Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Intervalo de año de publicación
1.
mSystems ; 9(7): e0020124, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38860825

RESUMEN

The surface of smear-ripened cheeses constitutes a dynamic microbial ecosystem resulting from the successive development of different microbial groups such as lactic acid bacteria, fungi, and ripening bacteria. Recent studies indicate that a viral community, mainly composed of bacteriophages, also represents a common and substantial part of the cheese microbiome. However, the composition of this community, its temporal variations, and associations between bacteriophages and their hosts remain poorly characterized. Here, we studied a French smear-ripened cheese by both viral metagenomics and 16S metabarcoding approaches to assess both the succession of phages and bacterial communities on the cheese surface during cheese ripening and their temporal variations in ready-to-eat cheeses over the years of production. We observed a clear transition of the phage community structure during ripening with a decreased relative abundance of viral species (vOTUs) associated with Lactococcus phages, which were replaced by vOTUs associated with phages infecting ripening bacteria such as Brevibacterium, Glutamicibacter, Pseudoalteromonas, and Vibrio. The dynamics of the phage community was strongly associated with bacterial successions observed on the cheese surface. Finally, while some variations in the distribution of phages were observed in ready-to-eat cheeses produced at different dates spanning more than 4 years of production, the most abundant phages were detected throughout. This result revealed the long-term persistence of the dominant phages in the cheese production environment. Together, these findings offer novel perspectives on the ecology of bacteriophages in smear-ripened cheese and emphasize the significance of incorporating bacteriophages in the microbial ecology studies of fermented foods.IMPORTANCEThe succession of diverse microbial populations is critical for ensuring the production of high-quality cheese. We observed a temporal succession of phages on the surface of a smear-ripened cheese, with new phage communities showing up when ripening bacteria start covering this surface. Interestingly, the final phage community of this cheese is also consistent over large periods of time, as the same bacteriophages were found in cheese products from the same manufacturer made over 4 years. This research highlights the importance of considering these bacteriophages when studying the microbial life of fermented foods like cheese.


Asunto(s)
Bacteriófagos , Queso , Queso/microbiología , Queso/virología , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacterias/virología , Bacterias/genética , Bacterias/aislamiento & purificación , Microbiota , Microbiología de Alimentos , Francia , Metagenómica , Viroma
2.
J Gen Virol ; 105(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38446011

RESUMEN

Twenty complete genomes (29-63 kb) and 29 genomes with an estimated completeness of over 90 % (30-90 kb) were identified for novel dsDNA viruses in the Yangshan Harbor metavirome. These newly discovered viruses contribute to the expansion of viral taxonomy by introducing 46 potential new families. Except for one virus, all others belong to the class Caudoviricetes. The exception is a novel member of the recently characterized viral group known as Gossevirus. Fifteen viruses were predicted to be temperate. The predicted hosts for the viruses appear to be involved in various aspects of the nitrogen cycle, including nitrogen fixation, oxidation and denitrification. Two viruses were identified to have a host of Flavobacterium and Tepidimonas fonticaldi, respectively, by matching CRISPR spacers with viral protospacers. Our findings provide an overview for characterizing and identifying specific viruses from Yangshan Harbor. The Gossevirus-like virus uncovered emphasizes the need for further comprehensive isolation and investigation of polinton-like viruses.


Asunto(s)
Viroma , Virus , Humanos , Metagenoma , Flavobacterium/genética , Metagenómica
3.
Viruses ; 15(9)2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37766224

RESUMEN

Midges are widely distributed globally and can transmit various human and animal diseases through blood-sucking. As part of this study, 259,300 midges were collected from four districts in Yunnan province, China, to detect the viral richness and diversity using metavirome analysis techniques. As many as 26 virus families were detected, and the partial sequences of bluetongue virus (BTV), dengue virus (DENV), and Getah virus (GETV) were identified by phylogenetic analysis and PCR amplification. Two BTV gene fragments, 866 bps for the VP2 gene of BTV type 16 and 655 bps for the VP5 gene of BTV type 21, were amplified. The nucleotide sequence identities of the two amplified BTV fragments were 94.46% and 98.81%, respectively, with two classical BTV-16 (GenBank: JN671907) and BTV-21 strains (GenBank: MK250961) isolated in Yunnan province. Furthermore, the BTV-16 DH2021 strain was successfully isolated in C6/36 cells, and the peak value of the copy number reached 3.13 × 107 copies/µL after five consecutive BHK-21 cell passages. Moreover, two 2054 bps fragments including the E gene of DENV genotype Asia II were amplified and shared the highest identity with the DENV strain isolated in New Guinea in 1944. A length of 656 bps GETV gene sequence encoded the partial capsid protein, and it shared the highest identity of 99.68% with the GETV isolated from Shandong province, China, in 2017. Overall, this study emphasizes the importance of implementing prevention and control strategies for viral diseases transmitted by midges in China.


Asunto(s)
Alphavirus , Virus de la Lengua Azul , Animales , Humanos , China/epidemiología , Filogenia , Asia , Proteínas de la Cápside/genética
4.
Microbiome ; 11(1): 193, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37635262

RESUMEN

BACKGROUND: There is an increasing interest in investigating the human gut virome for its influence on the gut bacterial community and its putative influence on the trajectory towards health or disease. Most gut virome studies are based on sequencing of stored fecal samples. However, relatively little is known about how conventional storage buffers and storage conditions affect the infectivity of bacteriophages and influence the downstream metavirome sequencing. RESULTS: We demonstrate that the infectivity and genome recovery rate of different spiked bacteriophages (T4, c2 and Phi X174) are variable and highly dependent on storage buffers. Regardless of the storage temperature and timespan, all tested phages immediately lost 100% (DNA/RNA Shield) or more than 90% (StayRNA and RNAlater) of their infectivity. Generally, in SM buffer at 4 °C phage infectivity was preserved for up to 30 days and phage DNA integrity was maintained for up to 100 days. While in CANVAX, the most effective buffer, all spiked phage genomes were preserved for at least 100 days. Prolonged storage time (500 days) at - 80 °C impacted viral diversity differently in the different buffers. Samples stored in CANVAX or DNA/RNA Shield buffer had the least shifts in metavirome composition, after prolonged storage, but they yielded more contigs classified as "uncharacterised". Moreover, in contrast to the SM buffer, these storage buffers yielded a higher fraction of bacterial DNA in metavirome-sequencing libraries. We demonstrated that the latter was due to inactivation of the DNases employed to remove extra-cellular DNA during virome extraction. The latter could be partly avoided by employing additional washing steps prior to virome extraction. CONCLUSION: Fecal sample storage buffers and storage conditions (time and temperature) strongly influence bacteriophage infectivity and viral composition as determined by plaque assay and metavirome sequencing. The choice of buffer had a larger effect than storage temperature and storage time on the quality of the viral sequences and analyses. Based on these results, we recommend storage of fecal virome samples at in SM buffer at 4 °C for the isolation of viruses and at - 80 °C for metagenomic applications if practically feasible (i.e., access to cold storage). For fecal samples stored in other buffers, samples should be cleared of these buffers before viral extraction and sequencing. Video Abstract.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/genética , ADN Bacteriano , Heces , Metagenoma , ARN
5.
Genes (Basel) ; 14(7)2023 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-37510347

RESUMEN

A wide diversity of pathogenic mosquito-borne viruses circulate in the Brazilian Amazon, and the intense deforestation can contribute to the spread of these viruses. In this context, this study aimed to investigate the viral diversity in mosquitoes of the genera Aedes, Culex, Haemagogus, and Sabethes from a transition area between the Amazon, Cerrado, and Caatinga biomes in Brazil. Metagenomic high-throughput sequencing was used to characterize the virome of 20 mosquito pools. A total of 15 virus-like genomes were identified, comprising species genomically close to insect-specific viruses of the families Iflaviridae, Metaviridae, Lispiviridae, Rhabdoviridae, Xinmoviridae, and Parvoviridae and species of plant viruses of the families Solemoviridae, Virgaviridae, and Partitiviridae. However, sequences of viruses associated with human and animal diseases were not detected. Most of the recovered genomes were divergent from those previously described. These findings reveal that there are a large number of unknown viruses to be explored in the middle-north of Brazil.


Asunto(s)
Aedes , Culex , Virus ARN , Virus , Animales , Humanos , Brasil , Ecosistema , Viroma
6.
Viruses ; 15(6)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37376592

RESUMEN

Despite their abundance and ecological importance, little is known about the diversity of marine viruses, in part because most cannot be cultured in the laboratory. Here, we used high-throughput viral metagenomics of uncultivated viruses to investigate the dynamics of DNA viruses in tropical seawater sampled from Chuuk State, Federated States of Micronesia, in March, June, and December 2014. Among the identified viruses, 71-79% were bacteriophages belonging to the families Myoviridae, Siphoviridae, and Podoviridae (Caudoviriales), listed in order of abundance at all sampling times. Although the measured environmental factors (temperature, salinity, and pH) remained unchanged in the seawater over time, viral dynamics changed. The proportion of cyanophages (34.7%) was highest in June, whereas the proportion of mimiviruses, phycodnaviruses, and other nucleo-cytoplasmic large DNA viruses (NCLDVs) was higher in March and December. Although host species were not analysed, the dramatic viral community change observed in June was likely due to changes in the abundance of cyanophage-infected cyanobacteria, whereas that in NCLDVs was likely due to the abundance of potential eukaryote-infected hosts. These results serve as a basis for comparative analyses of other marine viral communities, and guide policy-making when considering marine life care in Chuuk State.


Asunto(s)
Bacteriófagos , Virus , Humanos , Agua de Mar , Virus ADN/genética , Bacteriófagos/genética , Virus/genética , ADN , Filogenia
7.
Pathogens ; 12(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37111396

RESUMEN

Six swine coronaviruses (SCoVs), which include porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine hemagglutination encephalomyelitis virus (PHEV), porcine respiratory coronavirus (PRCV), swine acute diarrhea syndrome coronavirus (SADS-CoV), and porcine delta coronavirus (PDCoV), have been reported as infecting and causing serious diseases in pigs. To investigate the genetic diversity and spatial distribution of SCoVs in clinically healthy pigs in China, we collected 6400 nasal swabs and 1245 serum samples from clinically healthy pigs at slaughterhouses in 13 provinces in 2017 and pooled them into 17 libraries by type and region for next-generation sequencing (NGS) and metavirome analyses. In total, we identified five species of SCoVs, including PEDV, PDCoV, PHEV, PRCV, and TGEV. Strikingly, PHEV was detected from all the samples in high abundance and its genome sequences accounted for 75.28% of all coronaviruses, while those belonging to TGEV (including PRCV), PEDV, and PDCoV were 20.4%, 2.66%, and 2.37%, respectively. The phylogenetic analysis showed that two lineages of PHEV have been circulating in pig populations in China. We also recognized two PRCVs which lack 672 nucleotides at the N-terminus of the S gene compared with that of TGEV. Together, we disclose preliminarily the genetic diversities of SCoVs in clinically healthy pigs in China and provide new insights into two SCoVs, PHEV and PRCV, that have been somewhat overlooked in previous studies in China.

8.
Microbiol Spectr ; 11(1): e0268822, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36651764

RESUMEN

Mosquitoes and biting Culicoides species are arbovirus vectors. Effective virome profile surveillance is essential for the prevention and control of insect-borne diseases. From June to September 2021, we collected eight species of female mosquito and Culicoides on Zhoushan Island, China, and used meta-viromic sequencing to analyze their virome compositions and characteristics. The classified virus reads were distributed in 191 genera in 66 families. The virus sequences in mosquitoes with the largest proportions were Iflaviridae (30.03%), Phasmaviridae (23.09%), Xinmoviridae (21.82%), Flaviviridae (13.44%), and Rhabdoviridae (8.40%). Single-strand RNA+ viruses formed the largest proportions of viruses in all samples. Blood meals indicated that blood-sucking mosquito hosts were mainly chicken, duck, pig, and human, broadly consistent with the habitats where the mosquitoes were collected. Novel viruses of the Orthobunyavirus, Narnavirus, and Iflavirus genera were found in Culicoides by de-novo assembly. The viruses with vertebrate hosts carried by mosquitoes and Culicoides also varied widely. The analysis of unclassified viruses and deep-learning analysis of the "dark matter" in the meta-viromic sequencing data revealed the presence of a large number of unknown viruses. IMPORTANCE The monitoring of the viromes of mosquitoes and Culicoides, widely distributed arbovirus transmission vectors, is crucial to evaluate the risk of infectious disease transmission. In this study, the compositions of the viromes of mosquitoes and Culicoides on Zhoushan Island varied widely and were related mainly to the host species, with different host species having different core viromes. and many unknown sequences in the Culicoides viromes remain to be annotated, suggesting the presence of a large number of unknown viruses.


Asunto(s)
Ceratopogonidae , Culicidae , Virus ARN , Virus , Humanos , Femenino , Animales , Porcinos , Viroma , Virus ARN/genética , Filogenia
9.
mSystems ; 8(1): e0056422, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36475872

RESUMEN

Microbial starter cultures are used in the production of many cheeses around the world, such as Parmigiano-Reggiano, in Italy, Époisses, in France, and Canastra, in Brazil, providing many of the unique features of these cheeses. Bacteriophages (phages) are ubiquitous and well known to modulate the structure of bacterial communities, and recent data indicate that cheeses contain a high abundance of naturally occurring phages. Here, we analyze the viral and bacterial metagenomes of Canastra cheese: a traditional artisanal Brazilian cheese produced using an endogenous starter culture and raw milk. Over 1,200 viral operational taxonomic units were recovered using both isolated viral-like particles and complete metagenomic DNA. Common viral families identified included Siphoviridae and Myoviridae, with 40% of putative phage genomes unidentified at the family level of classification. We observed very high phage diversity, which varied greatly across different cheese producers, with 28% of phage genomes detected in only one producer. Several metagenome-assembled genomes were recovered for lactic acid-producing bacteria, as well as nonstarter bacterial species, and we identified several phage-bacterium interactions, at the strain level of resolution, varying across distinct cheese producers. We postulate that at least one bacterial strain detected could be endogenous and unique to the Canastra cheese-producing region in Brazil and that its growth seems to be modulated by autochthonous phages present in this artisanal production system. This phage-host relationship is likely to influence the fermentation dynamics and ultimately the sensorial profile of these cheeses, with implications for other similar cheese production systems around the world. IMPORTANCE Our work demonstrated a dynamic yet stable microbial ecosystem during cheese production using an endogenous starter culture. This was observed across several distinct producers and was marked by genomic evidence of continued phage-bacterium interactions, such as the presence of bacterial defense mechanisms. Furthermore, we provide evidence of unique microbial signatures for each individual cheese producer studied in the region, a fact that may have profound consequences on product traceability. This was the first effort to describe and understand the bacteriophage composition and ecological dynamics within the Brazilian Canastra cheese production system. The study of this prototypical backslopping production system provides a solid background for further mechanistic studies of the production of many cheeses around the world.


Asunto(s)
Bacteriófagos , Queso , Lactobacillales , Microbiota , Humanos , Animales , Queso/análisis , Leche/microbiología , Bacteriófagos/genética , Bacterias/genética , Microbiota/genética
10.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1004833

RESUMEN

【Objective】 To explore the influence of common methods of reducing non-viral nucleic acid on the abundance of plasma virus group. 【Methods】 Three kinds of library construction, five kinds of centrifugation conditions, two kinds of filters, four kinds of enzymes and four concentrations of chloroform were used to treat plasma samples added quantitatively 2.16 mL of pseudorabies virus(PRV) and 2.16 mL of porcine parvovirus(PPV). A total of 21.6 mL of plasma samples were processed, including 54 samples. Subsequently, nucleic acid was extracted, mitochondrial DNA(mtDNA) and two viruses were quantitated, the library of the next generation sequencing was constructed, Illumina NovaSeq 6000 was used for the next generation sequencing. The sequencing data were compared with Kraken Py 2.0 software, and the species annotation analysis was conducted. The corresponding species classification information of each segment was obtained to analyze the impact of different reducing non-viral nucleic acid methods on the relative abundance of microorganisms and two indicator viruses. 【Results】 After sequencing by Illumina NovaSeq 6000, 306.27 GB raw data and 193.17 GB clean data were obtained, with Q20>90%, Q30>85%, Error Rate of 0.03%, and average GC Content of 45.02%. The DNA library construction process significantly increased the proportion of microbial sequences and the PRV abundance [(91.8±0.5)%](P<0.05); RNA library construction and combined library construction can increase the abundance of Pestivirus, an RNA virus, and the PRV abundance was(17.7±3.3)% and(8.1±1.5)% respectively. The Ct value of mtDNA was increased and the proportion of human sequence decreased to less than(89.5±1)%, while the proportion of microbial sequence increased to (2.4±0.03)% after treatment of five centrifugation conditions(P<0.05); After centrifugation at 4℃, 100 g, 30 min, the PRV abundance was increased to (40.6±6)%, and centrifugation at 4℃, 4 000 g, 45 min reduced the PRV abundance to (4.1±0.01)%(P<0.05). Both of 0.22-μm filter and 0.45-μm filter increased the Ct value of mtDNA to above 25.56±0.13, decreased the proportion of human sequence to less than (86.1±0.6)%, increased the proportion of microbial sequence to (3.1±0.1)% and (3.4±0.2)%, and decreased the PRV abundance to (1.6±0.3)% and (4.1±0.7)%(P<0.05), while there was no statistical difference in the effect on PPV concentration and abundance. DNase Ⅰ and Benzonase increased the Ct value of PPV to 25.65±0.06 and 25.36±0.45, decreased the proportion of human sequence to (81.7±5.6)% and (72.8±6.7)%, and increased the proportion of microbial sequence and PRV abundance to (11.0±4.1)% and (16.1±4.7)%, (55.8±2.3)% and (39.0±8.9)%, respectively(P<0 05); After treatment with RNase A, the Ct value of PRV increased to 25.20±0.11, and the human sequence proportion decreased to (85.4±5.6)%(P<0 05); Lysozyme had no effect on removing non-viral nucleic acid. The chloroform of 1%, 5%, 10% and 20% increased Ct value of PRV and mtDNA to no less than 27.17±0.21 and 25.68±0.04; Only 10% chloroform increased the proportion of microbial sequences to (3.1±1.2)%(P<0.05); The abundance of PRV with 1% and 5% chloroform treatment was increased to (48.7±13.3)% and (42.1±5.5)%(P<0.05), while 10% and 20% chloroform reduced PRV abundance to (1.0±0.5)% and (3.4±2.8)%(P<0.05). There was no statistical difference in the effect of chloroform with four contents on PPV abundance. 【Conclusion】 Centrifugation at 4℃, 5 000 g, 10 min is suitable for increasing the overall abundance of virus, and centrifugation at 4℃, 100 g, 30 min is suitable for increasing the content of virus similar to PRV. 0.45-μm filter, DNase Ⅰ, Benzonase and low concentration chloroform can effectively reduce the proportion of non-viral nucleic acid sequence in plasma to increase the abundance of the indicated virus group. Thus, the enrichment effect of plasma meta-virome is closely related to the nature of the virus, and the appropriate virus enrichment method should be selected according to the research purpose to establish the corresponding enrichment strategy.

11.
Schizophr Bull Open ; 4(1): sgad029, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39145331

RESUMEN

Research suggests a potential role of the oral-neuro and gut-brain axes in schizophrenia, involving non-brain microbiomes such as salivary and gut microbiomes. However, the blood-brain barrier effectively prevents microorganism entry. Additionally, despite approximately 8% of the human genome consisting of retroviruses and the established link between viral infections and schizophrenia, the presence of a resident virome (a viral component of the microbiome) in the brain and its association with mental disorders remain unexplored. METHODS: Whole-genome sequencing raw data from postmortem Brodmann Area 46 (BA46) tissue from 49 individuals (20 healthy controls [HCs], 29 with schizophrenia [SCZs]) obtained from the NCBI SRA database from BioProject: PRJNA422380.Virome profiles were retrieved using Metaphlan3, and viral signatures were identified using linear discriminant analysis effect size (LEfSe). Mann-Whitney tests and receiver operating characteristic curve validated the viral signatures. RESULTS: In BA46, 30 distinct species representing 9 phyla, 10 classes, 10 orders, 13 families, and 19 genera were identified. HCs exhibited greater alpha diversity, and there were significant differences in beta diversity between the groups. LEfSe analysis highlighted distinct viral levels, including Escherichia virus Lambda, Escherichia virus phiV10, Human endogenous retrovirus K, Taterapox virus, Alcelaphine gammaherpesvirus 1, and Bovine gammaherpesvirus 4 in HCs, while Glypta fumiferanae ichnovirus and unknown virus showed higher levels in schizophrenia. CONCLUSION: This is the first study to identify a human brain virome associated with schizophrenia in BA46. Brain virome dysbiosis may be associated with mental illness, and viral signatures may serve as biomarkers for the early detection of schizophrenia.

12.
Front Cell Infect Microbiol ; 12: 960507, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36304937

RESUMEN

To exploit the Rhinolophus sinicus-specific virome, 29 Rhinolophus sinicus were gathered in Lincang, China. Enriched viral sequences of 22 virus families were acquired by metavirome techniques. Hereby, the part of virome in Rhinolophus sinicus, including Chikungunya virus (CHIKV), Getah virus, and Japanese encephalitis virus (JEV) were validated by PCR. Five CHIKV viral sequences were amplified, among which CHIKV-China/B2016C-1 shared the highest homology to CHIKV isolated from Italy in 2007, with the genotype as African ECS. Eight JEV viral sequences were amplified, of which JEV-China/B2016E-1 shared the highest homology with at least 91.3% nt identity with the JEV sequence found in South Korea in 1988 and was classified as genotype III. Notably, JEV was isolated for the first time in Rhinolophus sinicus. The newly isolated JEV-China/B2016-1 could increase infectivity while passaging in Vero cells from BHK-21 cells. Overall, the research sheds insight into the diversity and viral susceptibility dynamics of the virome in Rhinolophus sinicus and reveals new light on the ecology of other important viral hosts.


Asunto(s)
Quirópteros , Culicidae , Virus de la Encefalitis Japonesa (Especie) , Virus , Animales , Chlorocebus aethiops , Viroma , Células Vero , Filogenia , Virus de la Encefalitis Japonesa (Especie)/genética , Genotipo , China
13.
Viruses ; 14(9)2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36146789

RESUMEN

Viruses are key players in the environment, and recent metagenomic studies have revealed their diversity and genetic complexity. Despite progress in understanding the ecology of viruses in extreme environments, viruses' dynamics and functional roles in dryland ecosystems, which cover about 45% of the Earth's land surfaces, remain largely unexplored. This study characterizes virus sequences in the metagenomes of endolithic (within rock) microbial communities ubiquitously found in hyper-arid deserts. Taxonomic classification and network construction revealed the presence of novel and diverse viruses in communities inhabiting calcite, gypsum, and ignimbrite rocks. Viral genome maps show a high level of protein diversity within and across endolithic communities and the presence of virus-encoded auxiliary metabolic genes. Phage-host relationships were predicted by matching tRNA, CRISPR spacer, and protein sequences in the viral and microbial metagenomes. Primary producers and heterotrophic bacteria were found to be putative hosts to some viruses. Intriguingly, viral diversity was not correlated with microbial diversity across rock substrates.


Asunto(s)
Microbiota , Virus , Carbonato de Calcio , Sulfato de Calcio , Clima Desértico , Virus/genética
14.
Front Cell Infect Microbiol ; 12: 938576, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846772

RESUMEN

To explore the Culex tritaeniorhynchuses-specific virome, 6400 C. tritaeniorhynchuses were collected in Honghe autonomous prefecture, China. Abundant virus sequences were obtained from 28 viral families using metavirome sequencing. Herein, several viruses in C. tritaeniorhynchuses virome were verified using the PCR technique, which covers Japanese encephalitis virus (JEV), Getah virus, and even Chikungunya virus (CHIKV). Seven JEV gene sequences were amplified successfully, of which JEV-China/CT2016E-1 shared the highest homology with the known JEV sequence isolated in Korea, 1946, with at least 96.1% nucleotide (nt) identity, which belonged to genotype III. Nine CHIKV gene sequences were amplified, which shared the highest with at least 93.0% nt identity with CHIKV from Thailand isolated in 2007, which was assigned to genotype Asian. Remarkably, CHIKV was isolated from C. tritaeniorhynchus in China for the first time. It was initially confirmed that the isolated virus CHIKV-China/CT2016-1 may increase infectivity after passaging in Vero cells from BHK-21 cells. Collectively, our study reveals the diversity, properties, and potential virus susceptibility dynamics of the C. tritaeniorhynchus virome and sheds new perspectives on the viral ecology in other important biological vectors.


Asunto(s)
Virus Chikungunya , Culex , Virus de la Encefalitis Japonesa (Especie) , Virus , Animales , Virus Chikungunya/genética , China , Chlorocebus aethiops , Humanos , Mosquitos Vectores , Filogenia , Células Vero
15.
Plant Methods ; 18(1): 19, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-35184725

RESUMEN

BACKGROUND: The application of ribo nucleic acids for molecular studies requires high integrity and quality of extracted total RNA samples. In addition, the need to transfer RNA samples at room temperature without special treatments such as ice and liquid nitrogen storage according to international transport laws highlights the importance of low cost alternative methods such as RNA air-drying, lyophilisation and transportable agents. In this study, the quality and quantity of air-dried RNA samples from leaf, petiole and bark tissues of different olive genotypes using several RNA extraction methods were compared with lyophilized ground leaves and RNAlater-stored tissue samples before precipitation. The quality of RNA and prepared libraries were checked by several techniques including agarose and polyacrylamide gel electrophoresis, Agilent quality control, RT-PCR amplification of housekeeping and viral genes and high throughput sequencing. RESULTS: Although RNA value varied amongst cultivars, RNA extraction with TRIzol™ Reagent in fresh extractions and samples stored in RNAlater before RNA extraction resulted in 455.26 ng/µL and 63.46 ng/µL (mean value of cultivars) as the highest RNA concentration averages, respectively. RNA samples extracted by TRIzol™ Reagents and stored for a short term at - 80 °C before air-drying showed the third highest concentration (44.87 ng/µL). The synthesized cDNAs quality for PCR amplification of housekeeping genes (Rbc 1 and Nad 5) and partial genomes of Arabis mosaic virus and Cucumber mosaic virus showed satisfactory results in RNA samples extracted by TRIzol™ Reagents despite its variation amongst cultivars. CONCLUSIONS: Considering the difficulties in the extraction of high quality and quantity RNA in olive for molecular analyses, this study demonstrated that RNA extraction method based on TRIzol™ Reagent can be considered for virobiome studies of both fresh and air-dried samples.

16.
Patterns (N Y) ; 3(2): 100407, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-34812427

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 has become a major threat across the globe. Here, we developed machine learning approaches to identify key pathogenic regions in coronavirus genomes. We trained and evaluated 7,562,625 models on 3,665 genomes including SARS-CoV-2, MERS-CoV, SARS-CoV, and other coronaviruses of human and animal origins to return quantitative and biologically interpretable signatures at nucleotide and amino acid resolutions. We identified hotspots across the SARS-CoV-2 genome, including previously unappreciated features in spike, RdRp, and other proteins. Finally, we integrated pathogenicity genomic profiles with B cell and T cell epitope predictions for enrichment of sequence targets to help guide vaccine development. These results provide a systematic map of predicted pathogenicity in SARS-CoV-2 that incorporates sequence, structural, and immunologic features, providing an unbiased collection of genetic elements for functional studies. This metavirome-based framework can also be applied for rapid characterization of new coronavirus strains or emerging pathogenic viruses.

17.
Genome Biol ; 22(1): 207, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256809

RESUMEN

BACKGROUND: The full biosphere structure and functional exploration of the microbial communities of the Challenger Deep of the Mariana Trench, the deepest known hadal zone on Earth, lag far behind that of other marine realms. RESULTS: We adopt a deep metagenomics approach to investigate the microbiome in the sediment of Challenger Deep, Mariana Trench. We construct 178 metagenome-assembled genomes (MAGs) representing 26 phyla, 16 of which are reported from hadal sediment for the first time. Based on the MAGs, we find the microbial community functions are marked by enrichment and prevalence of mixotrophy and facultative anaerobic metabolism. The microeukaryotic community is found to be dominated by six fungal groups that are characterized for the first time in hadal sediment to possess the assimilatory and dissimilatory nitrate/sulfate reduction, and hydrogen sulfide oxidation pathways. By metaviromic analysis, we reveal novel hadal Caudovirales clades, distinctive virus-host interactions, and specialized auxiliary metabolic genes for modulating hosts' nitrogen/sulfur metabolism. The hadal microbiome is further investigated by large-scale cultivation that cataloged 1070 bacterial and 19 fungal isolates from the Challenger Deep sediment, many of which are found to be new species specialized in the hadal habitat. CONCLUSION: Our hadal MAGs and isolates increase the diversity of the Challenger Deep sediment microbial genomes and isolates present in the public. The deep metagenomics approach fills the knowledge gaps in structure and diversity of the hadal microbiome, and provides novel insight into the ecology and metabolism of eukaryotic and viral components in the deepest biosphere on earth.


Asunto(s)
Organismos Acuáticos/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Caudovirales/metabolismo , Hongos/metabolismo , Sedimentos Geológicos , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Caudovirales/clasificación , Caudovirales/genética , Ecosistema , Hongos/clasificación , Hongos/genética , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/virología , Redes y Vías Metabólicas/genética , Metagenoma/genética , Microbiota/genética , Océano Pacífico , Filogenia , Agua de Mar/microbiología , Agua de Mar/virología
18.
Life (Basel) ; 12(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35054418

RESUMEN

Sponges are remarkable holobionts harboring extremely diverse microbial and viral communities. However, the interactions between the components within holobionts and between a holobiont and environment are largely unknown, especially for polar organisms. To investigate possible interactions within and between sponge-associated communities, we probed the microbiomes and viromes of cold-water sympatric sponges Isodictya palmata (n = 2), Halichondria panicea (n = 3), and Halichondria sitiens (n = 3) by 16S and shotgun metagenomics. We showed that the bacterial and viral communities associated with these White Sea sponges are species-specific and different from the surrounding water. Extensive mining of bacterial antiphage defense systems in the metagenomes revealed a variety of defense mechanisms. The abundance of defense systems was comparable in the metagenomes of the sponges and the surrounding water, thus distinguishing the White Sea sponges from those inhabiting the tropical seas. We developed a network-based approach for the combined analysis of CRISPR-spacers and protospacers. Using this approach, we showed that the virus-host interactions within the sponge-associated community are typically more abundant (three out of four interactions studied) than the inter-community interactions. Additionally, we detected the occurrence of viral exchanges between the communities. Our work provides the first insight into the metagenomics of the three cold-water sponge species from the White Sea and paves the way for a comprehensive analysis of the interactions between microbial communities and associated viruses.

19.
Curr Res Microb Sci ; 1: 18-29, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34841298

RESUMEN

Viruses are the most prodigious repertory of the genetic material on the earth. They are elusive, breakneck, evolutionary life particles that constitute a riveting concealed world. Environmental viruses have been obscurely explored, and hence, such an intriguing world of viruses was studied in the Himalayan Geothermal Belt of Indian peninsula at Sikkim corridor through hot springs. The hot springs located at the North Sikkim district were selected for the current study. The solfataric mud sediment samples were pooled from both the hot springs. The virus community showed significant diversity among the two hot springs of Yume Samdung. Reads for viruses among the mud sediments at Old Yume Samdung hot springs (OYS) was observed to be 11% and in the case of New Yume Samdung hot springs (NYS) it was 6%. Both the hot springs were abundant in dsDNA viromes. The metavirome reads in both the OYS and NYS hot spring mud sediments showed the predominance of Caudovirales; Herpesvirales; Ortervirales among which viral reads from Siphoviridae, Myoviridae, Phycodnaviridae and Podoviridae were abundantly present. Other viral communities belonged to families like Baculoviridae, Mimiviridae, Parvoviridae, Marseilleviridae etc. Interestingly, in the case of NYS, the unassigned group reads belonged to some unclassified giant DNA viruses like genera Pandoravirus and Pithovirus. Other interesting findings were - reads for Badnavirus having ds (RT-DNA) was exclusively found in NYS whereas Rubulavirus having ss(-)RNA was exclusively found in OYS sample. This is the first ever report on viruses from any hot springs of Sikkim till date.

20.
Front Microbiol ; 10: 2394, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681246

RESUMEN

Metagenomic sequencing is a promising method to determine the virus diversity in environmental samples such as sewage or shellfish. However, to identify the short RNA genomes of human enteric viruses among the large diversity of nucleic acids present in such complex matrices, method optimization is still needed. This work presents methodological developments focused on norovirus, a small ssRNA non-enveloped virus known as the major cause of human gastroenteritis worldwide and frequently present in human excreta and sewage. Different elution protocols were applied and Illumina MiSeq technology were used to study norovirus diversity. A double approach, agnostic deep sequencing and a capture-based approach (VirCapSeq-VERT) was used to identify norovirus in environmental samples. Family-specific viral contigs were classified and sorted by SLIM and final norovirus contigs were genotyped using the online Norovirus genotyping tool v2.0. From sewage samples, 14 norovirus genogroup I sequences were identified of which six were complete genomes. For norovirus genogroup II, nine sequences were identified and three of them comprised more than half of the genome. In oyster samples bioaccumulated with these sewage samples, only the use of an enrichment step during library preparation allowed successful identification of nine different sequences of norovirus genogroup I and four for genogroup II (>500 bp). This study demonstrates the importance of method development to increase virus recovery, and the interest of a capture-based approach to be able to identify viruses present at low concentrations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA