tests and submerged microfiltration membrane adsorption hybrid system (SMAHS) to remove pentavalent arsenic (As(V)) from modeled drinking water. The adsorbents media were characterized in terms of iron content, BET surface area, pore volume, and particle size. The results of adsorption kinetics show that initial adsorption rate of As(V) by µTMF is faster than µGFH. The SMAHS results revealed that hydraulic residence time of As(V) in the slurry reactor plays a critical role. At longer residence time, the achieved adsorption capacities at As(V) permeate concentration of 10 µg/L (WHO guideline value) are 0.95 and 1.04 µg/mg for µGFH and µTMF, respectively. At shorter residence time of ~ 3 h, µTMF was able to treat 1.4 times more volumes of arsenic-polluted water than µGFH under the optimized experimental conditions due to its fast kinetic behavior. The outcomes of this study confirm that micro-sized iron oyxhydroxides, by-products of conventional adsorbent production processes, can successfully be employed in the proposed hybrid water treatment system to achieve drinking water guideline value for arsenic, without considerable fouling of the porous membrane. Graphical abstract.


Asunto(s)
Arsénico , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Arseniatos , Arsénico/análisis , Compuestos Férricos , Concentración de Iones de Hidrógeno , Contaminantes Químicos del Agua/análisis
10.
Chemosphere ; 267: 129268, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33338708

RESUMEN

Application of machine-learning methods to assess the batch adsorption of malachite green (MG) dye on chitosan/polyvinyl alcohol/zeolite imidazolate frameworks membrane adsorbents (CPZ) was investigated in this study. Our previous research results proved the suitability of the CPZ membranes for wastewater decoloring. In the current work, the residence time was combined with the other operational variables i.e., pH, initial dye concentration, and adsorbent dose (AD), to obtain the possible interactions involved in nonequilibrium adsorption. Two well-known soft-computing approaches, multi-layer perceptron adaptive neural network (MLP-ANN) and adaptive neural fuzzy inference system (ANFIS), were selected among different machine learning alternatives and then, comprehensively compared with each other considering reliability and accuracy for a 60 number of runs. The ANFIS structure with nine centers of clusters could predict the adsorption performance better than the ANN approach. Root mean square error (RMSE) and R-square were obtained 0.01822 and 0.9958 for the test data, respectively. The interpretability test resulted a linear trend predicted by the model and disclosed that the maximum value of the removal efficiency (99.5%) could be obtained when the amount of the inputs set to the upper limit. Lastly, the sensitivity analysis uncovered that the residence time has a decisive effect (relevancy factor > 80%) on the removal efficiency. According to the results, ANFIS is an effective and reliable tool to optimize and intensify the membrane adsorption process.


Asunto(s)
Redes Neurales de la Computación , Aguas Residuales , Adsorción , Lógica Difusa , Aprendizaje Automático , Reproducibilidad de los Resultados
11.
Int J Biol Macromol ; 164: 2651-2658, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32846182

RESUMEN

ß-Amyloid (Aß) is a 39-43 residue peptide involved in the pathogenesis of Alzheimer's disease. Aß deposits onto the cells and gives rise to the plaques that are characteristic of the disease. In an effort to understand the molecular mechanism of plaque formation, we have examined the interaction of Aß42, considered to be the most pathogenic of the peptides, with lipid bilayers consisting of 1-palmitoyl-2-oleoyl phosphatidylcholine (POPC) to which small amounts of GM1 ganglioside (1-5 mol%) were incorporated. POPC bilayers exist in the fluid, or liquid-disordered state at room temperature, mimicking the fluidity of cell membranes. An Aß42 preparation consisting essentially of peptide monomers was used. A combination of molecular dynamics (MD), isothermal calorimetry and Langmuir balance measurements was applied. Our results show that Aß binds POPC bilayers, and that binding increases (ΔG of binding decreases) with GM1, but only up to 3 mol% of the ganglioside, larger concentrations appearing to have a lower effect. MD and Langmuir balance measurements concur in showing that the peptide adsorbs onto the bilayer surface, but does not become inserted into it at surface pressures compatible with the cell membrane conditions. Thioflavin T measurements agree with MD in revealing a very low degree of peptide oligomerization/aggregation under our conditions. This is in contrast with previous studies showing peptide aggregation and insertion when interacting with membranes in the liquid-ordered state. The present contribution underlines the importance of bilayer lipid composition and properties for Aß plaque formation.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Gangliósido G(M1)/química , Fragmentos de Péptidos/metabolismo , Fosfatidilcolinas/química , Adsorción , Péptidos beta-Amiloides/análisis , Péptidos beta-Amiloides/química , Benzotiazoles , Calorimetría , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/química
12.
Materials (Basel) ; 14(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396311

RESUMEN

Graphene stratiform membrane materials have been recently applied to heavy metal removal in aqueous systems via adsorption due to their high mechanical strength, chemical stability, and other properties. We applied reduced graphene oxide (rGO) alone as an adsorbent to remove heavy metal ions from wastewater. Self-supported rGO membrane was prepared using a green reduction method with sodium hydrosulfite. We used the Raman spectra to observe the structure of the rGO membrane. The morphology of the self-supported membrane was measured by a scanning electron microscope. The Cu2+ adsorption performance was measured in terms of pH, reaction time, metal ion concentration, and temperature. The maximum Cu2+ adsorption capacity of the rGO membrane was found to be 149.25 mg/g. The adsorption process followed a pseudo-second-order kinetic model, and adsorption isotherms were simulated by the Freundlich model.

13.
Sci Total Environ ; 674: 355-362, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31005837

RESUMEN

The purification process of wastewater containing heavy metal ions (HMIs) using nano-fibrous metal-organic frameworks, MOF-808, embedded polyacrylonitrile membrane has been studied. The process parameters that were evaluated included feed concentration, transmembrane pressure (TMP), and membrane thickness. The effect of coexisting cations in the solution upon the removal efficiencies of Zn2+, Cd2+, Pb2+ and Hg2+ ions was also investigated. Results from the filtration experiments indicate a substantial variation in the feed volume that the membrane can treat before the permeate lead concentration reaches the allowable limit of 10 ppb, depending on the process parameter. An increase in the membrane thickness showed a significant improvement (26%) with 440 L of the treated feed volume after doubling the membrane layer. An increase in TMP could reduce the treated feed volume by 38% while a decrease in feed concentration led to a 21% increase in the treated feed volume. In the presence of other common background cations in the solution, the removal efficiency of HMIs by adsorption onto MOF-808 dropped by 18 to 37%. This result was dependent upon the HMIs, in the presence of up to three other cations but was minimal in the presence of a single cation indicative of good selectivity.

14.
J Chem Technol Biotechnol ; 93(7): 1988-1996, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30008506

RESUMEN

BACKGROUND: Vaccines based on virus-like particles (VLPs) are an alternative to inactivated viral vaccines that combine good safety profiles with strong immunogenicity. In order to be economically competitive, efficient manufacturing is required, in particular downstream processing, which often accounts for major production costs. This study describes the optimization and establishment of a chromatography capturing technique using sulfated cellulose membrane adsorbers (SCMA) for purification of influenza VLPs. RESULTS: Using a design of experiments approach, the critical factors for SCMA performance were described and optimized. For optimal conditions (membrane ligand density: 15.4 µmol cm-2, salt concentration of the loading buffer: 24 mmol L-1 NaCl, and elution buffer: 920 mmol L-1 NaCl, as well as the corresponding flow rates: 0.24 and 1.4 mL min-1), a yield of 80% in the product fraction was obtained. No loss of VLPs was detected in the flowthrough fraction. Removal of total protein and DNA impurities were higher than 89% and 80%, respectively. CONCLUSION: Use of SCMA represents a significant improvement compared with conventional ion exchanger membrane adsorbers. As the method proposed is easily scalable and reduces the number of steps required compared with conventional purification methods, SCMA could qualify as a generic platform for purification of VLP-based influenza vaccines. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

15.
Methods Enzymol ; 602: 97-110, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29588043

RESUMEN

Anesthetics modulate the response of ligand-gated ion channels to their neurotransmitter agonists, in a way that is consistent with clinical anesthesia: inhibition of synaptic transmission, by activation of inhibitory receptors and/or inhibition of excitatory receptors. Electrophysiological results for receptors such as GABAAR indicate that this modulation can be remarkably kinetically complex, characterized by concentration-dependent changes in the extent and (multiple) time scales of desensitization and deactivation. The full range of these features cannot be reproduced by a kinetic model in which anesthetic acts only by binding to putative protein sites, without having multiple sites with varying affinities, as well as many additional conformational states beyond the canonical set of three (resting, open, and desensitized). So, we discuss the implementation of a kinetic approach that incorporates only these three states, but accounts for effects of adsorption of anesthetic and agonist to the membrane in which the receptor is embedded, which modulates the conformational free energy landscape of the protein. As a result, the rate constants of conformational transitions become time dependent (non-Markovian), requiring nonstandard methods of kinetic analysis that can readily be implemented using available computational software.


Asunto(s)
Anestésicos/farmacología , Modelos Químicos , Receptores de GABA-A/metabolismo , Entropía , Activación del Canal Iónico/efectos de los fármacos , Cinética , Dominios Proteicos , Receptores de GABA-A/química , Programas Informáticos , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/metabolismo , Potenciales Sinápticos/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
16.
Biochim Biophys Acta Biomembr ; 1860(9): 1936-1948, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29550288

RESUMEN

Prion diseases are neurodegenerative disorders characterized by the aggregation of an abnormal form of prion protein. The interaction of prion protein and cellular membrane is crucial to elucidate the occurrence and development of prion diseases. Its fragment, residues 106-126, has been proven to maintain the pathological properties of misfolded prion and was used as a model peptide. In this study, explicit solvent molecular dynamics (MD) simulations were carried out to investigate the adsorption, folding and aggregation of PrP106-126 with different sizes (2-peptides, 4-peptides and 6-peptides) on the surface of both pure neutral POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and negatively charged POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) (3:1) lipids. MD simulation results show that PrP106-126 display strong affinity with POPC/POPG but does not interact with pure POPC. The positively charged and polar residues participating hydrogen bonding with membrane promote the adsorption of PrP106-126. The presence of POPC and POPC/POPG exert limited influence on the secondary structures of PrP106-126 and random coil structures are predominant in all simulation systems. Upon the adsorption on the POPC/POPG surface, the aggregation states of PrP106-126 have been changed and more small oligomers were observed. This work provides insights into the interactions of PrP106-126 and membranes with different compositions in atomic level, which expand our understanding the role membrane plays in the development of prion diseases. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.

17.
J Hazard Mater ; 344: 819-828, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29172168

RESUMEN

In this study, an innovative nano-material was prepared, which was ultilized to removal of heavy metal ions from wastewater. Polyacrylonitrile/cellulose acetate (PAN/CA) composite nanofibrous membranes were generated by the electronspinning technique first, and then amidoxime ployarcylonitrile/regenerate cellulose (AOPAN/RC) composite nanofibrous membranes were prepared by combining hydrolysis and amidoximation modification. The modification of composite nanofibers (AOPAN/RC) were consequently used in heavy metal ions adsorption. The characterizations of various different nanofibers were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, surface area and pore size distribution analyzer and energy dispersive X-ray spectroscopy. Meantime, the adsorption equilibrium studies were studied. In addition, the saturation adsorption amount of nanofibrous membranes (at 25°C) for Fe(III), Cu(II) and Cd(II) of 7.47, 4.26 and 1.13mmolg-1, respectively. The effects of pH value of solution, adsorption time and ions concentration on adsorption capacity were also investigated. Furthermore, the composite nanofibrous membranes after five times consecutive adsorption and desorption tests, the desorption rate of the Fe(III), Cu(II) and Cd(II) mental ions maintained more than 80% of their first desorption rate, AOPAN/RC composite nanofibrous reflected excellent resuability.

18.
Eng Life Sci ; 18(1): 29-39, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32624858

RESUMEN

Downstream processing remains one of the biggest challenges in manufacturing of biologicals and vaccines. This work focuses on a Design of Experiments approach to understand factors influencing the performance of sulfated cellulose membrane adsorbers for the chromatographic purification of a cell culture-derived H1N1 influenza virus strain (A/Puerto Rico/8/34). Membranes with a medium ligand density together with low conductivity and a high virus titer in the feed stream resulted in optimum virus yields and low protein and DNA content in the product fraction. Flow rate and salt concentration in the buffer used for elution were of secondary importance while membrane permeability had no significant impact on separation performance. A virus loss of 2.1% in the flow through, a yield of 57.4% together with a contamination level of 5.1 pgDNA HAU-1 and 1.2 ngprot HAU-1 were experimentally confirmed for the optimal operating point predicted. The critical process parameters identified and their optimal settings should support the optimization of sulfated cellulose membrane adsorbers based purification trains for other influenza virus strains, streamlining cell culture-derived vaccine manufacturing.

19.
Environ Sci Pollut Res Int ; 24(2): 1230-1240, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27770324

RESUMEN

Micellar-enhanced ultrafiltration (MEUF) processes of resorcinol, phenol, and 1-Naphthol with rhamnolipid as an anionic biosurfactant were investigated using polysulfone membrane. The effects of retentate/permeate concentration of phenolic pollutants (C R/C P), distribution coefficient of phenolic pollutions (D), concentration ratios of phenolic pollutions (α P) and rhamnolipids (α R) and adsorption capacity of the membrane (N m) were studied by operating pressure, pH condition, feed surfactant, and phenolic pollution concentrations. Results showed that C R (with pH) increased and ranked in the following order: resorcinol > phenol > 1-Naphthol, which is same with C R (with pressure), C R (with surfactant), C R/C P (with pollution), α,P and D, while C P (with pH), C P (with pressure), and C P (with surfactant) ranked in the reverse order. The operating pressure increased the solubility of phenolic from 0 to 0.1 MPa and then decreased slowly above 0.1 MPa. The concentration ratio of rhamnolipid was nearly at 2.0 and that of phenolic pollution was slightly above 1.0. D of phenolic pollutants reached the maximum at phenolic pollution concentration of 0.1 mM and the feed rhamnolipid concentration at 1 CMC. Moreover, zeta potential in feed stream and retentate stream and membrane adsorption of phenolic pollutions were firstly investigated in this article; the magnitudes of zeta potential with the feed stream of three phenolic pollutions were nearly the same and slightly lower than those with the retentate stream. The adsorption capacity of the membrane (N m) was calculated and compared to the former research, which showed that rhamnolipid significantly decreases the membrane adsorption of phenolic pollutions at a relatively lower concentration. It was implied that rhamnolipid can be substituted for chemical surfactants.


Asunto(s)
Decanoatos/química , Naftoles/química , Fenoles/química , Ramnosa/análogos & derivados , Ultrafiltración/métodos , Contaminantes Químicos del Agua/química , Adsorción , Glucolípidos/química , Micelas , Resorcinoles/química , Ramnosa/química , Tensoactivos/química , Purificación del Agua/métodos
20.
J Dairy Res ; 83(4): 497-504, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27845023

RESUMEN

Antibiotics are commonly used in poultry feed as growth promoters. This practice is questioned given the arising importance of antibiotic resistance. Antimicrobial peptides can be used as food additives for a potent alternative to synthetic or semi-synthetic antibiotics. The objective of this study was to develop a peptide production method based on membrane adsorption chromatography in order to produce extracts with antimicrobial activity against avian pathogens (Salmonella enterica var. Enteritidis, Salmonella enterica var. Typhimurium, and two Escherichia coli strains, O78:H80 and TK3 O1:K1) as well as Staphylococcus aureus. To achieve this, buttermilk powder and purified lactoferrin were digested with pepsin. The peptide extracts (<10 kDa) were fractionated depending on their charges through high-capacity cation-exchange and anion-exchange adsorptive membranes. The yields of cationic peptide extracts were 6·3 and 15·4% from buttermilk and lactoferrin total peptide extracts, respectively. Antimicrobial activity was assessed using the microdilution technique on microplates. Our results indicate that the buttermilk cationic peptide extracts were bactericidal at less than 5 mg/ml against the selected avian strains, with losses of 1·7 log CFU/ml (Salm. Typhimurium) to 3 log CFU/ml (E. coli O78:H80); viability decreased by 1·5 log CFU/ml for Staph. aureus, a Gram-positive bacterium. Anionic and non-adsorbed peptide extracts were inactive at 5 mg/ml. These results demonstrate that membrane adsorption chromatography is an effective way to prepare a cationic peptide extract from buttermilk that is active against avian pathogens.


Asunto(s)
Antiinfecciosos/farmacología , Suero de Mantequilla/análisis , Lactoferrina/química , Péptidos/farmacología , Enfermedades de las Aves de Corral/microbiología , Aves de Corral/microbiología , Animales , Escherichia coli/efectos de los fármacos , Lactoferrina/metabolismo , Pepsina A/metabolismo , Péptidos/aislamiento & purificación , Salmonella enterica/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA