Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(16): 11835-11844, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35905396

RESUMEN

Mercury (Hg) is a ubiquitous contaminant in the environment and its methylated form, methylmercury (MeHg), poses a worldwide health concern for humans and wildlife, primarily through fish consumption. Global production of forest fire ash, derived from wildfires and prescribed burns, is rapidly increasing due to a warming climate, but their interactions with aqueous and sedimentary Hg are poorly understood. Herein, we compared the differences of wildfire ash with activated carbon and biochar on the sorption of aqueous inorganic Hg and sedimentary Hg methylation. Sorption of aqueous inorganic Hg was greatest for wildfire ash materials (up to 0.21 µg g-1 or 2.2 µg g-1 C) among all of the solid sorbents evaluated. A similar Hg adsorption mechanism for activated carbon, biochar made of walnut, and wildfire ash was found that involves the formation of complexes between Hg and oxygen-containing functional groups, especially the -COO group. Notably, increasing dissolved organic matter from 2.4 to 70 mg C L-1 remarkably reduced Hg sorption (up to 40% reduction) and increased the time required to reach Hg-sorbent pseudo-equilibrium. Surprisingly, biochar and wildfire ash, but not activated carbon, stimulated MeHg production during anoxic sediment incubation, possibly due to the release of labile organic matter. Overall, our study indicates that while wildfire ash can sequester aqueous Hg, the leaching of its labile organic matter may promote production of toxic MeHg in anoxic sediments, which has an important implication for potential MeHg contamination in downstream aquatic ecosystems after wildfires.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Incendios Forestales , Animales , Ecosistema , Sedimentos Geológicos , Humanos , Mercurio/análisis , Contaminantes Químicos del Agua/análisis
2.
ACS Appl Mater Interfaces ; 7(41): 23172-81, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26486235

RESUMEN

Understanding the amalgamation mechanisms between mercury and gold is of fundamental interest and importance to many mercury sensing applications. However, there is only limited and piecemeal discussion in the literature of the mechanisms by which Au-Hg amalgams are formed on thin Au films. Here, we present a comprehensive description of a series of morphological changes occurring in a thin polycrystalline Au film during Au-Hg amalgamation investigated by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). These microscopic investigations enable us to offer a coherent explanation for the features and the mechanisms of amalgamation of Hg with Au in the film. We also use an optical technique (fringes of equal chromatic order, FECO) to observe changes in optical thickness and reflectivity of the film. Amalgamation reactions in the film render it inhomogeneous, thus making optical techniques unsuitable as a method for quantitative monitoring of Hg vapor using Au films of this type.

3.
Appl Microbiol Biotechnol ; 99(20): 8793-802, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26099333

RESUMEN

Cell wall envelopes treated with sodium hydroxide and spray-dried were used as mercury sorbents. The sorbent having sorption capacity 17.7 ± 0.1 µmol/g determined was employed for preconcentration of mercury containing 1-10 ng/L. After preconcentration, bioavailable mercury was detected in samples of soil, stream, and tap water via induction of bioluminescence of E. coli ARL1. Iron and manganese at concentrations of tenth microgram per liter interfered bioluminescence detection of mercury. In tap water was detected semiquantitatively 0.127 ± 0.1 nmol/L by the induction of bioluminescence of E. coli ARL1 in medium with tryptone after preconcentration using a method of standard addition.


Asunto(s)
Técnicas Biosensibles/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Mercurio/análisis , Mediciones Luminiscentes , Suelo/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA