Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Total Environ ; 951: 175457, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39137850

RESUMEN

The efficient nitrogen removal from micro-polluted source water is an international challenge to be solved urgently. However, the inner denitrification mechanism of native aerobic denitrifying bacterial communities in response to carbon scarcity remains relatively unclear. Here, the bacterial community XT6, screened from an oligotrophic reservoir, exhibited aerobic denitrifying capacity under low-carbon environments. Up to 76.79-81.64 % of total organic carbon (TOC) and 51.48-67.60 % of NO3--N were removed by XT6 within 48 h at C/N ratios of 2.0-3.0. Additionally, the nitrogen balance experiments further manifested that 26.27-38.13 % of NO3--N was lost in gaseous form. As the C/N ratio decreased, XT6 tended to generate more extracellular polymeric substances (EPS), with the tightly bound EPS showing the largest increase. Pseudomonas and Variovorax were quite abundant in XT6, constituting 59.69 % and 28.65 % of the total sequences, respectively. Furthermore, metagenomics analysis evidenced that XT6 removed TOC and nitrate mainly through the tricarboxylic acid cycle and aerobic denitrification. Overall, the abovementioned results provide a deeper understanding of the nitrogen metabolic pathways of indigenous aerobic denitrifying bacterial communities with low C/N ratios and offer useful guidance for controlling nitrogen pollution in oligotrophic ecosystems.

2.
J Hazard Mater ; 476: 135139, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38981230

RESUMEN

Neonicotinoids pose significant environmental risks due to their widespread use, persistence, and challenges in elimination. This study explores the effectiveness of Fe/Mn biochar in enhancing the removal efficiency of neonicotinoids in recirculating constructed wetlands (RCWs). Results demonstrated that incorporating Fe/Mn biochar into RCWs significantly improved the removal of COD, NH4+-N, TN, TP, imidacloprid (IMI), and acetamiprid (ACE). However, the simultaneous presence of IMI and ACE in the RCWs hindered the elimination of NH4+-N, TN, and TP from wastewater. The enhanced removal of nutrients and pollutants by Fe/Mn biochar was attributed to its promotion of carbon, nitrogen, and phosphorus cycling in RCWs, along with its facilitation of the adsorption and biodegradation of IMI and ACE. Metagenomics analysis demonstrated that Fe/Mn biochar altered the structure and diversity of microbial communities in RCWs. A total of 17 biodegradation genes (BDGs) and two pesticide degradation genes (PDGs) were identified within RCWs, with Fe/Mn biochar significantly increasing the abundance of BDGs such as cytochrome P450. The potential host genera for these BDGs/PDGs were identified as Betaproteobacteria, Acidobacteria, Nitrospiraceae, Gemmatimonadetes, and Bacillus. This study offers valuable insights into how Fe/Mn biochar enhances pesticide removal and its potential application in constructed wetland systems for treating pesticide-contaminated wastewater.


Asunto(s)
Biodegradación Ambiental , Carbón Orgánico , Hierro , Neonicotinoides , Contaminantes Químicos del Agua , Humedales , Carbón Orgánico/química , Contaminantes Químicos del Agua/metabolismo , Neonicotinoides/química , Neonicotinoides/metabolismo , Hierro/química , Manganeso , Aguas Residuales/química , Nitrógeno/metabolismo , Microbiota , Fósforo/química , Bacterias/genética , Bacterias/metabolismo , Adsorción , Insecticidas/metabolismo , Eliminación de Residuos Líquidos/métodos , Nitrocompuestos
3.
Animals (Basel) ; 14(12)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38929370

RESUMEN

The intestine of living organisms harbors different microbiota associated with the biological functioning and health of the host and influences the process of ecological adaptation. Here, we studied the intestinal microbiota's composition and functional differences using 16S rRNA and metagenomic analysis in the wild, farm, and released Chinese three-keeled pond turtle (Mauremys reevesii). At the phylum level, Bacteroidota dominated, followed by Firmicutes, Fusobacteriota, and Actinobacteriota in the wild group, but Chloroflexi was more abundant in the farm and released groups. Moreover, Chryseobacterium, Acinetobacter, Comamonas, Sphingobacterium, and Rhodobacter were abundant in the released and farm cohorts, respectively. Cetobacterium, Paraclostridium, Lysobacter, and Leucobacter showed an abundance in the wild group. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database revealed that the relative abundance of most pathways was significantly higher in the wild turtles (carbohydrate metabolism, lipid metabolism, metabolism of cofactors, and vitamins). The comprehensive antibiotic resistance database (CARD) showed that the antibiotic resistance gene (ARG) subtype macB was the most abundant in the farm turtle group, while tetA was higher in the wild turtles, and srpYmcr was higher in the released group. Our findings shed light on the association between the intestinal microbiota of M. reevesii and its habitats and could be useful for tracking habitats to protect and conserve this endangered species.

4.
Sci Total Environ ; 944: 173986, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38876344

RESUMEN

Antibiotic fermentation residue, which is generated from the microbial antibiotic production process, has been a troublesome waste faced by the pharmaceutical industry. Dark fermentation is a potential technology to treat antibiotic fermentation residue in terms of renewable H2 generation and waste management. However, the inherent antibiotic in antibiotic fermentation residue may inhibit its dark fermentation performance, and current understanding on this topic is limited. This investigation examined the impact of the inherent antibiotic on the dark H2 fermentation of Cephalosporin C (CEPC) fermentation residue, and explored the mechanisms from the perspectives of bacterial communities and functional genes. It was found that CEP-C in the antibiotic fermentation residue significantly inhibited the H2 production, with the H2 yield decreasing from 17.2 mL/g-VSadded to 12.5 and 9.6 mL/g-VSadded at CEP-C concentrations of 100 and 200 mg/L, respectively. CEP-C also prolonged the H2-producing lag period. Microbiological analysis indicated that CEP-C remarkably decreased the abundances of high-yielding H2-producing bacteria, as well as downregulated the genes involved in hydrogen generation from the"pyruvate pathway" and"NADH pathway", essentially leading to the decline of H2 productivity. The present work gains insights into how cephalosporin antibiotics influence the dark H2 fermentation, and provide guidance for mitigating the inhibitory effects.


Asunto(s)
Antibacterianos , Cefalosporinas , Fermentación , Hidrógeno , Hidrógeno/metabolismo , Antibacterianos/farmacología , Cefalosporinas/farmacología , Bacterias/metabolismo , Bacterias/efectos de los fármacos
5.
Front Microbiol ; 15: 1347119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638899

RESUMEN

The versatility of plastic has resulted in huge amounts being consumed annually. Mismanagement of post-consumption plastic material has led to plastic waste pollution. Biodegradation of plastic by microorganisms has emerged as a potential solution to this problem. Therefore, this study aimed to investigate the microbial communities involved in the biodegradation of polypropylene (PP). Mangrove soil was enriched with virgin PP sheets or chemically pretreated PP comparing between 2 and 4 months enrichment to promote the growth of bacteria involved in PP biodegradation. The diversity of the resulting microbial communities was accessed through 16S metagenomic sequencing. The results indicated that Xanthomonadaceae, unclassified Gaiellales, and Nocardioidaceae were promoted during the enrichment. Additionally, shotgun metagenomics was used to investigate enzymes involved in plastic biodegradation. The results revealed the presence of various putative plastic-degrading enzymes in the mangrove soil, including alcohol dehydrogenase, aldehyde dehydrogenase, and alkane hydroxylase. The degradation of PP plastic was determined using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and Water Contact Angle measurements. The FTIR spectra showed a reduced peak intensity of enriched and pretreated PP compared to the control. SEM images revealed the presence of bacterial biofilms as well as cracks on the PP surface. Corresponding to the FTIR and SEM analysis, the water contact angle measurement indicated a decrease in the hydrophobicity of PP and pretreated PP surface during the enrichment.

6.
Sci Total Environ ; 926: 171806, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508266

RESUMEN

Hospital wastewater treatment systems (HWTSs) are a significant source and reservoir of antibiotic resistance genes (ARGs) and a crucial hub for transmitting ARGs from clinical to natural environments. However, there is a lack of research on the antibiotic resistome of clinical wastewater in HWTSs. In this study, we used metagenomics to analyze the prevalence and abundance of ARGs in five typical HWTSs. A total of 17 antibiotics from six categories were detected in the five HWTSs; ß-lactam antibiotics were found at the highest concentrations, with up to 4074.08 ng·L-1. We further found a total of 21 ARG types and 1106 subtypes of ARGs with the highest percentage of multi-drug resistance genes (evgS, msbA, arlS, and baeS). The most abundant last-resort ARGs were mcr, which were detected in 100 % of the samples. HWTSs effluent is a major pathway for the transmission of last-resort ARGs into urban wastewater networks. The removal of antibiotics, antibiotic-resistant bacteria, and ARGs from HWTSs was mainly achieved by tertiary treatment, i.e., chlorine disinfection, but antibiotics and ARGs were still present in the HWTSs effluent or even increased after treatment. Moreover, antibiotics and heavy metals (especially mercury) in hospital effluents can exert selective pressure for antibiotic resistance, even at low concentrations. Qualitative analyses based on metagenome-assembled genome analysis revealed that the putative hosts of the identified ARGs are widely distributed among Pseudomonas, Acidovorax, Flavobacterium, Polaromonas, and Arcobacter. Moreover, we further assessed the clinical availability of ARGs and found that multidrug ARGs had the highest clinical relevance values. This study provides new impulses for monitoring and removing antibiotics and ARGs in the hospital sewage treatment process.


Asunto(s)
Antibacterianos , Purificación del Agua , Aguas Residuales , Genes Bacterianos , Hospitales
7.
Biochem Genet ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38349437

RESUMEN

Benign prostatic hyperplasia (BPH), commonly seen in older men, can cause symptoms of discomfort, and may even need surgical intervention. Studies have shown the potential link between gut microbes and BPH, but the molecular association is not fully understood. METHODS: Four-week-old male Sprague-Dawley rats (n = 16) were randomly allocated to normal control diet (ND, 10% fat) and high-fat diet-induced BPH (HFD, 45% fat) groups. Metagenomic analysis was used to examine the abundance and discrepancies in gut microbiota within the two groups after 24 weeks of feeding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted to assess the biological functions of the differentially expressed genes. RESULTS: Rats with HFD-induced obesity exhibited morphological abnormalities in their prostate tissues. Metagenomic analysis of the gut revealed that Firmicutes were the dominant phyla in the HFD group, whereas the ND group had a higher abundance of Spirochaetes. At the genus level, Ruminococcus spp exhibited greater abundance in the HFD group, whereas Treponema spp were more abundant in the ND group. KEGG analysis demonstrated that the differentially expressed genes were mainly enriched in the NOD-like receptor (NLR) signaling, PI3K-Akt signaling, estrogen-signaling, signalings associated with GABAergic synapses, pantothenate and CoA biosynthesis. CONCLUSION: The findings of our study indicated that there was a notable variation in the microbiota abundance within the intestinal tract of obese rats suffering from prostate hyperplasia. It is plausible that these differentially abundant bacteria played a role in the development of pathological alterations in the prostate through the facilitation of inflammatory responses; however, additional research is required to validate the findings.

8.
Chemosphere ; 352: 141465, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364918

RESUMEN

Biochar has been extensively studied in wastewater treatment systems. However, the role of biochar in the single-stage partial nitritation anammox (SPNA) system remains not fully understood. This study explored the impact of biochar on the SPNA at ambient temperatures (20 °C and 15 °C). The nitrogen removal rate of the system raised from 0.43 to 0.50 g N/(L·d) as the biochar addition was raised from 2 to 4 g/L. Metagenomic analysis revealed that gene abundances of amino sugar metabolism and nucleotide sugar metabolism, amino acid metabolism, and quorum sensing were decreased after the addition of biochar. However, the gene abundance of enzymes synthesizing NADH and trehalose increased, indicating that biochar could stimulate electron transfer reactions in microbial metabolism and assist microorganisms in maintaining a steady state at lower temperatures. The findings of this study provide valuable insights into the mechanism behind the improved nitrogen removal facilitated by biochar in the single-stage partial nitritation anammox system.


Asunto(s)
Compuestos de Amonio , Carbón Orgánico , Aguas del Alcantarillado , Temperatura , Oxidación Anaeróbica del Amoníaco , Oxidación-Reducción , Nitrógeno/metabolismo , Reactores Biológicos , Desnitrificación , Compuestos de Amonio/metabolismo
9.
Front Bioeng Biotechnol ; 11: 1330293, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38146344

RESUMEN

Garden waste, one type of lignocellulosic biomass, holds significant potential for the production of volatile fatty acids (VFAs) through anaerobic fermentation. However, the hydrolysis efficiency of garden waste is limited by the inherent recalcitrance, which further influences VFA production. Granular activated carbon (GAC) could promote hydrolysis and acidogenesis efficiency during anaerobic fermentation. This study developed a strategy to use GAC to enhance the anaerobic fermentation of garden waste without any complex pretreatments and extra enzymes. The results showed that GAC addition could improve VFA production, especially acetate, and reach the maximum total VFA yield of 191.55 mg/g VSadded, which increased by 27.35% compared to the control group. The highest VFA/sCOD value of 70.01% was attained in the GAC-amended group, whereas the control group only reached 49.35%, indicating a better hydrolysis and acidogenesis capacity attributed to the addition of GAC. Microbial community results revealed that GAC addition promoted the enrichment of Caproiciproducens and Clostridium, which are crucial for anaerobic VFA production. In addition, only the GAC-amended group showed the presence of Sphaerochaeta and Oscillibacter genera, which are associated with electron transfer processes. Metagenomics analysis indicated that GAC addition improved the abundance of glycoside hydrolases (GHs) and key functional enzymes related to hydrolysis and acidogenesis. Furthermore, the assessment of major genera influencing functional genes in both groups indicated that Sphaerochaeta, Clostridium, and Caproicibacter were the primary contributors to upregulated genes. These findings underscored the significance of employing GAC to enhance the anaerobic fermentation of garden waste, offering a promising approach for sustainable biomass conversion and VFA production.

10.
Front Microbiol ; 14: 1180321, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425997

RESUMEN

Polymeric carbohydrates are abundant and their recycling by microbes is a key process of the ocean carbon cycle. A deeper analysis of carbohydrate-active enzymes (CAZymes) can offer a window into the mechanisms of microbial communities to degrade carbohydrates in the ocean. In this study, metagenomic genes encoding microbial CAZymes and sugar transporter systems were predicted to assess the microbial glycan niches and functional potentials of glycan utilization in the inner shelf of the Pearl River Estuary (PRE). The CAZymes gene compositions were significantly different between in free-living (0.2-3 µm, FL) and particle-associated (>3 µm, PA) bacteria of the water column and between water and surface sediments, reflecting glycan niche separation on size fraction and selective degradation in depth. Proteobacteria and Bacteroidota had the highest abundance and glycan niche width of CAZymes genes, respectively. At the genus level, Alteromonas (Gammaproteobacteria) exhibited the greatest abundance and glycan niche width of CAZymes genes and were marked by a high abundance of periplasmic transporter protein TonB and members of the major facilitator superfamily (MFS). The increasing contribution of genes encoding CAZymes and transporters for Alteromonas in bottom water contrasted to surface water and their metabolism are tightly related with particulate carbohydrates (pectin, alginate, starch, lignin-cellulose, chitin, and peptidoglycan) rather than on the utilization of ambient-water DOC. Candidatus Pelagibacter (Alphaproteobacteria) had a narrow glycan niche and was primarily preferred for nitrogen-containing carbohydrates, while their abundant sugar ABC (ATP binding cassette) transporter supported the scavenging mode for carbohydrate assimilation. Planctomycetota, Verrucomicrobiota, and Bacteroidota had similar potential glycan niches in the consumption of the main component of transparent exopolymer particles (sulfated fucose and rhamnose containing polysaccharide and sulfated-N-glycan), developing considerable niche overlap among these taxa. The most abundant CAZymes and transporter genes as well as the widest glycan niche in the abundant bacterial taxa implied their potential key roles on the organic carbon utilization, and the high degree of glycan niches separation and polysaccharide composition importantly influenced bacterial communities in the coastal waters of PRE. These findings expand the current understanding of the organic carbon biotransformation, underlying the size-fractionated glycan niche separation near the estuarine system.

11.
3 Biotech ; 13(8): 275, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37457869

RESUMEN

This study is conducted to identify the microbial architecture and its functional capacity in the Asian population via the whole metagenomics approach. A brief comparison of the Asian countries namely Malaysia, India, China, and Thailand, was conducted, giving a total of 916 taxa under observation. Results show a close representation of the taxonomic diversity in the gut microbiota of Malaysia, India, and China, where Bacteroidetes, Firmicutes, and Actinobacteria were more predominant compared to other phyla. Mainly due to the multi-racial population in Malaysia, which also consists of Malays, Indian, and Chinese, the population tend to share similar dietary preferences, culture, and lifestyle, which are major influences that shapes the structure of the gut microbiota. Moreover, Thailand showed a more distinct diversity in the gut microbiota which was highly dominated by Firmicutes. Meanwhile, functional profiles show 1034 gene families that are common between the four countries. The Malaysia samples are having the most unique gene families with a total of 67,517 gene families, and 51 unique KEGG Orthologs, mainly dominated by the metabolic pathways, followed by microbial metabolism in diverse environments. In conclusion, this study provides some general overview on the structure of the Asian gut microbiota, with some additional highlights on the Malaysian population. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03671-3.

12.
Front Microbiol ; 14: 1114228, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065129

RESUMEN

Gut microbiota (GM) dynamics during pregnancy vary among different populations and are affected by many factors, such as living environments and diet. This study aims to observe and evaluate the changes in the structure and function of the GM from the first to the third trimester of pregnancy in Chinese women, and to explore the main factors affecting the changes in intestinal microecology. Fifty-five Chinese pregnant women were recruited for this study and their fecal samples were collected during the first (P1), second (P2), and third trimesters (P3) of pregnancy. We exploited metagenomic sequencing to compare the composition and function of the GM in different pregnancy periods. Bioinformatic analysis revealed that there were differences in the composition of the GM among P1, P2, and P3, as indicated by the increase in α-diversity and ß-diversity of the GM and the differences in the relative abundances of distinct bacterial phyla. Gestational diabetes mellitus (GDM) was the main factor (P < 0.05) that affected the changes in GM at various stages of pregnancy. There were also disparities in the structure of the GM between the GDM group and non-GDM group in the P1, P2, and P3. The GDM group exhibited increased abundances in Ruminococcus_gnavus, Akkermansia_muciniphila, Alistipes_shahii, Blautia_obeum, and Roseburia_intestinalis; while, the abundances of Bacteroides coprocola, Bacteroides plebeius, Erysipelatoclostridium ramosum, and Prevotella copri were increased in the non-GDM group. Three of the four species enriched in the non-GDM group manifestied significantly negative correlations with the insulin-signaling pathway and lipopolysaccharide biosynthesis (r ≤ -0.3, adjusted P < 0.05). In the GDM group, Bacteroides vulgatus and Ruminococcus gnavus were significantly and positively correlated with insulin signaling pathway and lipopolysaccharide biosynthesis (r ≤ -0.3, adjusted P < 0.05) among the species enriched from early pregnancy. Virtually all of the species enriched in P2 and P3 were positively correlated with steroid hormone biosynthesis. These results suggest a potential role for the GM in the development of GDM, enabling the potential prevention of GDM by targeting the GM.

13.
J Environ Manage ; 334: 117509, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801799

RESUMEN

In this study, the amendment of biochar-activated peroxydisulfate during composting to remove antibiotic resistance genes (ARGs) by direct (microbial community succession) and indirect methods (physicochemical factors) was analyzed. When implementing indirect methods, the synergistic effect of peroxydisulfate with biochar optimized the physicochemical habitat of compost, maintaining its moisture within a range of 62.95%-65.71%, and a pH of 6.87-7.73, and causing the compost to mature 18 days earlier than the control groups. The direct methods caused the optimized physicochemical habitat to adjust the microbial communities and reduce the abundance of most of the ARG host bacteria (Thermopolyspora, Thermobifida, and Saccharomonospora), thus inhibiting this substance's amplification. Heatmap analysis confirmed the necessary connection between physicochemical factors, microbial communities, and ARGs. Moreover, a mantel test confirmed the direct significant effect of the microbial communities on ARGs and the indirect significant effect of physicochemical factors on ARGs. The results showed that the abundance of more ARGs was down-regulated at the end of composting and regulated by biochar-activated peroxydisulfate, especially for the abundance of AbaF, tet(44), golS, and mryA, which was significantly decreased by 0.87-1.07 fold. These results provide new insights into the removal of ARGs during composting.


Asunto(s)
Compostaje , Genes Bacterianos , Compostaje/métodos , Antibacterianos/farmacología , Estiércol/microbiología , Farmacorresistencia Microbiana/genética
14.
Virol J ; 19(1): 181, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36352436

RESUMEN

BACKGROUND: Among hospitalized children suffering from community-acquired pneumonia, Mycoplasma pneumoniae (MP) is one of the most common pathogens. MP often exists as a co-infection with bacteria or viruses, which can exacerbate the clinical symptoms. We investigated the pathogen spectrum in MP-positive and MP-negative samples from hospitalized children with respiratory tract infections in Beijing, China. METHOD: This study included 1038 samples of nasopharyngeal aspirates obtained between April, 2017 and March, 2018 from hospitalized children under 6 years of age with respiratory tract infections. To explore the impact of MP infection on the composition of the pathogen spectrum, 185 nasopharyngeal aspirates (83 MP-positive/102 MP-negative) were randomly selected for next-generation sequencing and comprehensive metagenomics analysis. Real-time PCR was used to detect and verify common respiratory viruses. RESULTS: Of the 1038 samples, 454 (43.7%) were infected with MP. In children < 6 years of age, the MP infection rate gradually increased with age, with the highest rate of 74.2% in 5-6-year-olds. The results of metagenomics analysis revealed 11 human, animal and plant virus families, and bacteriophages, including common respiratory viruses, enteroviruses and anelloviruses. The virus family with the highest number of reads in both MP-positive and MP-negative samples was the Pneumoviridae, and the number of reads for human respiratory syncytial virus (HRSV) in MP-positive samples was higher than that in MP-negative samples. Among the 83 MP-positive samples, 47 (56.63%) were co-infected with viruses, the most common of which was influenza virus (IFV). The durations of hospitalization and fever were higher in patients with MP co-infection than MP single infection, but the difference was not statistically significant. CONCLUSION: The viral family with the highest number of reads in both groups was Pneumoviridae, and the number of reads matched to HRSV in MP-positive samples was much higher than MP-negative samples. Co-infection of MP and IFV infection were the most cases.


Asunto(s)
Coinfección , Neumonía por Mycoplasma , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Virus , Niño , Humanos , Lactante , Preescolar , Mycoplasma pneumoniae/genética , Viroma , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/epidemiología , Virus/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-36231339

RESUMEN

Polycyclic aromatic hydrocarbons are a widespread organic pollutant worldwide. In this study, a highly efficient phenanthrene (PHE)-degrading microbial community was enriched from oil extraction soil, which could degrade 500 mg/L PHE within 4 days. Using 16S rRNA sequencing, the dominant bacteria in this community at the phylum level were found to be Proteobacteria, Actinobacteria, and Firmicutes. Metagenomic annotation of genes revealed the metabolic pathways and the contribution of different bacteria to the degradation process. Pseudomonadaceae contributed multiple functional genes in the degradation process. This study revealed the functional genes, metabolic pathways, and microbial interactions of the microbial community, which are expected to provide guidance for practical management.


Asunto(s)
Microbiota , Fenantrenos , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Bacterias , Biodegradación Ambiental , Redes y Vías Metabólicas/genética , Fenantrenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/análisis , ARN Ribosómico 16S/genética , Suelo/química , Microbiología del Suelo , Contaminantes del Suelo/análisis
16.
Bioresour Technol ; 362: 127857, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36037841

RESUMEN

In this study, the microbial diversity of size-fractionated anammox sludge in a well-mixed system and their contribution to nitrogen transformation were investigated. Results showed that small granules (0.2-1.0 mm) contributed to the major part of the nitrogen removal rate (56 %) due to its largest mixed liquor volatile suspended solids (1240 ± 80 mg·L-1). However, large granules (>1.0 mm) possessed the highest relative abundances of Ca. Kuenenia stuttgartiensis and specific anammox activity, representing 49.34 % and 24.45 ± 0.01 mg-N·g-1-mixed liquor volatile suspended solids·h-1, respectively. The microbial diversity decreased as the increase of granular size, resulting in microbial community shifting to a simpler model. Metagenomic analysis showed that fine sludge might be the potential major for NO/N2O production in the mature well-mixed system under inorganic conditions. This study provides guidance for the evaluation of nitrogen contribution by anammox size-fractionated sludge and the inhibition of the potential NO/N2O emission in anammox processes.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Oxidación Anaeróbica del Amoníaco , Anaerobiosis , Reactores Biológicos , Desnitrificación , Nitrógeno , Oxidación-Reducción
17.
Front Microbiol ; 13: 883495, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35801108

RESUMEN

Ulcerative colitis (UC) is a serious chronic intestinal inflammatory disease, with an increased incidence in recent years. The intestinal microbiota plays a key role in the pathogenesis of UC. However, there is no unified conclusion on how the intestinal microbiota changes. Most studies focus on the change between UC patients and healthy individuals, rather than the active and remission stage of the same patient. To minimize the influences of genetic differences, environmental and dietary factors, we studied the intestinal microbiota of paired fecal samples from 42 UC patients at the active and remission stages. We identified 175 species of microbes from 11 phyla and found no difference of the alpha and beta diversities between the active and remission stages. Paired t-test analysis revealed differential microbiota at levels of the phyla, class, order, family, genus, and species, including 13 species with differential abundance. For example, CAG-269 sp001916005, Eubacterium F sp003491505, Lachnospira sp000436475, et al. were downregulated in the remission, while the species of Parabacteroides distasonis, Prevotellamassilia sp900540885, CAG-495 sp001917125, et al. were upregulated in the remission. The 13 species can effectively distinguish the active and remission stages. Functional analysis showed that the sporulation and biosynthesis were downregulated, and the hydrogen peroxide catabolic process was upregulated in remission of UC. Our study suggests that the 13 species together may serve as a biomarker panel contributing to identify the active and remission stages of UC, which provides a valuable reference for the treatment of UC patients by FMT or other therapeutic methods.

18.
Nutrients ; 14(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35631266

RESUMEN

Probiotics have aroused increasing concern as an intervention strategy for periodontitis (PD), but their underlying mechanism of action remains poorly characterized. Regarding the significance of oral microbiota dysbiosis related to PD, we predicted that the preventive activity of probiotics may be influenced by suppressing the bacterial pathogenicity. Herein, we investigated the effects of Lactobacillus paracasei L9 (L9) and Bifidobacterium animalis A6 (A6) on PD using a rat model, and demonstrated a regulatory effect of probiotics on oral flora from a metagenomics perspective. Oral administration of A6 or L9 effectively relieved gingival bleeding, periodontal inflammatory infiltration, and alveolar bone resorption. In addition, A6 or L9 treatment reduced the inflammatory response and increased the expression of anti-inflammatory cytokines, which we expected to ameliorate alveolar bone resorption as mediated by the receptor activator of the nuclear factor-κB ligand/OPG signaling pathway. More importantly, using metagenomic sequencing, we showed that probiotics significantly altered the taxonomic composition of the subgingival microbiome, and reduced the relative proportions of pathogenic bacterial genera such as Streptococcus, Fusobacterium, Veillonella, and Escherichia. Both probiotics significantly inhibited levels of bacterial virulence factors related to adherence, invasion, exoenzyme, and complement protease functions that are strongly correlated with the pathogenesis of PD. Our overall results suggest that A6 and L9 may constitute promising prophylactic agents for PD, and should thus be further explored in the future.


Asunto(s)
Pérdida de Hueso Alveolar , Bifidobacterium animalis , Lacticaseibacillus paracasei , Periodontitis , Animales , Bacterias , Metagenómica , Periodontitis/microbiología , Periodontitis/terapia , Ratas
19.
Sci Total Environ ; 833: 155190, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35421490

RESUMEN

This study aimed to reveal the synergistic effect of bioanode and biocathode on nitrobenzene (NB) removal with different microbial community structures and functions. Single-chamber bioelectrochemical reactors were constructed and operated with different initial concentrations of NB and glucose as the substrate. With the synergistic effect of biocathode and bioanode, NB was completely removed within 8 h at a kinetic rate constant of 0.8256 h-1, and high conversion rate from NB to AN (92%) was achieved within 18 h. The kinetic rate constant of NB removal was linearly correlated with the maximum current density and total coulombs (R2 > 0.95). Increase of glucose and NB concentrations had significantly positive and negative effects, respectively, on the NB removal kinetics (R2 > 0.97 and R2 > 0.93, respectively). Geobacter sp. and Enterococcus sp. dominated in the bioanode and biocathode, respectively. The presence of Klebsiella pneumoniae in the bioanode was beneficial for Geobacter species to produce electricity and to alleviate the NB inhibition. As one of the dominant species at the biocathode, Methanobacterium formicicum has the ability of nitroaromatics degradation according to KEGG analysis, which played a crucial role for NB reduction. Fermentative bacteria converted glucose into volatile fatty acids or H2, to provide energy sources to other species (e.g., Geobacter sulfurreducens and Methanobacterium formicicum). The information from this study is useful to optimize the bioelectrocatalytic system for nitroaromatic compound removal.


Asunto(s)
Fuentes de Energía Bioeléctrica , Microbiota , Electricidad , Electrodos , Glucosa , Nitrobencenos/metabolismo
20.
Arch Microbiol ; 204(4): 234, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35362813

RESUMEN

The purpose of this study is to identify microbial communities in pulp and paper industry sludge and their metagenomic profiling on the basis of; phylum, class, order, family, genus and species level. Results revealed that the dominant phyla in 16S rRNA Illumina Miseq analysis inside sludge were Anaerolinea, Pseudomonas, Clostridia, Bacteriodia, Gammaproteobacteria, Spirochetia, Deltaproteobacteria, Spirochaetaceae, Prolixibacteraceae and some unknown microbial strains are also dominant. Metagenomics is a molecular biology-based technology that uses bioinformatics to evaluate huge gene sequences extracted from environmental samples to assess the composition and function of microbiota. The results of metabarcoding of the V3-V4 16S rRNA regions acquired from paired-end Illumina MiSeq sequencing were used to analyze bacterial communities and structure. The present work demonstrates the potential approach to sludge treatment in the open environment via the naturally adapted microorganism, which could be an essential addition to the disposal site. In summary, these investigations indicate that the indigenous microbial community is an acceptable bioresource for remediation or detoxification following secondary treatment. This research aims at understanding the structure of microbial communities and their diversity (%) in highly contaminated sludge to perform in situ bioremediation.


Asunto(s)
Microbiota , Aguas del Alcantarillado , Metagenoma , Metagenómica , Microbiota/genética , ARN Ribosómico 16S/genética , Aguas del Alcantarillado/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA