Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
2.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000044

RESUMEN

Kidney diseases, including chronic kidney disease (CKD), diabetic nephropathy, and acute kidney injury (AKI), represent a significant global health burden. The kidneys are metabolically very active organs demanding a large amount of ATP. They are composed of highly specialized cell types in the glomerulus and subsequent tubular compartments which fine-tune metabolism to meet their numerous and diverse functions. Defective renal cell metabolism, including altered fatty acid oxidation or glycolysis, has been linked to both AKI and CKD. Mitochondria play a vital role in renal metabolism, and emerging research has identified mitochondrial sirtuins (SIRT3, SIRT4 and SIRT5) as key regulators of renal cell metabolic adaptation, especially SIRT3. Sirtuins belong to an evolutionarily conserved family of mainly NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their dependence on NAD+, used as a co-substrate, directly links their enzymatic activity to the metabolic status of the cell. In the kidney, SIRT3 has been described to play crucial roles in the regulation of mitochondrial function, and the antioxidative and antifibrotic response. SIRT3 has been found to be constantly downregulated in renal diseases. Genetic or pharmacologic upregulation of SIRT3 has also been associated with beneficial renal outcomes. Importantly, experimental pieces of evidence suggest that SIRT3 may act as an important energy sensor in renal cells by regulating the activity of key enzymes involved in metabolic adaptation. Activation of SIRT3 may thus represent an interesting strategy to ameliorate renal cell energetics. In this review, we discuss the roles of SIRT3 in lipid and glucose metabolism and in mediating a metabolic switch in a physiological and pathological context. Moreover, we highlight the emerging significance of other mitochondrial sirtuins, SIRT4 and SIRT5, in renal metabolism. Understanding the role of mitochondrial sirtuins in kidney diseases may also open new avenues for innovative and efficient therapeutic interventions and ultimately improve the management of renal injuries.


Asunto(s)
Enfermedades Renales , Riñón , Mitocondrias , Sirtuina 3 , Sirtuinas , Humanos , Sirtuinas/metabolismo , Sirtuina 3/metabolismo , Sirtuina 3/genética , Mitocondrias/metabolismo , Animales , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Riñón/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética
3.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999946

RESUMEN

The tumor cells reprogram their metabolism to cover their high bioenergetic demands for maintaining uncontrolled growth. This response can be mediated by cytokines such as IL-2, which binds to its receptor and activates the JAK/STAT pathway. Some reports show a correlation between the JAK/STAT pathway and cellular metabolism, since the constitutive activation of STAT proteins promotes glycolysis through the transcriptional activation of genes related to energetic metabolism. However, the role of STAT proteins in the metabolic switch induced by cytokines in cervical cancer remains poorly understood. In this study, we analyzed the effect of IL-2 on the metabolic switch and the role of STAT5 in this response. Our results show that IL-2 induces cervical cancer cell proliferation and the tyrosine phosphorylation of STAT5. Also, it induces an increase in lactate secretion and the ratio of NAD+/NADH, which suggest a metabolic reprogramming of their metabolism. When STAT5 was silenced, the lactate secretion and the NAD+/NADH ratio decreased. Also, the expression of HIF1α and GLUT1 decreased. These results indicate that STAT5 regulates IL-2-induced cell proliferation and the metabolic shift to aerobic glycolysis by regulating genes related to energy metabolism. Our results suggest that STAT proteins modulate the metabolic switch in cervical cancer cells to attend to their high demand of energy required for cell growth and proliferation.


Asunto(s)
Proliferación Celular , Interleucina-2 , Factor de Transcripción STAT5 , Neoplasias del Cuello Uterino , Humanos , Factor de Transcripción STAT5/metabolismo , Factor de Transcripción STAT5/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Femenino , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Interleucina-2/metabolismo , Interleucina-2/farmacología , Glucólisis/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/genética , NAD/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Transducción de Señal/efectos de los fármacos , Ácido Láctico/metabolismo
4.
Biomed Pharmacother ; 176: 116841, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834004

RESUMEN

Metastasis is the leading cause of cancer-related deaths, making the development of novel, more effective therapies imperative to alleviate patient suffering. Metabolic switching is a hallmark of cancer cells that facilitates metastasis. Cancer cells obtain most of their energy and intermediate metabolites, which are required to proliferate and metastasize, through aerobic glycolysis. Previous work from our laboratory has shown that Caveolin-1 (CAV1) expression in cancer cells promotes glycolysis and metastasis. Here, we sought to determine if limiting glycolysis reduced CAV1-enhanced metastasis and to identify the mechanism(s) involved. We evaluated the effects of the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) in metastatic melanoma and breast cancer cell lines expressing or not CAV1. Non-cytotoxic concentrations of 2-DG (1 mM) inhibited the migration of B16-F10 melanoma and MDA-MB-231 breast cancer cells. CAV1-mediated activation of Src/Akt signaling was required for CAV1-enhanced migration and was blocked in the presence of 2-DG. Moreover, inhibition of Akt reduced CAV1-enhanced lung metastasis of B16-F10 cells. Collectively, these findings highlight the importance of CAV1-induced metabolic reprogramming for metastasis and point towards possible therapeutic approaches to prevent metastatic disease by inhibiting glycolysis and Src/Akt signaling.


Asunto(s)
Caveolina 1 , Movimiento Celular , Desoxiglucosa , Glucólisis , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Familia-src Quinasas , Caveolina 1/metabolismo , Glucólisis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Animales , Transducción de Señal/efectos de los fármacos , Familia-src Quinasas/metabolismo , Familia-src Quinasas/antagonistas & inhibidores , Humanos , Línea Celular Tumoral , Ratones , Movimiento Celular/efectos de los fármacos , Desoxiglucosa/farmacología , Femenino , Metástasis de la Neoplasia , Melanoma Experimental/patología , Melanoma Experimental/metabolismo , Melanoma Experimental/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Ratones Endogámicos C57BL
5.
Immunity ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906145

RESUMEN

Tissues are exposed to diverse inflammatory challenges that shape future inflammatory responses. While cellular metabolism regulates immune function, how metabolism programs and stabilizes immune states within tissues and tunes susceptibility to inflammation is poorly understood. Here, we describe an innate immune metabolic switch that programs long-term intestinal tolerance. Intestinal interleukin-18 (IL-18) stimulation elicited tolerogenic macrophages by preventing their proinflammatory glycolytic polarization via metabolic reprogramming to fatty acid oxidation (FAO). FAO reprogramming was triggered by IL-18 activation of SLC12A3 (NCC), leading to sodium influx, release of mitochondrial DNA, and activation of stimulator of interferon genes (STING). FAO was maintained in macrophages by a bistable switch that encoded memory of IL-18 stimulation and by intercellular positive feedback that sustained the production of macrophage-derived 2'3'-cyclic GMP-AMP (cGAMP) and epithelial-derived IL-18. Thus, a tissue-reinforced metabolic switch encodes durable immune tolerance in the gut and may enable reconstructing compromised immune tolerance in chronic inflammation.

6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731929

RESUMEN

Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt ß-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.


Asunto(s)
Cardiomiopatías , Sepsis , Sepsis/complicaciones , Sepsis/metabolismo , Humanos , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Animales , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitofagia , Metabolismo Energético , Mitocondrias/metabolismo , Mitocondrias/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Apoptosis , Adenosina Trifosfato/metabolismo
7.
Front Zool ; 21(1): 11, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627800

RESUMEN

BACKGROUND: Anuran metamorphosis, which is driven by thyroid hormone (TH)-mediated processes, orchestrates intricate morphological and functional transformations for the transition from aquatic tadpoles to terrestrial life, providing a valuable model for studying organ functionalization, remodeling, and regression. Larva-specific organ regression is one of the most striking phenomena observed during the anuran metamorphic climax. While previous studies extensively analyzed the regression mechanisms of the tail, the molecular processes governing gill resorption remain elusive. RESULTS: We employed Microhyla fissipes as a model, and utilized a comprehensive approach involving histological analysis, transmission electron microscopy, and transcriptomics to unravel gill development and resorption. The pro-metamorphic stages revealed highly developed gill structures, emphasizing their crucial role as the primary respiratory organ for tadpoles. The transcriptomic analysis highlighted the upregulation of genes associated with enhanced respiratory efficiency, such as hemoglobin and mucins. However, as metamorphosis progressed, gill filaments underwent shrinkage, decreases in blood vessel density, and structural changes that signified a decline in respiratory function. The molecular mechanisms driving gill resorption involved the TH pathway-in particular, the upregulation of thyroid hormone receptor (TR) ß, genes associated with the tumor necrosis factor pathway and matrix metalloproteinases. Two distinct pathways orchestrate gill resorption, involving apoptosis directly induced by TH and cell death through the degradation of the extracellular matrix. In addition, metabolic reorganization during metamorphosis is a complex process, with tadpoles adapting their feeding behavior and mobilizing energy storage organs. The gills, which were previously overlooked, have been unveiled as potential energy storage organs that undergo metabolic reorganization. The transcriptomic analysis revealed dynamic changes in metabolism-related genes, indicating decreased protein synthesis and energy production and enhanced substrate transport and metabolism during metamorphic climax. CONCLUSION: This study sheds light on the structural, molecular, and metabolic dynamics during gill development and resorption in M. fissipes. The findings deepen our understanding of the intricate mechanisms governing organ regression and underscore the pivotal role of the gills in facilitating the transition from aquatic to terrestrial habitats.

8.
Cell Biosci ; 14(1): 11, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245770

RESUMEN

An intrinsic link between metabolism and function in immune cells, and in particular macrophages, has been well established recently. However, the molecular mechanisms controlling the metabolic switch in these sentinel cells for their integral roles in host defense, inflammation, homeostasis, and pathogenesis remain largely unknown. Here, we identify the master transcription factor NF-κB RelA as a vital cell-intrinsic checkpoint restricting aerobic glycolysis to favor mitochondrial oxidative phosphorylation (OXPHOS) and "M2" activation (alternative anti-inflammatory and pro-tumorigenic activation, in contrast to classical pro-inflammatory and anti-tumor M1 activation) of macrophages under oncogenic stress. RelA specific knockdown or genetic deletion in macrophages causes metabolism to shift away from OXPHOS toward glycolysis, resulting in drastically decreased oxygen consumption but significantly increased lactate and ATP production. The metabolic change in RelA deficient cells is associated with the decrease in the expressions of the OXPHOS gene SCO2 as well as the M2 marker and function genes arginase-1 and VEGF. These data suggest that RelA induces SCO2 expression to enhance OXPHOS and restrict glycolysis in macrophages for their pro-tumorigenic activation.

9.
Diabetol Metab Syndr ; 16(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172970

RESUMEN

BACKGROUND: Intermittent fasting (IF) is a commonly used dietary practice that alternates between periods of unrestricted dietary consumption and abstinence from caloric intake. IF reduces caloric intake along with metabolic switch from utilization of glucose to fatty acids and ketones and resulting in reduction in adiposity and subsequently insulin resistance. Thus, it has been hypothesized that IF regimens can improve body composition in obese and overweight individuals. AIM: To assess the effect of IF on lipid biokinetics in obese and overweight patients with type 2 diabetes (T2D). PATIENTS AND METHODS: Thirty overweight or obese T2D patients were recruited from the diabetes outpatient clinics at the Specialized Medical Hospital, Mansoura University. Patients were subjected to time restricted fasting for 16 h (from dawn to sunset) during Ramadan. Anthropometric data were measured for participants before and 3 weeks after Ramadan fasting. Fasting plasma glucose (FPG), HbA1c, lipid profile, leptin, beta hydroxybutyrate (ßHB) and high sensitive CRP levels were measured 1 week before and 3 weeks after Ramadan fasting. RESULTS: 30 diabetic patients were recruited with a mean age of 54.3 ± 7.2 years. 24 (80%) were females. Obesity was diagnosed in 27 cases (90%). The median diabetes duration was 10 years. The study showed a statistically significant decrease in post-fasting body weight (BW), Body mass index (BMI), waist circumference (WC) & hip circumference (HC). There was a statistically significant decrease of post-fasting low density lipoprotein (LDL-C), Total cholesterol (TC), and leptin. The study also showed a statistically significant increase of post-fasting high density lipoprotein (HDL-C) and ßHB. No significant change was found in post-fasting levels of HbA1c, FPG, triglycerides (TG) or high sensitive CRP. Post-fasting leptin was positively correlated with post-fasting BW, BMI, WC, and HC. Post-fasting ßHB was positively correlated with post-fasting TG, HbA1c, and LDL-C. Leptin levels change (pre vs post fasting) was positively correlated with the change in LDL-C levels. CONCLUSION: IF reduced leptin and increased ß-hydroxybutyrate levels. IF is an effective tool for losing weight and visceral fat and improving lipid profile in obese and overweight patients with T2D.

10.
Genes Dis ; 11(3): 101035, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38292173

RESUMEN

The adenosine monophosphate (AMP)-activated protein kinase (AMPK) sits at a central node in the regulation of energy metabolism and tumor progression. AMPK is best known to sense high cellular ADP or AMP levels, which indicate the depletion of energy stores. Previous studies have shown that the low expression of phosphorylated AMPK is associated with a poor prognosis of pancreatic cancer. In this study, we report that AMPK is also highly sensitive to extracellular matrix (ECM) stiffness. We found that AMPK is activated in cells when cultured under low ECM stiffness conditions and is functionally required for the metabolic switch induced by ECM stiffness. This regulation of AMPK requires the Hippo kinases but not LKB1/CaMKKß. Hippo kinases directly phosphorylate AMPKα at Thr172 to activate AMPK at low ECM stiffness. Furthermore, we found AMPK activity is inhibited in patients with pancreatic ductal adenocarcinoma (PDAC) with high ECM stiffness and is associated with a poor survival outcome. The activation of Hippo kinases by ROCK inhibitor Y-27632 in combination with the mitochondrial inhibitor metformin synergistically activates AMPK and dramatically inhibits PDAC growth. Together, these findings establish a novel model for AMPK regulation by the mechanical properties of ECMs and provide a rationale for simultaneously targeting the ECM stiffness-Hippo kinases-AMPK signaling and low glucose-LKB1-AMPK signaling pathways as an effective therapeutic strategy against PDAC.

11.
Front Endocrinol (Lausanne) ; 14: 1266527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111711

RESUMEN

Hepatocyte Nuclear Factor 4α (HNF4α), a master regulator of hepatocyte differentiation, is regulated by two promoters (P1 and P2) which drive the expression of different isoforms. P1-HNF4α is the major isoform in the adult liver while P2-HNF4α is thought to be expressed only in fetal liver and liver cancer. Here, we show that P2-HNF4α is indeed expressed in the normal adult liver at Zeitgeber time (ZT)9 and ZT21. Using exon swap mice that express only P2-HNF4α we show that this isoform orchestrates a distinct transcriptome and metabolome via unique chromatin and protein-protein interactions, including with different clock proteins at different times of the day leading to subtle differences in circadian gene regulation. Furthermore, deletion of the Clock gene alters the circadian oscillation of P2- (but not P1-)HNF4α RNA, revealing a complex feedback loop between the HNF4α isoforms and the hepatic clock. Finally, we demonstrate that while P1-HNF4α drives gluconeogenesis, P2-HNF4α drives ketogenesis and is required for elevated levels of ketone bodies in female mice. Taken together, we propose that the highly conserved two-promoter structure of the Hnf4a gene is an evolutionarily conserved mechanism to maintain the balance between gluconeogenesis and ketogenesis in the liver in a circadian fashion.


Asunto(s)
Factor Nuclear 4 del Hepatocito , Metabolismo de los Lípidos , Animales , Femenino , Ratones , Carbohidratos , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
12.
Ecotoxicol Environ Saf ; 267: 115601, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37890260

RESUMEN

The impacts of lead/Pb2+ on ecosystems have received widespread attention. Growth suppression is a major toxic effect of Pb compounds on aquatic animals, however, some studies have also reported their growth-promoting effects. These complex outcomes may be explained by anions that accompany Pb2+ or by the multiple toxic mechanisms/pathways of Pb2+. To examine these hypotheses, we tested how Bufo gargarizans tadpoles responded to Pb(NO3)2 (100 and 200 µg/L Pb2+) using transcriptomics and microbiomics, with NaNO3 and blank groups as controls. Tadpoles exposed to Pb(NO3)2 showed delayed development while increased somatic growth in a dose-dependent manner, which can be attributed to the effects of NO3- and Pb2+, respectively. Tadpole transcriptomics revealed that exposure to NO3- downregulated the MAPK pathway at transcriptional level, explaining the development-suppressing effect of NO3-; while Pb2+ upregulated the transcription of detoxification pathways (e.g., xenobiotics metabolism by cytochrome P450 and glutathione metabolism), indicating cellular stress and thus contradicting the growth advantage of Pb2+-exposed tadpoles. Pb2+ exposure changed the tadpole gut microbiota drastically, characterized by increased polysaccharides and carbohydrate utilization while decreased fatty acid and amino acid consumption according to microbial functional analysis. Similar gut microbial variations were observed in field-collected tadpoles from different Pb2+ environments. This metabolic shift in gut microbiota likely improved the overall food utilization efficiency and increased the allocation of fatty acids and amino acids to the host, explaining the growth advantage of Pb2+-exposed tadpoles. In summary, our results suggest multiple toxic pathways of Pb2+, and the gut microbiota may affect the pollution outcomes on animals.


Asunto(s)
Microbioma Gastrointestinal , Animales , Larva , Plomo/metabolismo , Ecosistema , Bufonidae
13.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37883063

RESUMEN

Metabolic switches are a crucial hallmark of cellular development and regeneration. In response to changes in their environment or physiological state, cells undergo coordinated metabolic switching that is necessary to execute biosynthetic demands of growth and repair. In this Review, we discuss how metabolic switches represent an evolutionarily conserved mechanism that orchestrates tissue development and regeneration, allowing cells to adapt rapidly to changing conditions during development and postnatally. We further explore the dynamic interplay between metabolism and how it is not only an output, but also a driver of cellular functions, such as cell proliferation and maturation. Finally, we underscore the epigenetic and cellular mechanisms by which metabolic switches mediate biosynthetic needs during development and regeneration, and how understanding these mechanisms is important for advancing our knowledge of tissue development and devising new strategies to promote tissue regeneration.


Asunto(s)
Diferenciación Celular , Proliferación Celular
14.
Cell Mol Life Sci ; 80(8): 240, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37541969

RESUMEN

The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.


Asunto(s)
Corazón , Miocitos Cardíacos , Humanos , Diferenciación Celular , Hormonas/farmacología
15.
Stem Cell Res Ther ; 14(1): 63, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013624

RESUMEN

BACKGROUND: Post-translational modifications of proteins are crucial to the regulation of their activity and function. As a newly discovered acylation modification, crotonylation of non-histone proteins remains largely unexplored, particularly in human embryonic stem cells (hESCs). METHODS: We investigated the role of crotonylation in hESC differentiation by introduce crotonate into the culture medium of GFP tagged LTR7 primed H9 cell and extended pluripotent stem cell lines. RNA-seq assay was used to determine the hESC transcriptional features. Through morphological changes, qPCR of pluripotent and germ layer-specific gene markers and flow cytometry analysis, we determined that the induced crotonylation resulted in hESC differentiating into the endodermal lineage. We performed targeted metabolomic analysis and seahorse metabolic measurement to investigate the metabolism features after crotonate induction. Then high-resolution tandem mass spectrometry (LC-MS/MS) revealed the target proteins in hESCs. In addition, the role of crotonylated glycolytic enzymes (GAPDH and ENOA) was evaluated by in vitro crotonylation and enzymatic activity assays. Finally, we used knocked-down hESCs by shRNA, wild GAPDH and GAPDH mutants to explore potential role of GAPDH crotonylation in regulating human embryonic stem cell differentiation and metabolic switch. RESULT: We found that induced crotonylation in hESCs resulted in hESCs of different pluripotency states differentiating into the endodermal lineage. Increased protein crotonylation in hESCs was accompanied by transcriptomic shifts and decreased glycolysis. Large-scale crotonylation profiling of non-histone proteins revealed that metabolic enzymes were major targets of inducible crotonylation in hESCs. We further discovered GAPDH as a key glycolytic enzyme regulated by crotonylation during endodermal differentiation from hESCs. CONCLUSIONS: Crotonylation of GAPDH decreased its enzymatic activity thereby leading to reduced glycolysis during endodermal differentiation from hESCs.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas , Células Madre Embrionarias Humanas , Humanos , Diferenciación Celular/genética , Linaje de la Célula , Cromatografía Liquida , Crotonatos/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Proteínas/metabolismo , Espectrometría de Masas en Tándem , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo
16.
Biochimie ; 208: 180-185, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36638953

RESUMEN

After four decades of research primarily focused on tumour genetics, the importance of metabolism in tumour biology is receiving renewed attention. Cancer cells undergo energy, biosynthetic and metabolic rewiring, which involves several pathways with a prevalent change from oxidative phosphorylation (OXPHOS) to lactic acid fermentation, known as the Warburg effect. During carcinogenesis, microenvironmental changes can trigger the transition from OXPHOS to lactic acid fermentation, an ancient form of energy supply, mimicking the behaviour of certain anaerobic unicellular organisms according to "atavistic" models of cancer. However, the role of this transition as a mechanism of cancer drug resistance is unclear. Here, we hypothesise that the metabolic rewiring of cancer cells to fermentation can be triggered, enhanced, and sustained by exposure to chronic or high-dose chemotherapy, thereby conferring resistance to drug therapy. We try to expand on the idea that metabolic reprogramming from OXPHOS to lactate fermentation in drug-resistant tumour cells occurs as a general phenotypic mechanism in any type of cancer, regardless of tumour cell heterogeneity, biodiversity, and genetic characteristics. This metabolic response may therefore represent a common feature in cancer biology that could be exploited for therapeutic purposes to overcome chemotherapy resistance, which is currently a major challenge in cancer treatment.


Asunto(s)
Ácido Láctico , Neoplasias , Humanos , Ácido Láctico/metabolismo , Fermentación , Glucólisis , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Resistencia a Antineoplásicos/genética
17.
Sci Total Environ ; 859(Pt 1): 160105, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36370793

RESUMEN

Declining body size is a universal ecological response to global warming in ectotherms. Ectotherms grow faster but mature at a smaller size at higher temperatures. This phenomenon is known as the temperature-size rule (TSR). However, we know little about the details of the relationship between temperature and size. Here, this issue was studied in the Chinese giant salamander (Andrias davidianus), one of the largest extant amphibians and a flagship species of conservation in China. Warm-acclimated A. davidianus larvae (25 °C) had accelerated development but little superiority in body growth when compared to their 15 °C counterparts when fed with red worm. This predicts a drastic decrease in adult body size with warming. However, a fish diet (more abundant lipid and protein) improved the growth performance at 25 °C. The underlying mechanism was studied. Warm-acclimated larvae had enlarged livers but shortened tails (fat depot). Their livers suffered from energy deficiencies and decreased protein levels, even when protein synthesis and energy metabolism were transcriptionally upregulated. This could be a direct explanation for their poor growth performance. Further analyses revealed a metabolic disorder resembling mammal glycogen storage disease in warm-acclimated larvae, indicating deficiency in glycogen catabolism. This speculation is consistent with their increased lipid and amino acid catabolism and explained the poor energy conditions of the warm-acclimated larvae. Additionally, a deficiency in glycogen metabolism explains the different efficiency of worm and fish diets in supporting the growth of warm-acclimated larvae, even when both diets were provided sufficiently. In conclusion, our results suggest that the relationship between temperature and body size can be flexible, which is a significant finding in terms of the TSR. The underlying metabolic and nutrient mechanisms were revealed. This knowledge can help deepen our understanding of the consequences of warming and can contribute to the conservation of A. davidianus.


Asunto(s)
Aclimatación , Anfibios , Animales , Temperatura , Aclimatación/fisiología , Tamaño Corporal , Urodelos , Larva , Glucógeno , Lípidos , Mamíferos
18.
Front Physiol ; 13: 1020870, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353371

RESUMEN

During embryonic life, chicks mainly derive energy from hepatic oxidation of yolk lipids. After hatch, chicks must rely on carbohydrate-rich feed to obtain energy. This requires an abrupt and intensive switch of metabolic processes, particularly in the liver. We recently identified a number of transcriptional and post-transcriptional regulatory networks that work concordantly to tune metabolic processes during the metabolic switch. Here, we used delayed feeding post-hatch (48 h) to impede the metabolic switch in broilers. We used RNA-seq to identify hepatic transcriptome differences between late stage embryos (E18) and two-day-old chicks (D2), which were either fed-from-hatch (FED) or not fed (DLY). Between FED and E18, 2,430 genes were differentially expressed (fold-change≥ 2; FDR p-value 0.05), of these 1,237 were downregulated in FED birds and 1,193 were upregulated. Between DLY and E18, 1979 genes were differentially expressed, of these 1,043 were downregulated and 936 were upregulated in DLY birds. Between DLY and FED, 880 genes were differentially expressed, of these 543 were downregulated and 337 were upregulated in DLY birds. We found that in addition to disturbances in a number of metabolic pathways, unfed chicks had a widespread suppression of gene networks associated with cell proliferation, cell cycle progression and mitosis. Expression patterns suggest that hepatocytes of delayed-fed birds have abnormal mitosis and increased polyploidization. This suggests that post-hatch feed consumption maintains the rate and integrity of liver growth immediately, which in turn, likely helps facilitate the appropriate programming of hepatic metabolic networks.

19.
Biomolecules ; 12(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36291621

RESUMEN

This review focuses on the evolving understanding that we have of tumor cell metabolism, particularly glycolytic and oxidative metabolism, and traces back its evolution through time. This understanding has developed since the pioneering work of Otto Warburg, but the understanding of tumor cell metabolism continues to be hampered by misinterpretation of his work. This has contributed to the use of the new concepts of metabolic switch and metabolic reprogramming, that are out of step with reality. The Warburg effect is often considered to be a hallmark of cancer, but is it really? More generally, is there a metabolic signature of cancer? We draw the conclusion that the signature of cancer cannot be reduced to a single factor, but is expressed at the tissue level in terms of the capacity of cells to dynamically explore a vast metabolic landscape in the context of significant environmental heterogeneities.


Asunto(s)
Neoplasias , Humanos , Neoplasias/metabolismo , Glucólisis , Respiración de la Célula
20.
Free Radic Biol Med ; 193(Pt 1): 319-329, 2022 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-36272668

RESUMEN

Nitric oxide as a signaling molecule exerts cytotoxicity known as nitrosative stress at its excess concentrations. In the yeast Saccharomyces cerevisiae, the cellular responses to nitrosative stress and their molecular mechanisms are not fully understood. Here, focusing on the posttranslational modifications that are associated with nitrosative stress response, we show that nitrosative stress increased the protein S-glutathionylation level in yeast cells. Our proteomic and immunochemical analyses demonstrated that the fructose-1,6-bisphosphate aldolase Fba1 underwent S-glutathionylation at Cys112 in response to nitrosative stress. The enzyme assay using a recombinant Fba1 demonstrated that S-glutathionylation at Cys112 inhibited the Fba1 activity. Moreover, we revealed that the cytosolic glutaredoxin Grx1 reduced S-glutathionylation of Fba1 and then recovered its activity. The intracellular contents of fructose-1,6-bisphosphate and 6-phosphogluconate, which are a substrate of Fba1 and an intermediate of the pentose phosphate pathway (PPP), respectively, were increased in response to nitrosative stress, suggesting that the metabolic flow was switched from glycolysis to PPP. The cellular level of NADPH, which is produced in PPP and functions as a reducing force for nitric oxide detoxifying enzymes, was also elevated under nitrosative stress conditions, but this increase was canceled by the amino acid substitution of Cys112 to Ser in Fba1. Furthermore, the viability of yeast cells expressing Cys112Ser-Fba1 was significantly lower than that of the wild-type cells under nitrosative stress conditions. These results indicate that the inhibition of Fba1 by its S-glutathionylation changes metabolism from glycolysis to PPP to increase NADPH production, leading to nitrosative stress tolerance in yeast cells.


Asunto(s)
Fructosa-Bifosfato Aldolasa , Proteínas de Saccharomyces cerevisiae , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Glutarredoxinas/metabolismo , NADP/metabolismo , Óxido Nítrico , Estrés Nitrosativo , Proteómica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA