Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 506
Filtrar
1.
Sci Total Environ ; 950: 175238, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39098423

RESUMEN

Soil trace metal (TM) contamination is a worldwide issue and threatens food production and security. Remediation of cadmium (Cd) and zinc (Zn) contaminated soils by phytoextraction with the Zn/Cd hyperaccumulator Noccaea caerulescens is widely studied but few studies have investigated the efficiency of this technique to reduce Cd and Zn soil-to-crop transfers to subsequent vegetable crops. The vegetable biomonitor rocket Diplotaxis tenuifolia was grown in pots on 13 moderately contaminated soils that had previously been cropped with N. caerulescens. Using mixed-effects models, we show the drivers of rocket biomass, Cd and Zn concentrations. Our models show, for our study soils, the benefit of previous N. caerulescens uptake of Cd and Zn in decreasing Cd and Zn concentrations in a subsequent rocket crop. We also show a slight positive impact of N. caerulescens biomass (and therefore uptake) on rocket growth. Our data show that exchangeable soil concentrations are major drivers of Cd and Zn rocket concentrations. Other soil variables negatively driving rocket Cd and Zn concentrations are NO3- content, organic matter content, cation exchange capacity, and soil manganese which stimulate rocket biomass and/or influence TM bioavailability. Rocket D. tenuifolia seems to be a good biomonitor for contaminated soils as it is tolerant to relatively high TM soil concentrations. We demonstrate that 40 % of rockets grown on soils below 2 mg total Cd kg-1 dry soil have foliar Cd concentrations above the European maximum allowed level confirming the need to review soil legal thresholds to protect consumers' health. In conclusion, our study suggests promising use of N. caerulescens phytoextraction for bioavailable contaminant stripping which is all the more interesting given the increasing demand for urban growing spaces.


Asunto(s)
Biodegradación Ambiental , Brassicaceae , Cadmio , Contaminantes del Suelo , Zinc , Cadmio/metabolismo , Cadmio/análisis , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo , Brassicaceae/metabolismo , Productos Agrícolas , Suelo/química
2.
Plants (Basel) ; 13(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124149

RESUMEN

Chlorophyll has long been used as a natural indicator of plant health and photosynthetic efficiency. Laser-induced fluorescence (LIF) is an emerging technique for understanding broad spectrum organic processes and has more recently been used to monitor chlorophyll response in plants. Previous work has focused on developing a LIF technique for imaging moss mats to identify metal contamination with the current focus shifting toward application to moss fronds and aiding sample collection for chemical analysis. Two laser systems (CoCoBi a Nd:YGa pulsed laser system and Chl-SL with two blue continuous semiconductor diodes) were used to collect images of moss fronds exposed to increasing levels of Cu (1, 10, and 100 nmol/cm2) using a CMOS camera. The best methods for the preprocessing of images were conducted before the analysis of fluorescence signatures were compared to a control. The Chl-SL system performed better than the CoCoBi, with dynamic time warping (DTW) proving the most effective for image analysis. Manual thresholding to remove lower decimal code values improved the data distributions and proved whether using one or two fronds in an image was more advantageous. A higher DTW difference from the control correlated to lower chlorophyll a/b ratios and a higher metal content, indicating that LIF, with the aid of image processing, can be an effective technique for identifying Cu contamination shortly after an event.

3.
Environ Monit Assess ; 196(9): 781, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096411

RESUMEN

The increasing proximity of the Dudumbia dumpsite, an open dumpsite in Navrongo, Ghana, to human settlements necessitates an investigation of the soil quality to safeguard the environment from heavy metal toxicity. This study examined the impact of waste dumping activities on the physicochemical properties of the soil, as well as the level of heavy metal (Pb, Cd, Ni, Cr, As, Hg, Cu, Mn, and Zn) contamination and associated risks. Various contamination and risk assessment tools were used, including the geoaccumulation index (Igeo), pollution load index (PLI), potential ecological risk (Er), and potential ecological risk index (PERI). The study found significant improvements in notable soil attributes such as phosphorus (P), organic carbon (C), total nitrogen (N), calcium (Ca), magnesium (Mg), potassium (K), sodium (Na), and effective cation exchange capacity, with percentage increases ranging from 50.8 to 2078.3%. Igeo values ranged from 2.07 to 6.20, indicating contamination levels from moderate to extreme. The PLI and PERI values were 16.241 and 1810, respectively. The Er values for the heavy metals ranged from 36 to 607, indicating ecological risk levels from low to very high, with Cd and Hg posing very high risks. These results suggest that while the dumpsite soil shows improvements in some characteristics favourable for plant cultivation, waste dumping significantly contributes to heavy metal contamination. The soil at the dumpsite is deteriorated and poses significant health risks, particularly due to Cd and Hg. Therefore, remediation efforts should prioritise mitigating the risks posed by Cd and Hg.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Contaminantes del Suelo , Suelo , Ghana , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , Instalaciones de Eliminación de Residuos , Medición de Riesgo
4.
Environ Monit Assess ; 196(9): 828, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164565

RESUMEN

Globally, there is growing concern over the environmental contamination of coastal ecosystems caused by anthropogenic activities. Here,we performed a study to evaluate the degree of heavy metal contamination in 5 different sediment samples collected from five sites along the Southeastern coast of India. Additionally, the research aims to explore the potential ecological implications of heavy metal contamination on the bacterial diversity, a crucial factor in upholding a sustainable ecosystem. A total of  seven heavy metals, i.e., chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), mercury (Hg), cadmium (Cd) and arsenic (As), were assessed and quantified using inductively coupled plasma mass spectrometry. Targeted amplicon sequencing revealed that phylum Proteobacteria (36.9%) was the most dominating followed by Halobacterota (25.5%), Actinobacteriota (15%), Firmicutes (6.7%), Bacteroidota (4.0%), Thermoplasmatota (2.3%), Acidobacteriota (2.0%), Chloroflexi (1.6%), Planctomycetota (1.2%) and Crenarchaeota (1.1%). According to the alpha diversity estimate, lesser bacterial diversity was observed in areas with high pollution levels. Moreover, the physicochemical parameters of the sediments were analyzed. The contamination levels of the sediments were evaluated using the geo-accumulation index (Igeo), contamination factor (CF) and pollution loading index (PLI) to ascertain the comprehensive toxicity status of the sediments. The Igeo values revealed sediment pollution with metals such as Hg and Cd. The sediments obtained from the sampling site PU-01 showed the highest concentration of Hg pollution. Considering the ecotoxicological aspect, the estimated risk index (RI) values indicated a range from low to significant ecological risk.


Asunto(s)
Bacterias , Monitoreo del Ambiente , Metales Pesados , Contaminantes Químicos del Agua , India , Metales Pesados/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/efectos de los fármacos , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Biodiversidad
5.
Carbohydr Res ; 544: 109247, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39180879

RESUMEN

The escalation of heavy metal pollutants in soils and effluents, driven by industrialization and human activities, poses significant environmental and health risks. Conventional remediation methods are often costly and ineffective, prompting a shift towards sustainable alternatives such as biological treatments. Natural biosorbents, including microbial cells and their byproducts, have emerged as promising solutions. One such approach involves leveraging exopolysaccharides (EPS), complex high-molecular-weight biopolymers synthesized by microbes under environmental stress conditions. EPS are intricate organic macromolecules comprising proteins, polysaccharides, uronic acids, humic compounds, and lipids, either located within microbial cells or secreted into their surroundings. Their anionic functional groups enable efficient electrostatic binding of cationic heavy metals, making EPS effective biosorbents for soil remediation. This review thoroughly explores the pivotal role of bacterial EPS in the removal of heavy metals, focusing on EPS biosynthesis mechanisms, the dynamics of interaction with heavy metals, and case studies that illustrate their effectiveness in practical remediation strategies. By highlighting these aspects, the review underscores the innovation and practical implications of EPS-based bioremediation technologies, demonstrating their potential to address critical environmental challenges effectively while paving the way for sustainable environmental management practices. Key findings reveal that EPS exhibit robust metal-binding capacities, facilitated by their anionic functional groups, thereby offering a promising solution for mitigating metal pollution in diverse environmental matrices.

6.
J Fungi (Basel) ; 10(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39194906

RESUMEN

Maize is a crucial staple crop that ensures global food security by supplying essential nutrients. However, heavy metal (HM) contamination inhibits maize growth, reduces output, and affects food security. Some endophytic fungi (EFs) in maize seeds have the potential to enhance growth and increase dry biomass, offering a solution to mitigate the negative effect of HM contamination. Using these functional EFs could help maintain crop production and ensure food safety in HM-contaminated areas. In the present study, the diversity of EFs in corn grains from various HM-contaminated areas in China was studied through culture-dependent and culture-independent methods. We tested the plant growth-promoting (PGP) traits of several dominant culturable isolates and evaluated the growth-promoting effects of these twenty-one isolates through pot experiments. Both studies showed that HM contamination increased the diversity and richness of corn grain EFs and affected the most dominant endophytes. Nigrospora and Fusarium were the most prevalent culturable endophytes in HM-contaminated areas. Conversely, Cladosporium spp. were the most isolated endophytes in non-contaminated areas. Different from this, Saccharomycopsis and Fusarium were the dominant EFs in HM-contaminated sites, while Neofusicoccum and Sarocladium were dominant in non-contaminated sites, according to a culture-independent analysis. PGP trait tests indicated that 70% of the tested isolates (forty-two) exhibited phosphorus solubilization, IAA production, or siderophore production activity. Specifically, 90% of the tested isolates from HM-contaminated sites showed better PGP results than 45% of the isolates from non-contaminated sites. The benefit of the twenty-one isolates on host plant growth was further studied through pot experiments, which showed that all the isolates could improve host plant growth. Among them, strains derived from HM-contaminated sites, including AK18 (Nigrospora), AK32 (Beauveria), SD93 (Gibberellia), and SD64 (Fusarium), had notable effects on enhancing the dry biomass of shoots and roots of maize under Cd stress. We speculate that the higher ratio of PGP EFs in corn grains from HM-contaminated areas may explain their competitiveness in such extreme environments. Fusarium and Cladosporium isolates show high PGP properties, but they can also be phytopathogenic. Therefore, it is essential to evaluate their pathogenic properties and safety for crops before considering their practical use in agriculture.

7.
Environ Sci Pollut Res Int ; 31(34): 47201-47219, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990257

RESUMEN

Groundwater resources in Bitlis province and its surroundings in Türkiye's Eastern Anatolia Region are pivotal for drinking water, yet they face a significant threat from fluoride contamination, compounded by the region's volcanic rock structure. To address this concern, fluoride levels were meticulously measured at 30 points in June 2019 dry period and September 2019 rainy period. Despite the accuracy of present measurement techniques, their time-consuming nature renders them economically unviable. Therefore, this study aims to assess the distribution of probable geogenic contamination of groundwater and develop a robust prediction model by analyzing the relationship between predictive variables and target contaminants. In this pursuit, various machine learning techniques and regression models, including Linear Regression, Random Forest, Decision Tree, K-Neighbors, and XGBoost, as well as deep learning models such as ANN, DNN, CNN, and LSTM, were employed. Elements such as aluminum (Al), boron (B), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), phosphorus (Pb), lead (Pb), and zinc (Zn) were utilized as features to predict fluoride levels. The SelectKbest feature selection method was used to improve the accuracy of the prediction model. This method identifies important features in the dataset for different values of k and increases model efficiency. The models were able to produce more accurate predictions by selecting the most important variables. The findings highlight the superior performance of the XGBoost regressor and CNN in predicting groundwater quality, with XGBoost consistently outperforming other models, exhibiting the lowest values for evaluation metrics like mean squared error (MSE), mean absolute error (MAE), and root mean squared error (RMSE) across different k values. For instance, when considering all features, XGBoost attained an MSE of 0.07, an MAE of 0.22, an RMSE of 0.27, a MAPE of 9.25%, and an NSE of 0.75. Conversely, the Decision Tree regressor consistently displayed inferior performance, with its maximum MSE reaching 0.11 (k = 5) and maximum RMSE of 0.33 (k = 5). Furthermore, feature selection analysis revealed the consistent significance of boron (B) and cadmium (Cd) across all datasets, underscoring their pivotal roles in groundwater contamination. Notably, in the machine learning framework evaluation, the XGBoost regressor excelled in modeling both the "all" and "rainy season" datasets, while the convolutional neural network (CNN) outperformed in the "dry season" dataset. This study emphasizes the potential of XGBoost regressor and CNN for accurate groundwater quality prediction and recommends their utilization, while acknowledging the limitations of the Decision Tree Regressor.


Asunto(s)
Aprendizaje Profundo , Fluoruros , Agua Subterránea , Contaminantes Químicos del Agua , Agua Subterránea/química , Contaminantes Químicos del Agua/análisis , Fluoruros/análisis , Monitoreo del Ambiente/métodos , Turquía , Ciudades
8.
Environ Pollut ; 358: 124509, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38968981

RESUMEN

The impact of environmental risk factors on chronic kidney disease (CKD) remains unclear. This systematic review aims to provide an overview of the literature on the association between the general external exposome and CKD development or progression. We searched MEDLINE and EMBASE for case-control or cohort studies, that investigated the association of the general external exposome with a change in eGFR or albuminuria, diagnosis or progression of CKD, or CKD-related mortality. The risk of bias of included studies was assessed using the Newcastle-Ottawa Scale. Summary effect estimates were calculated using random-effects meta-analyses. Most of the 66 included studies focused on air pollution (n = 33), e.g. particulate matter (PM) and nitric oxides (NOx), and heavy metals (n = 21) e.g. lead and cadmium. Few studies investigated chemicals (n = 7) or built environmental factors (n = 5). No articles on other environment factors such as noise, food supply, or urbanization were found. PM2.5 exposure was associated with an increased CKD and end-stage kidney disease incidence, but not with CKD-related mortality. There was mixed evidence regarding the association of NO2 and PM10 on CKD incidence. Exposure to heavy metals might be associated with an increased risk of adverse kidney outcomes, however, evidence was inconsistent. Studies on effects of chemicals or built environment on kidney outcomes were inconclusive. In conclusion, prolonged exposure to PM2.5 is associated with an increased risk of CKD incidence and progression to kidney failure. Current studies predominantly investigate the exposure to air pollution and heavy metals, whereas chemicals and the built environment remains understudied. Substantial heterogeneity and mixed evidence were found across studies. Therefore, long-term high-quality studies are needed to elucidate the impact of exposure to chemicals or other (built) environmental factors and CKD.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Progresión de la Enfermedad , Exposición a Riesgos Ambientales , Material Particulado , Insuficiencia Renal Crónica , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/inducido químicamente , Humanos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminación del Aire/estadística & datos numéricos , Exposoma , Metales Pesados , Factores de Riesgo
9.
Environ Sci Pollut Res Int ; 31(33): 45650-45666, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38969885

RESUMEN

The evaluation and monitoring of sites contaminated with heavy metals are essential for pollution remediation and prevention. In this study, we conducted geophysical and geochemical investigations at a site exhibiting heavy metal contamination downstream from an abandoned mine, with the aim of analyzing the extent of contamination and its temporal variation. We employed geophysical survey methods including electrical resistivity and induced polarization surveys of areas contaminated with heavy metals. Repeated surveys were conducted over time using the electrical resistivity method. Numerical simulations were employed to mitigate and eliminate electrical noise stemming from topography on the site. Additionally, time-lapse inversion was conducted on the resistivity data sets to analyze the changes in resistivity caused by variations in heavy metal contaminants. In the geochemical survey, soil samples were collected from the same locations as the geophysical survey, and chemical properties including pH, water content, electrical conductivity, and cation exchange capacity were analyzed. Our results showed that with the reduction of major sources of As and Zn contamination by 50%, the time-lapse electrical resistivity inversion results indicated that the resistivity of the subsurface materials increased by a factor of two. This paper demonstrated the natural reduction of the heavy metal contaminants at the site due to rainfall, aiming to comprehensively analyze the resultant alteration of both geochemical and geophysical properties.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Contaminantes del Suelo/análisis , República de Corea , Suelo/química
10.
Int J Phytoremediation ; : 1-13, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38949066

RESUMEN

Natural amino acids (NAA) have been rarely investigated as chelators, despite their ability to chelate heavy metals (HMs). In the present research, the effects of extracted natural amino acids, as a natural and environmentally friendly chelate agent and the inoculation of Pseudomonas fluorescens (PF) and Micrococcus yunnanensis (MY) bacteria were investigated on some responses of quinoa in a soil polluted with Pb, Ni, Cd, and Zn. Inoculation of PGPR bacteria enhanced plant growth and phytoremediation efficiency. Pb and Cd were higher in quinoa roots, while Ni and Zn were higher in the shoots. The highest efficiencies were observed with NAA treatment and simultaneous inoculation of PF and MY bacteria for Ni, Cd, Pb, and Zn. The highest values of phytoremediation efficiency and uptake efficiency of Ni, Cd, Pb, and Zn were 21.28, 19.11, 14.96 and 18.99 µg g-1, and 31.52, 60.78, 51.89, and 25.33 µg g-1, respectively. Results of present study well demonstrated NAA extracted from blood powder acted as strong chelate agent due to their diversity in size, solubilizing ability, abundant functional groups, and potential in the formation of stable complexes with Ni, Cd, Pb, and Zn, increasing metal availability in soil and improving phytoremediation efficiency in quinoa.


This study focused on an underexplored topic, the potential of natural amino acids (NAA) and plant growth-promoting rhizobacteria (PGPRs) to enhance phytoremediation efficiency of quinoa in a multi-metal contaminated soil with the waste recycling approach. Despite their chelating abilities, NAA have been rarely studied in this context. In the present study, the effects of extracted NAA, acting as environmentally friendly chelating agents, and the inoculation of Pseudomonas fluorescens (PF) and Micrococcus yunnanensis (MY) bacteria were examined on the responses of quinoa in a soil contaminated with Pb, Ni, Cd, and Zn.

11.
Sci Total Environ ; 947: 174409, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960158

RESUMEN

Enzyme-induced carbonate precipitation (EICP) has been studied in remediation of heavy metal contaminated water or soil in recent years. This paper aims to investigate the immobilization mechanism of Zn2+, Ni2+, and Cr(VI) in contaminated sand, as well as strength enhancement of sand specimens by using EICP method with crude sword bean urease extracts. A series of liquid batch tests and artificially contaminated sand remediation experiments were conducted to explore the heavy metal immobilization efficacy and mechanisms. Results showed that the urea hydrolysis completion efficiency decreased as the Ca2+ concentration increased and the heavy metal immobilization percentage increased with the concentration of Ca2+ and treatment cycles in contaminated sand. After four treatment cycles with 0.5 mol/L Ca2+ added, the immobilization percentage of Zn2+, Ni2+, and Cr(VI) were 99.99 %, 86.38 %, and 75.18 %, respectively. The microscale analysis results presented that carbonate precipitates and metallic oxide such as CaCO3, ZnCO3, NiCO3, Zn(OH)2, and CrO(OH) were generated in liquid batch tests and sand remediation experiments. The SEM-EDS and FTIR results also showed that organic molecules and CaCO3 may adsorb or complex heavy metal ions. Thus, the immobilization mechanism of EICP method with crude sword bean urease can be considered as biomineralization, as well as adsorption and complexation by organic matter and calcium carbonate. The unconfined compressive strength of EICP-treated contaminated sand specimens demonstrated a positive correlation with the increased generation of carbonate precipitates, being up to 306 kPa after four treatment cycles with shear failure mode. Crude sword bean urease with 0.5 mol/L Ca2+ added is recommended to immobilize multiple heavy metal ions and enhance soil strength.


Asunto(s)
Restauración y Remediación Ambiental , Metales Pesados , Arena , Contaminantes del Suelo , Ureasa , Restauración y Remediación Ambiental/métodos , Carbonatos/química , Fuerza Compresiva , Precipitación Química
12.
J Hazard Mater ; 476: 135024, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38943882

RESUMEN

The particle size distribution in tailings notably influences their physical properties and behavior. Despite this, our understanding of how the distribution of tailings particle sizes impacts in situ pollution and ecological remediation in in-situ environment remains limited. In this study, an iron tailings reservoir was sampled along a particle flow path to compare the pollution characteristic and microbial communities across regions with different particle sizes. The results revealed a gradual reduction in tailings particle size along the flow direction. The predominant mineral composition shifts from minerals such as albite and quartz to layered minerals. Total nitrogen, total organic carbon, and total metal concentrations increased, whereas the acid-generating potential decreased. The region with the finest tailings particle size exhibited the highest microbial diversity, featuring metal-resistant microorganisms such as KD4-96, Micrococcaceae, and Acidimicrobiia. Significant discrepancies were observed in tailings pollution and ecological risks across different particle sizes. Consequently, it is necessary to assess tailings reservoirs pollution in the early stages of remediation before determining appropriate remediation methods. These findings underscore that tailings particle distribution is a critical factor in shaping geochemical characteristics. The responsive nature of the microbial community further validated these outcomes and offered novel insights into the ecological remediation of tailings.

13.
Heliyon ; 10(11): e32156, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38873682

RESUMEN

This study conducted in the Kyungpook National University Eco-friendly Agriculture Research Centre between 2022 and 2023 investigates the environmental implications of fence-type solar photovoltaic (PV) systems in diverse agricultural settings. Despite the increasing adoption of solar energy for climate change mitigation, there is a noticeable gap in research regarding the potential environmental impact of these specific PV systems. Focusing on heavy metal concentrations, including Cadmium (Cd), Copper (Cu), Arsenic (As), Mercury (Hg), Lead (Pb), Hexavalent Chromium (Cr+6), Zinc (Zn), and Nickel (Ni), across distinct fields, the study reveals significant fluctuations. Notably, the Rice Field experienced a substantial increase in Cd levels from 0.47 mg/kg in 2022 to 1.55 mg/kg in 2023, while Cu and Pb concentrations decreased to acceptable levels in 2023. The findings underscore the dynamic nature of heavy metal concentrations, emphasizing the importance of continuous soil quality monitoring to prevent contamination. This research provides valuable insights into the impact of fence-type solar PV system installations on agricultural soil quality, emphasizing the urgent need to secure these ecosystems through vigilant monitoring and environmental management practices.

14.
Sci Total Environ ; 945: 173860, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38871321

RESUMEN

This comprehensive research investigates heavy metal contamination in the rapidly developing town of Jebba in north-central Nigeria, which is essential to the nation's economy due to its agro-allied and non-agro-allied businesses. The research focuses on soil samples, collecting and analyzing 137 surface soil samples to assess the presence of 25 distinct metals. After statistical analysis and simple mathematical models are applied to the data, the amounts of harmful metals and their probable causes are revealed. The study identifies geogenic and anthropogenic origins of toxic metals, with some elements exceeding average crustal concentrations. Non-homogeneous metal dispersion is shown in the region by spatial distribution maps. The geo-accumulation index reflects various amounts of contamination, with particular metals posing significant threats to the ecosystem. Additionally, the study compares results with worldwide studies, revealing distinct pollution patterns in Jebba. The research delves into weathering processes, employing chemical indices to quantify the level of soil weathering and uncovering a prominent role of geogenic activities in metal release. Bivariate correlation and principal component analysis indicate links and possibly common sources among heavy metals, emphasizing anthropogenic contributions. In addition, assessments of ecological and medical risks are conducted, indicating possible threats to human wellness and the ecosystem. Children, in particular, are regarded as especially vulnerable to non-carcinogenic health concerns, with various heavy metals posing potential threats through diverse exposure routes. The study emphasizes the need to implement remediation procedures to address the risks to public health and the environment related to metal pollution.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Contaminantes del Suelo , Nigeria , Contaminantes del Suelo/análisis , Metales Pesados/análisis , Humanos , Medición de Riesgo , Suelo/química
15.
Materials (Basel) ; 17(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38894027

RESUMEN

Compound contamination of soil with heavy metals copper (Cu) and lead (Pb) triggered by mining development has become a serious problem. To solve this problem, in this paper, corncob kernel, which is widely available and inexpensive, was used as the raw material of biochar and modified by loading CaAl-layered double hydroxides to synthesize biochar-loaded CaAl-layered double hydroxide composites (CaAl-LDH/BC). After soil remediation experiments, either BC or CaAl-LDH/BC can increase soil pH, and the available phosphorus content and available potassium content in soil. Compared with BC, CaAl-LDH/BC significantly reduced the available content of Cu and Pb in the active state (diethylenetriaminepentaacetic acid extractable state) in the soil, and the passivation rate of Cu and Pb by a 2% dosage of CaAl-LDH/BC reached 47.85% and 37.9%, respectively. CaAl-LDH/BC can significantly enhance the relative abundance of beneficial microorganisms such as Actinobacteriota, Gemmatimonadota, and Luteimonas in the soil, which can help to enhance the tolerance and reduce the enrichment ability of plants to heavy metals. In addition, it was demonstrated by pea seedling (Pisum sativum L.) growing experiments that CaAl-LDH/BC increased plant fresh weight, root length, plant height, catalase (CAT) activity, and protein content, which promoted the growth of the plant. Compared with BC, CaAl-LDH/BC significantly reduced the Cu and Pb contents in pea seedlings, in which the Cu and Pb contents in pea seedlings were reduced from 31.97 mg/kg and 74.40 mg/kg to 2.92 mg/kg and 6.67 mg/kg, respectively, after a 2% dosage of CaAl-LDH/BC, which was a reduction of 90.84% and 91.03%, respectively. In conclusion, compared with BC, CaAl-LDH/BC improved soil fertility and thus the plant growth environment, and also more effectively reduced the mobility of heavy metals Cu and Pb in the soil to reduce the enrichment of Cu and Pb by plants.

16.
Environ Sci Pollut Res Int ; 31(27): 39602-39624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822962

RESUMEN

Simultaneous application of modified Fe3O4 with biological treatments in remediating multi-metal polluted soils, has rarely been investigated. Thus, a pioneering approach towards sustainable environmental remediation strategies is crucial. In this study, we aimed to improve the efficiency of Fe3O4 as adsorbents for heavy metals (HMs) by applying protective coatings. We synthesized core-shell magnetite nanoparticles coated with modified nanocellulose, nanohydrochar, and nanobiochar, and investigated their effectiveness in conjunction with bacteria (Pseudomonas putida and Bacillus megaterium) for remediating a multi-metal contamination soil. The results showed that the coatings significantly enhanced the immobilization of heavy metals in the soil, even at low doses (0.5%). The coating of nanocellulose had the highest efficiency in stabilizing metals due to the greater variety of surface functional groups and higher specific surface area (63.86 m2 g-1) than the other two coatings. Interestingly, uncoated Fe3O4 had lower performance (113.6 m2 g-1) due to their susceptibility to deformation and oxidation. The use of bacteria as a biological treatment led to an increase in the stabilization of metals in soil. In fact, Pseudomonas putida and Bacillus megaterium increased immobilization of HMs in soil successfully because of extracellular polymeric substances and intensive negative charges. Analysis of metal concentrations in plants revealed that Ni and Zn accumulated in the roots, while Pb and Cd were transferred from the roots to the shoots. Treatment Fe3O4 coated with modified nanocellulose at rates of 0.5 and 1% along with Pseudomonas putida showed the highest effect in stabilizing metals. Application of coated Fe3O4 for in-situ immobilization of HMs in contamination soils is recommendable due to their high metal stabilization efficiency and suitability to apply in large quantities.


Asunto(s)
Nanopartículas de Magnetita , Metales Pesados , Contaminantes del Suelo , Contaminantes del Suelo/química , Nanopartículas de Magnetita/química , Suelo/química , Pseudomonas putida , Bacillus megaterium , Restauración y Remediación Ambiental/métodos , Adsorción
17.
Environ Pollut ; 356: 124316, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38848955

RESUMEN

Soil heavy metal contamination is often an unintended byproduct of historic land-use. This contamination can negatively impact resident plants and their interactions with other organisms. Plant fitness in contaminated landscapes depends not only on plant growth, but also on the maintenance of interactions with pollinators. Cadmium (Cd) is a heavy metal that is commonly found in agricultural, urban, and industrial ecosystems as a legacy of historic land-use. It is a prioritized pollutant in soils because of its wide distribution and strong biotoxicity. To understand how Cd influences plant growth and pollinator interactions, we grew sunflowers in media with three different Cd concentrations to represent the range of Cd contamination faced by sunflowers growing on land recovering from past land-use. We measured Cd contamination effects on sunflower morphology and pollinator foraging behavior, specifically the number of visits and visit duration. We then measured seed number and weight to determine if contamination directly or indirectly, as mediated by pollinators, altered plant fitness. Plant height was negatively correlated with Cd concentration, but contamination alone (in the absence of pollinators) did not affect sunflower reproduction. Bumble bees visited sunflowers grown in Exceeding Threshold Cd concentrations less often and for shorter time compared to visits to Below Threshold Cd sunflowers, but honey bees and sweat bees showed similar foraging behavior across Cd contamination treatment levels. Sunflower seed set was positively correlated with the total number of pollinator visits, and sunflowers grown in Exceeding Threshold Cd soil had marginally lower seed set compared to those grown in Below Threshold Cd soil. Our results suggest that at Exceeding Threshold Cd contamination levels plant-pollinator interactions are negatively affected with consequences for plant fitness.


Asunto(s)
Cadmio , Helianthus , Polinización , Contaminantes del Suelo , Contaminantes del Suelo/análisis , Cadmio/análisis , Abejas/fisiología , Abejas/efectos de los fármacos , Helianthus/efectos de los fármacos , Helianthus/fisiología , Helianthus/crecimiento & desarrollo , Animales , Suelo/química
18.
Front Microbiol ; 15: 1395154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800759

RESUMEN

Introduction: Long-term heavy metal contamination of soil affects the structure and function of microbial communities. The aim of our study was to investigate the effect of soil heavy metal contamination on microorganisms and the impact of different heavy metal pollution levels on the microbial interactions. Methods: We collected soil samples and determined soil properties. Microbial diversity was analyzed in two groups of samples using high-throughput sequencing technology. Additionally, we constructed microbial networks to analyze microbial interactions. Results: The pollution load index (PLI) < 1 indicates that the area is not polluted. 1 < PLI < 2 represents moderate pollution. PLI was 1.05 and 0.14 for the heavy metal contaminated area and the uncontaminated area, respectively. Cd, Hg, Pb, Zn, and Cu were identified as the major contaminants in the contaminated area, with the contamination factors were 30.35, 11.26, 5.46, 5.19, and 2.46, respectively. The diversities and compositions of the bacterial community varied significantly between the two groups. Compared to the uncontaminated area, the co-occurrence network between bacterial and fungal species in the contaminated area was more complex. The keystone taxa of the co-occurrence network in the contaminated area were more than those in the uncontaminated area and were completely different from it. Discussion: Heavy metal concentrations played a crucial role in shaping the difference in microbial community compositions. Microorganisms adapt to long-term and moderate levels of heavy metal contamination through enhanced interactions. Bacteria resistant to heavy metal concentrations may play an important role in soils contaminated with moderate levels of heavy metals over long periods of time.

19.
Chemosphere ; 361: 142472, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38810800

RESUMEN

Enshi, China, is renowned as "Selenium(Se) Capital" where widely distributed soils derived from Permian parent rocks are notably rich in Se, as well as metals, particularly cadmium(Cd). However, the soil enrichment and crop uptake of Se and metals in these high-Se and high-Cd areas are not well understood. To propose the optimal crop planting plan to ensure the safety of agricultural products, we investigated the soils and corresponding typical crops (rice, tea, and maize). The results showed significant soil enrichment of elements, with average contents (mg/kg) as follows: Cr (185), Zn (126), Cu (58.8), Pb (31.1), As (15.7), Se (6.85), Cd (5.41), and Hg (0.211). All soil Se contents were above 0.4 mg/kg, indicating Se-rich soils. Se primarily existed in an organic-bound form, accounting for an average proportion of 61.3%, while Cd was mainly exchangeable, with an average of 62.5%. Cd exhibited higher activity according to the Relative Index of Activity (RIA). Nemerow single-factor index analysis confirmed significant soil contamination, with Cd showing the highest level, followed by Cr and Cu, while Pb had the lowest level. Tea exhibited a high Se rich ratio (82.0%) without exceeding the Cd standard. In contrast, corn and rice had relatively lower Se-rich ratios (42.0% and 51.5% respectively) and high rates of Cd exceeding the standard, at 49.0% and 61.0% respectively. Canonical analysis revealed that rice was more influenced by soil factors related to Se and Cd compared to maize and tea crops. Therefore, tea cultivation in the Enshi Permian soil area is recommended for safe crop production. This study provides insights into the enrichment, fractionation, and bioavailability of soil Se, Cd, and other metals in the high-Se and high-Cd areas of permian stratas in Enshi, offering a scientific basis for selecting local food crops and producing safe Se-rich agricultural products in the region.


Asunto(s)
Productos Agrícolas , Rizosfera , Selenio , Contaminantes del Suelo , Suelo , Zea mays , Selenio/análisis , Selenio/metabolismo , Contaminantes del Suelo/análisis , Suelo/química , China , Productos Agrícolas/metabolismo , Metales/análisis , Oryza , Cadmio/análisis , Té/química , Monitoreo del Ambiente
20.
World J Microbiol Biotechnol ; 40(6): 191, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38702442

RESUMEN

Seed endophytes played a crucial role on host plants stress tolerance and heavy metal (HM) accumulation. Dysphania ambrosioides is a hyperaccumulator and showed strong tolerance and extraordinary accumulation capacities of multiple HMs. However, little is known about its seed endophytes response to field HM-contamination, and its role on host plants HM tolerance and accumulation. In this study, the seed endophytic community of D. ambrosioides from HM-contaminated area (H) and non-contaminated area (N) were investigated by both culture-dependent and independent methods. Moreover, Cd tolerance and the plant growth promoting (PGP) traits of dominant endophytes from site H and N were evaluated. The results showed that in both studies, HM-contamination reduced the diversity and richness of endophytic community and changed the most dominant endophyte, but increased resistant species abundance. By functional trait assessments, a great number of dominant endophytes displayed multiple PGP traits and Cd tolerance. Interestingly, soil HM-contamination significantly increased the percentage of Cd tolerance isolates of Agrobacterium and Epicoccum, but significantly decreased the ration of Agrobacterium with the siderophore production ability. However, the other PGP traits of isolates from site H and N showed no significant difference. Therefore, it was suggested that D. ambrosioides might improve its HM tolerance and accumulation through harboring more HM-resistant endophytes rather than PGP endophytes, but to prove this, more work need to be conducted in the future.


Asunto(s)
Cadmio , Endófitos , Metales Pesados , Semillas , Microbiología del Suelo , Contaminantes del Suelo , Endófitos/metabolismo , Endófitos/aislamiento & purificación , Metales Pesados/metabolismo , Semillas/microbiología , Contaminantes del Suelo/metabolismo , Cadmio/metabolismo , Biodiversidad , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Bacterias/genética , Suelo/química , Biodegradación Ambiental , Raíces de Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA