RESUMEN
Environmental enrichment (EE) is known to improve memory and cognition and modulate the impact of aversive stimuli in animals, promoting the development of resilience to stressful situations. Likewise, it is known that EE can modulate synaptic plasticity as is the case of long-term potentiation (LTP). These findings have been described initially in ex vivo preparations, suggesting that the effects of EE are the result of an early modification of the synaptic excitability and transmission. In this regard, it is known that metaplasticity refers to the persistent modification, by previous activity, in the ability to induce synaptic plasticity. Our previous studies have shown that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of LTP in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC) in vivo. In addition, we have shown that CTA extinction allows the induction but not the maintenance of IC-LTP of the Bla-IC pathway. Recently, we also showed that prior exposure to environmental enrichment for three weeks reduces the strength of CTA, restoring the brain-derived neurotrophic factor (BDNF) levels in the IC. The present study aimed to analyze the effects of brief exposure to an enriched environment on the strength of aversive memory, as well as on the in vivo IC-LTP. To do so, adult rats were exposed for seven days to an EE, either before CTA training or LTP induction in the Bla-IC pathway. Our results demonstrate that a seven-day exposure to an enriched environment attenuates the aversive response to a strong CTA and allows the induction but not the maintenance of LTP in the insular cortex. These findings provide evidence that metaplastic regulation in a neocortical region takes part in the mechanisms through which brief exposure to enriched environments attenuates an aversive response.
Asunto(s)
Corteza Insular , Gusto , Animales , Ratas , Reacción de Prevención/fisiología , Corteza Cerebral/fisiología , Condicionamiento Clásico/fisiología , Plasticidad Neuronal , Gusto/fisiologíaRESUMEN
Metaplasticity refers to the persistent modification, by previous activity, in the ability to induce synaptic plasticity. Accumulated evidence has proposed that metaplasticity contributes to network function and cognitive processes such as learning and memory. In this regard, it has been observed that training in several behavioral tasks modifies the possibility to induce subsequent synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD). For instance, our previous studies have shown that conditioned taste aversion (CTA) training prevents the induction of in vivo LTP in the projection from the basolateral nucleus of the amygdala to the insular cortex (BLA-IC). Likewise, we reported that extinction of CTA allows induction but not maintenance of LTP in the same pathway. Besides, we showed that it is possible to express in vivo low-frequency stimulation LTD in the BLA-IC projection and that its induction prior to CTA training facilitates the extinction of this task. However, until now, little is known about the participation of LTD on metaplastic processes. The present study aimed to analyze whether CTA training modifies the expression of in vivo LTD in the BLA-IC projection. To do so, animals received low-frequency stimulation to induce IC-LTD 48 h after CTA training. Our results show that CTA training occludes the subsequent induction of LTD in the BLA-IC pathway in a retrieval-dependent manner. These findings reveal that CTA elicits a metaplastic regulation of long-lasting changes in the IC synaptic strength, as well as that specific phases of learning differentially take part in adjusting the expression of synaptic plasticity in neocortical regions.
Asunto(s)
Reacción de Prevención/fisiología , Complejo Nuclear Basolateral/fisiología , Corteza Insular/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Gusto , Animales , Extinción Psicológica/fisiología , Neocórtex/fisiología , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , RatasRESUMEN
Metaplasticity is the regulation of synaptic plasticity based on the history of previous synaptic activation. This concept was formulated after observing that synaptic changes in the visual cortex are not fixed, but dynamic and dependent on the history of visual information flux. In visual cortical neurons, sustained synaptic stimulation activate the enzymatic complex NOX2, resulting in the generation of reactive oxygen species (ROS). NOX2 is the main molecular structure responsible for translating neural activity into redox modulation of intracellular signaling pathways involved in plastic changes. Here, we studied the interaction between NOX2 and visual experience as metaplastic factors regulating synaptic plasticity at the supergranular layers of the mouse visual cortex. We found that genetic inhibition of NOX2 reverses the polarizing effects of dark rearing from LTP to LTD. In addition, we demonstrate that this process relies on changes in the NMDA receptor functioning. Altogether, this work indicates a role of ROS in the activity-dependent regulation of cortical synaptic plasticity.SIGNIFICANCE STATEMENT Synaptic plasticity in the visual cortex is modulated by the history of sensory experience and this modulation has been defined as metaplasticity. Dark rearing facilitates synaptic potentiation as a mechanism optimizing the range of synaptic modification. This process requires the production of reactive oxygen species mediated by the enzymatic complex NOX2. If the activity of NOX2 is inhibited, then visual deprivation results in synaptic depression. These findings increase our knowledge about metaplasticity and help in our understanding of how neural activity modulates cellular mechanisms of synaptic change.
Asunto(s)
NADPH Oxidasa 2/metabolismo , Plasticidad Neuronal/fisiología , Especies Reactivas de Oxígeno/metabolismo , Corteza Visual/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Accumulating evidence indicates that homeostatic plasticity mechanisms dynamically adjust synaptic strength to promote stability that is crucial for memory storage. Our previous studies have shown that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of long-term potentiation (LTP) in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC) in vivo. We have also reported that induction of LTP in the Bla-IC pathway modifies the CTA extinction. Memoryextinction involves the formation of a new associativememorythat inhibits a previously conditioned association. The aim of the present study was to analyze the effect of CTA extinction on the ability to induce subsequent LTP in the Bla-IC projection in vivo. Thus, 48â¯h after CTA extinction animals received high frequency stimulation in order to induce IC-LTP. Our results show that extinction training allows the induction but not the maintenance of IC-LTP. In addition, with the purpose of exploring part of the mechanisms involved in this process and since a body of evidence suggests that protein phosphatase calcineurin (CaN) is involved in the extinction of some behavioral tasks, we analyzed the participation of this phosphatase. The present results show that extinction training increases the CaN expression in the IC, as well as that the inhibition of this phosphatase reverts the effects of the CTA-extinction on the IC-LTP. These findings reveal that CTA extinction promotes a homeostatic regulation of subsequent IC synaptic plasticity maintenance through increases in CaN levels.
Asunto(s)
Reacción de Prevención/fisiología , Calcineurina/fisiología , Corteza Cerebral/fisiología , Extinción Psicológica/fisiología , Potenciación a Largo Plazo , Memoria/fisiología , Animales , Complejo Nuclear Basolateral/fisiología , Masculino , Vías Nerviosas/fisiología , Ratas Wistar , Gusto , Percepción del GustoRESUMEN
The history of activity of a given neuron has been proposed to bidirectionally influence its future response to synaptic inputs. In particular, induction of synaptic plasticity expressions such as long-term potentiation (LTP) and long-term depression (LTD) modifies the performance of several behavioral tasks. Our previous studies in the insular cortex (IC), a neocortical region that has been related to acquisition and retention of conditioned taste aversion (CTA), have demonstrated that induction of LTP in the basolateral amygdaloid nucleus (Bla)-IC pathway before CTA training enhances the retention of this task. In addition, we reported that CTA training triggers a persistent impairment in the ability to induce in vivo LTP in the IC. The aim of the present study was to investigate whether LTD can be induced in the Bla-IC projection in vivo, as well as, whether the extinction of CTA is bidirectionally modified by previous synaptic plasticity induction in this pathway. Thus, rats received 900 train pulses (five 250µs pulses at 250Hz) delivered at 1Hz in the Bla-IC projection in order to induce LTD or 10 trains of 100Hz/1s with an intertrain interval of 20s in order to induce LTP. Seven days after surgery, rats were trained in the CTA task including the extinction trials. Our results show that the Bla-IC pathway is able to express in vivo LTD in an N-Methyl-D-aspartate (NMDA) receptor-dependent manner. Induction of LTD in the Bla-IC projection previous to CTA training facilitates the extinction of this task. Conversely, LTP induction enhances CTA retention. The present results show the bidirectional modulation of CTA extinction in response to IC-LTP and LTD, providing evidence of the homeostatic adaptation of taste learning.
Asunto(s)
Reacción de Prevención/fisiología , Corteza Cerebral/fisiología , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Gusto/fisiología , Animales , Masculino , Ratas , Ratas WistarRESUMEN
Homeostatic plasticity mechanisms dynamically adjust synaptic strengths to promote stability that is crucial for memory storage. Metaplasticity is an example of these forms of plasticity that modify the capacity of synapses to experience subsequent Hebbian modifications. In particular, training in several behavioral tasks modifies the ability to induce long-term potentiation (LTP). Recently, we have reported that prior training in conditioned taste aversion (CTA) prevents the subsequent induction of LTP generated by high frequency stimulation in the projection from the basolateral nucleus of the amygdala (Bla) to the insular cortex (IC). One of the key molecular players that underlie long-term synaptic plasticity is brain-derived neurotrophic factor (BDNF). Previous studies from our group reported that acute microinfusion of BDNF in the IC induces a lasting potentiation of synaptic efficacy at the Bla-IC projection. Thus, the aim of the present study was to analyze whether CTA training modifies the ability to induce subsequent BDNF-induced potentiation of synaptic transmission in the Bla-IC projection in vivo. Accordingly, CTA trained rats received intracortical microinfusion of BDNF in order to induce lasting potentiation 48h after the aversion test. Our results show that CTA training prevents the induction of in vivo BDNF-LTP in the Bla-IC projection. The present results provide evidence that CTA modulates BDNF-dependent changes in IC synaptic strength.
Asunto(s)
Reacción de Prevención/fisiología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Corteza Cerebral/efectos de los fármacos , Condicionamiento Clásico/fisiología , Plasticidad Neuronal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Gusto/fisiología , Animales , Corteza Cerebral/fisiología , Masculino , Plasticidad Neuronal/fisiología , Ratas , Ratas Wistar , Transmisión Sináptica/fisiología , Percepción del Gusto/fisiologíaRESUMEN
Methylphenidate (MPH) is widely used as a "nootropic" agent and in the treatment of disorders of attention, and has been shown to modulate synaptic plasticity in vitro. Here we present in vivo evidence that this MPH-induced metaplasticity can last long after the end of treatment. MPH (0, 0.2, 1 and 5mg/kg) was administered daily to male rats from postnatal day 42 for 15 days. The animals were tested daily in a radial maze. Long-term potentiation (LTP), a marker of neural plasticity, was induced in vivo in the prefrontal cortex after 2-3h, 15-18 days or 5 months without treatment. The behavioral performance of the 1mg/kg group improved, while that of animals that had received 5mg/kg deteriorated. In the 1 and 5mg/kg groups LTP induced 2-3h after the last MPH treatment was twice as large as in the controls. Further, 15-18 days after the last MPH administration, in groups receiving 1 and 5mg/kg, LTP was about fourfold higher than in controls. However, 5 months later, LTP in the 1mg/kg group was similar to controls and in the 5mg/kg group LTP could not be induced at all. No significant changes of LTP were seen in the low-dose group of animals (0.2mg/kg). Thus, firstly, doses of MPH that improve learning coincide approximately with those that augment LTP. Secondly, MPH-induced increases in LTP can last for several weeks, but these may disappear over longer periods or deteriorate at high doses.
Asunto(s)
Potenciación a Largo Plazo/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Metilfenidato/farmacología , Nootrópicos/farmacología , Corteza Prefrontal/efectos de los fármacos , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Relación Dosis-Respuesta a Droga , Potenciación a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Microelectrodos , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/fisiología , Ratas Sprague-DawleyRESUMEN
It has been reported that training in behavioral tasks modifies the ability to induce long-term potentiation (LTP) in an N-methyl-D-aspartate receptor (NMDAR)-dependent manner. This receptor leads to calcium entry into neuronal cells, promoting the activation of protein kinases as protein kinase A (PKA) and protein kinase C (PKC), which contribute significantly to the formation of different types of memories and play a pivotal role in the expression of LTP. Our previous studies involving the insular cortex (IC) have demonstrated that induction of LTP in the basolateral amygdaloid nucleus (BLA)-IC projection prior to conditioned taste aversion (CTA) training enhances the retention of this task. Recently, we showed that CTA training triggers a persistent impairment in the ability to induce subsequent synaptic plasticity on the BLA-IC pathway in a protein synthesis-dependent manner, but the underlying molecular mechanisms remain unclear. In the present study we investigated whether the blockade of NMDAR, as well as the inhibition of PKC and PKA affects the CTA-dependent impairment of the IC-LTP. Thus, CTA-trained rats received high frequency stimulation in the Bla-IC projection in order to induce LTP 48 h after the aversion test. The NMDAR antagonist CPP and the specific inhibitors for PKC (chelerythrine) and PKA (KT-5720) were intracortically administered during the acquisition session. Our results show that the blockade of NMDAR and the inhibition of PKC activity prevent the CTA memory-formation as well as the IC-LTP impairment. Nevertheless, PKA inhibition prevents the memory formation of taste aversion but produces no interference with the CTA-dependent impairment of the IC-LTP. These findings reveal the differential roles of protein kinases on CTA-dependent modification of IC-LTP enhancing our understanding of the effects of memory-related changes on synaptic function.
Asunto(s)
Reacción de Prevención/fisiología , Corteza Cerebral/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Potenciación a Largo Plazo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Gusto/fisiología , Animales , Reacción de Prevención/efectos de los fármacos , Benzofenantridinas/farmacología , Carbazoles/farmacología , Corteza Cerebral/efectos de los fármacos , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Piperazinas/farmacología , Proteína Quinasa C/metabolismo , Pirroles/farmacología , Ratas , Ratas Wistar , Gusto/efectos de los fármacosRESUMEN
Two semisynthetic acetyl derivatives of the alkaloid sauroine from Huperzia saururus, monoacetyl sauroine, and diacetyl sauroine (DAS) were obtained and their chemical structures were analyzed by NMR. While monoacetyl sauroine is the typical product of acetylation, DAS is an unexpected derivative related to the keto-enol formation of sauroine. Recordings of field excitatory post-synaptic potentials from the CA1 region of rat hippocampal slices showed that only DAS acutely applied induced chemical long-term potentiation (LTP) in a dose-dependent manner with an EC50 of 1.15 ± 0.09 µM. This effect was blocked by 10 µM D(-)-2-amino-5-phosphonopentanoic acid (AP5), suggesting dependence on the NMDA receptor. DAS significantly increased NMDA receptor-dependent excitatory post-synaptic currents without affecting α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor-dependent currents. Repetitive administration of DAS improved visuo-spatial learning in the Morris Water Maze. In slices from rats tested in the Morris Water Maze, LTP resulting from electrical synaptic stimulation was 2.5 times larger than in controls. Concentration of DAS measured in the brain after repetitive administration was 29.5 µM. We conclude that slices perfused with DAS display a robust NMDA receptor-dependent chemical LTP. During chronic treatment, DAS enhances learning abilities through a metaplastic mechanism as revealed by the augmentation of LTP in slices. DAS, therefore, may be a promising compound as a nootropic therapeutic drug. A semisynthetic derivative of sauroine, diacetyl sauroine (DAS), induces chemical long-term potentiation in rat hippocampal slices increasing the NMDA receptor-dependent current. 2 mg/kg prior to each session in a Morris Water Maze (MWM) improves behavior performance. In slices prepared from the tested rats the electrical stimulation-dependent long-term potentiation (LTP) was greatly enhanced. Therefore, DAS may have potency as a nootropic drug against the memory decline.