Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Environ Pollut ; 341: 122814, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37898427

RESUMEN

Ammonia (NH3) volatilization is the major source of nitrogen (N) loss resulting from the application of synthetic and organic N fertilizers to croplands. It is well known that in Mediterranean cropping systems, there is a relationship between the intrinsic characteristics of the climate and nitrous oxide (N2O) emissions, but whether the same relation exists for NH3 emissions remains uncertain. Here, we estimated the impact of edaphoclimatic conditions (including meteorological conditions after N fertilization), crop management factors, and the measurement technique on both the cumulative emissions and the NH3 emission factor (EF) in Mediterranean climate zones, drawing on a database of 234 field treatments. We used a machine learning method, random forest (RF), to predict volatilization and ranked variables based on their importance in the prediction. Random forest had a good predictive power for the NH3 EF and cumulative emissions, with an R2 of 0.69 and 0.76, respectively. Nitrogen fertilization rate (N rate) was the top-ranked predictor variable, increasing NH3 emissions substantially when N rate was higher than 170 kg N ha-1. Soil pH was the most important edaphoclimatic variable, showing greater emissions (36.7 kg NH3 ha-1, EF = 19.3%) when pH was above 8.2. Crop type, fertilizer type, and N application method also affected NH3 emission patterns, while water management, mean precipitation, and soil texture were ranked low by the model. Our results show that intrinsic Mediterranean characteristics had only an indirect effect on NH3 emissions. For instance, relatively low N fertilization rates result in small NH3 emissions in rainfed areas, which occupy a very significant surface of Mediterranean agricultural land. Overall, N fertilization management is a key driver in reducing NH3 emissions, but additional field factors should be studied in future research to establish more robust abatement strategies.


Asunto(s)
Agricultura , Amoníaco , Amoníaco/análisis , Volatilización , Suelo , Nitrógeno/análisis , Fertilizantes/análisis , Óxido Nitroso/análisis
2.
Huan Jing Ke Xue ; 44(12): 6433-6440, 2023 Dec 08.
Artículo en Chino | MEDLINE | ID: mdl-38098372

RESUMEN

Meteorological conditions play a key role in the occurrence and evolution of atmospheric complex pollution. Considering the different pollution formation mechanisms of PM2.5 and O3, statistical calculation and in-depth learning methods were used to construct the PM2.5 and O3 meteorological condition indexes based on long-term pollution meteorological observation data. A research method was developed to study the meteorological characteristics and impact contribution of atmospheric complex pollution by using the meteorological condition index, and quantitative analysis of the distribution and variation of pollution excluding the influence of regional meteorological differences was also conducted. The results showed that in the summer of 2021, the pollution meteorological conditions in the key regions in central and eastern China were generally worse in the north and better in the south(index:"2+26" cities>the border area of Jiangsu, Anhui, Shandong, and Henan>the Yangtze River Delta) and the worst in June and the best in July. The "double high" pollution began to appear when the PM2.5 meteorological condition index>30 and O3 meteorological condition index>100; meanwhile, the unfavorable meteorological conditions for O3 also promoted the increase in PM2.5 concentration, resulting in the frequency of "double high" increases with the increase in O3 meteorological condition index. Compared with that during the same period last year, ρ(PM2.5) of each region decreased by 3.9 µg·m-3, 3.3 µg·m-3, and 1.4 µg·m-3 due to the contribution of the improvement in the pollution meteorological conditions, which is nearly 58.5% on average of the total decrease in PM2.5 concentration. However, the change in O3 pollution meteorological conditions was better in the north and worse in the south, and the overall deterioration in the Yangtze River Delta Region led to approximately 2.8 µg·m-3 growth for the O3 concentration. The PM2.5 and O3 concentrations after excluding the impact of meteorological differences showed different distribution characteristics from the air quality monitoring, in which the high concentrations of PM2.5 were distributed along the Bohai Sea, the inter-provincial border, and the south of the region, whereas the high concentrations of O3 were concentrated along the Taihang Mountains, around Mount Tai, and in parts of the Yangtze River Delta. The daily concentration variations in a single city during a specific pollution control period could be used as a basis for evaluating the effectiveness of local supervision and control, which will provide a reference for the dynamic supervision and daily scheduling of local control management.

3.
Toxics ; 11(12)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38133391

RESUMEN

Gaseous polycyclic aromatic hydrocarbons were measured in northern Thailand. No previous studies have provided data on gaseous PAHs until now, so this study determined the gaseous PAHs during two sampling periods for comparison, and then they were used to assess the correlation with meteorological conditions, other pollutants, and their sources. The total concentrations of 8-PAHs (i.e., NAP, ACY, ACE, FLU, PHE, ANT, FLA, and PYR) were 125 ± 22 ng m-3 and 111 ± 21 ng m-3, with NAP being the most pronounced at 67 ± 18 ng m-3 and 56 ± 17 ng m-3, for morning and afternoon, respectively. High temperatures increase the concentrations of four-ring PAHs, whereas humidity and pressure increase the concentrations of two- and three-ring PAHs. Moreover, gaseous PAHs were estimated to contain more toxic derivatives such as nitro-PAH, which ranged from 0.02 ng m-3 (8-Nitrofluoranthene) to 10.46 ng m-3 (1-Nitronaphthalene). Therefore, they could be one of the causes of local people's health problems that have not been reported previously. Strong correlations of gaseous PAHs with ozone indicated that photochemical oxidation influenced four-ring PAHs. According to the Pearson correlation, diagnostic ratios, and principal component analysis, mixed sources including coal combustion, biomass burning, and vehicle emissions were the main sources of these pollutants.

4.
Sensors (Basel) ; 23(18)2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37766010

RESUMEN

Meteorological conditions significantly affect air traffic safety and can also affect a pre-planned flight plan. Difficult meteorological conditions are particularly hazardous during take-off and landing procedures. Still, they can also cause disruptions to air traffic by causing, for example, delays to air traffic or diversion of aircraft to other airports. From the airlines' point of view, such situations are not beneficial if flights are diverted to other airports due to reduced visibility at the airport caused by fog and haze. For flight operations, a popular navigation system with a precision approach is the ILS, which has several categories enabling an approach even in adverse meteorological conditions. However, not every airport has a high-category ILS, and setting up such navigation equipment is lengthy and costly. The main objective of this article is to analyze the impact of meteorological conditions, particularly visibility, on the possibility of performing flight procedures with different ILS categories. The study was designed to quantify the limitations associated with meteorological conditions with specific ILS equipment at a given airport. The research questions for this study include the following: What were the meteorological conditions in terms of visibility? What impact did the visibility parameter have on the performance of landing operations at the airport under study? Can an indication of the probability of stopping landing operations be important in recommendations for scheduling airline flights to avoid delays? Three airports were selected for the analysis: Warsaw Chopin Airport, Warsaw Modlin Mazowiecki Airport, and Krakow John Paul II Airport. The analysis was based on approximately 52,000 METAR dispatches in 2019 and 2022. The research indicated during which periods landing procedures were most frequently halted and calculated such a change with a different category of ILS. For the Kraków Airport, the probability of stopping landing procedures in any month was calculated, along with recommendations for flight schedule planning for this airport. The research results can be used to better plan airline flight schedules, avoiding hours with a high probability of reduced visibility, which may result in rerouting flights to another airport. Long-term low clouds and reduced visibility affect the safety of operations but also cause delays.

5.
Biodivers Data J ; 11: e100955, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720662

RESUMEN

Animal-mediated pollination is an essential ecosystem service for the production of many fruit trees. To reveal the community composition of flower-visiting wild insects which potentially contribute to fruit production and to examine the effects of geographic location, local meteorological conditions and locally introduced domesticated pollinators on them, we investigated the community composition of insects visiting the flowers (hereafter, "visitors") of apple, Japanese pear and Oriental persimmon for 1‒3 years at 20 sites around Japan. While most of the variation (82%) of the community composition was explained by tree species with a slight contribution by geographic distance (2%), maximum temperature and tree species contributed 62% and 41% of the variation in total abundance of the visitors, respectively. Though the dominant families of the visitors varied spatiotemporally, the community composition of the visitors of apple and Japanese pear clearly differed from that of Oriental persimmon. While Andrenidae and Syrphidae together accounted for 46%‒64% of the visitors of apple and Japanese pear, Apidae represented 57% of the visitors of Oriental persimmon. The taxonomic richness, diversity and evenness of the visitors were best predicted by locally introduced domesticated pollinators and local meteorological conditions of wind speed and maximum temperature. Amongst these selected factors, locally introduced domesticated pollinators could have the largest impact. It seemed to be strongly related to the reduction of taxonomic richness, diversity and evenness of the visitors, accounting for 41‒89% of the variation. Results suggested that the community composition and total abundance of potential pollinators were predominantly determined by tree species and temperature, but locally introduced domesticated pollinators could have a determinantal pressure on the taxonomic diversity of the community.

6.
Front Public Health ; 11: 1140639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601186

RESUMEN

Background: Several studies have examined the effects of city-level meteorological conditions on the associations between meteorological factors and hand, foot, and mouth disease (HFMD) risk. However, evidence that city-level meteorological conditions modify air pollutant-HFMD associations is lacking. Methods: For each of the 17 cities in the Sichuan Basin, we obtained estimates of the relationship between exposures to multiple air pollutants and childhood HFMD risk by using a unified distributed lag nonlinear model (DLNM). Multivariate meta-regression models were used to identify the effects of city-level meteorological conditions as effect modifiers. Finally, we conducted subgroup analyses of age and sex to explore whether the modification effects varied in different subgroups. Results: The associations between PM2.5/CO/O3 and HFMD risk showed moderate or substantial heterogeneity among cities (I2 statistics: 48.5%, 53.1%, and 61.1%). Temperature conditions significantly modified the PM2.5-HFMD association, while relative humidity and rainfall modified the O3-HFMD association. Low temperatures enhanced the protective effect of PM2.5 exposure against HFMD risk [PM2.5 <32.7 µg/m3 or PM2.5 >100 µg/m3, at the 99th percentile: relative risk (RR) = 0.14, 95% CI: 0.03-0.60]. Low relative humidity increased the adverse effect of O3 exposure on HFMD risk (O3 >128.7 µg/m3, at the 99th percentile: RR = 2.58, 95% CI: 1.48-4.50). However, high rainfall decreased the risk of HFMD due to O3 exposure (O3: 14.1-41.4 µg/m3). In addition, the modification effects of temperature and relative humidity differed in the female and 3-5 years-old subgroups. Conclusion: Our findings revealed moderate or substantial heterogeneity in multiple air pollutant-HFMD relationships. Temperature, relative humidity, and rainfall modified the relationships between PM2.5 or O3 exposure and HFMD risk.


Asunto(s)
Contaminantes Atmosféricos , Enfermedad de Boca, Mano y Pie , Humanos , Niño , Femenino , Ciudades , Enfermedad de Boca, Mano y Pie/epidemiología , China/epidemiología , Contaminantes Atmosféricos/efectos adversos , Material Particulado/efectos adversos
7.
Front Zool ; 20(1): 24, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488542

RESUMEN

Meteorological stressors (e.g., temperature and rain shortage) constrain brood provisioning in some bird species, but the consequences on reproductive success have been rarely quantified. Here we show, in a cooperatively breeding population of carrion crow Corvus corone in Spain, that individual feeding rates decreased significantly with rising air temperatures both in breeders and helpers, while lack of rain was associated with a significant reduction in the effort of the male helpers as compared to the other social categories. Group coordination, measured as the degree of alternation of nest visits by carers, was also negatively affected by rising temperature. Furthermore, we found that the body condition of the nestlings worsened when temperatures were high during the rearing period. Interestingly, the analysis of a long-term data set on crow reproduction showed that nestling body condition steadily deteriorated over the last 26-years. Although many factors may concur in causing population changes, our data suggest a possible causal link between global warming, brood caring behaviour and the decline of carrion crow population in the Mediterranean climatic region of Spain.

8.
Sci Total Environ ; 892: 164700, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37302594

RESUMEN

Geographic location and meteorological factors can affect the content of bioaerosol concentrations. This study was conducted to determine the natural background concentrations of culturable fungal spores and dust particles in three different geographical areas. Focus was given to the dominant airborne genera Cladosporium, Penicillium, Aspergillus and the species Aspergillus fumigatus. The influence of weather conditions on the microorganism concentrations in urban, rural and mountain regions were examined. Possible correlations between particle counts and culturable fungal spore concentrations were investigated. 125 measurements of the air were conducted using the air sampler MAS-100NT® and the particle counter Alphasense OPC-N3. The analyses of the collected samples were based on culture methods using different media. The highest median of fungal spore concentrations was detected in the urban region and was of 2.0 × 103 CFU/m3 for xerophilic fungi and 1.7 × 103 CFU/m3 for the genus Cladosporium. The concentrations of fine and coarse particles in rural and urban regions were the highest of 1.9 × 107 pa/m3 and 1.3 × 107 pa/m3, respectively. Little cloud cover and slight wind had a positive influence on the concentration of fungal spores. Furthermore, correlations were observed between air temperature and the concentrations of xerophilic fungi as well as the genera Cladosporium. In contrast, relative humidity correlated negatively with total fungi and Cladosporium and no correlation was found with the other fungi. For the region of Styria in summer and early autumn, the natural background concentration for xerophilic fungi ranged between 3.5 × 102 and 4.7 × 103 CFU/m3 air. No significant differences were detected between the fungal spore concentrations in urban, rural and mountainous regions. The data of this study could be used as a reference to compare the natural background concentrations of airborne culturable fungi in further studies concerning air quality assessment.


Asunto(s)
Polvo , Monitoreo del Ambiente , Humanos , Monitoreo del Ambiente/métodos , Microbiología del Aire , Hongos , Esporas Fúngicas , Estaciones del Año
9.
Chemosphere ; 335: 139056, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37247672

RESUMEN

Carbonaceous aerosols have great adverse impacts on air quality, human health, and climate. However, there is a limited understanding of carbonaceous aerosols in semi-arid areas. The correlation between carbonaceous aerosols and control measures is still unclear owing to the insufficient information regarding meteorological contribution. To reveal the complex relationship between control measures and carbonaceous aerosols, offline and online observations of carbonaceous aerosols were conducted from October 8, 2019 to October 7, 2020 in Hohhot, a semi-arid city. The characteristics and sources of carbonaceous aerosols and impacts of anthropogenic emissions and meteorological conditions were studied. The annual mean concentrations (± standard deviation) of fine particulate matter (PM2.5), organic carbon (OC), and elemental carbon (EC) were 42.81 (±40.13), 7.57 (±6.43), and 2.25 (±1.39) µg m-3, respectively. The highest PM2.5 and carbonaceous aerosol concentrations were observed in winter, whereas the lowest was observed in summer. The result indicated that coal combustion for heating had a critical role in air quality degradation in Hohhot. A boost regression tree model was applied to quantify the impacts of anthropogenic emissions and meteorological conditions on carbonaceous aerosols. The results suggested that the anthropogenic contributions of PM2.5, OC, and EC during the COVID-19 lockdown period were 53.0, 15.0, and 2.36 µg m-3, respectively, while the meteorological contributions were 5.38, 2.49, and -0.62 µg m-3, respectively. Secondary formation caused by unfavorable meteorological conditions offset the emission reduction during the COVID-19 lockdown period. Coal combustion (46.4% for OC and 35.4% for EC) and vehicular emissions (32.0% for OC and 50.4% for EC) were the predominant contributors of carbonaceous aerosols. The result indicated that Hohhot must regulate coal use and vehicle emissions to reduce carbonaceous aerosol pollution. This study provides new insights and a comprehensive understanding of the complex relationships between control strategies, meteorological conditions, and air quality.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Humanos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Control de Enfermedades Transmisibles , Aerosoles y Gotitas Respiratorias , Material Particulado/análisis , Emisiones de Vehículos/análisis , Carbón Mineral/análisis , Estaciones del Año , Carbono/análisis , China
10.
Sci Total Environ ; 880: 163309, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030356

RESUMEN

Changes in PM2.5 concentrations are influenced by interwoven impacts of key drivers (e.g., meteorology, local emissions, and regional emissions). However, it is challenging to quantitatively disentangle their impacts individually at once. Therefore, we introduced a multifaceted approach (i.e., meteorology vs. emissions and self-contribution vs. long-range transport) to analyze the effects of major drivers for long- and short-term PM2.5 concentration changes based on observation and simulation in the month of January during 2016-2021 in Northeast Asia. For the simulations, we conducted modeling with the WRF-CMAQ system. The observed PM2.5 concentrations in China and South Korea in January 2021 decreased by 13.7 and 9.8 µg/m3, respectively, compared to those in January 2016. Emission change was the dominant factor to reduce PM2.5 concentrations in China (-115%) and South Korea (-74%) for the 6 years. However, the short-term changes in PM2.5 concentrations between January of 2020-2021 were mainly driven by meteorological conditions in China (-73%) and South Korea (-68%). At the same time, in South Korea located in downwind area, the impact of long-range transport from upwind area (LTI) decreased by 55% (9.6 µg/m3) over the 6 years whereas the impact of local emissions increased (+2.9 µg/m3/year) during 2016-2019 but decreased (-4.5 µg/m3/year) during 2019-2021. Additionally, PM2.5 concentrations in the upwind area showed a positive relationship with LTIs. However, for the days when westerly winds became weak in the downwind area, high PM2.5 concentrations in upwind area did not lead to high LTIs. These results imply that the decline of PM2.5 concentrations in South Korea was significantly affected by a combination of emission reduction in upwind area and meteorological conditions that hinder long-range transport. The proposed multifaceted approach can identify the main drivers of PM2.5 concentration change in a region by considering the regional characteristics.

11.
Environ Sci Pollut Res Int ; 30(19): 55092-55111, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36884176

RESUMEN

The spatiotemporal characteristics, relationship with meteorological factors, and source distribution of air pollutants (January 2017-December 2021) were analyzed to better understand the air pollutants on the northern slope of the Tianshan Mountains (NSTM) in Xinjiang, a heavily polluted urban agglomeration of heavy industries. The results showed that the annual mean concentrations of SO2, NO2, CO, O3, PM2.5, and PM10 were 8.61-13.76 µg m-3, 26.53-36.06 µg m-3, 0.79-1.31 mg m-3, 82.24-87.62 µg m-3, 37.98-51.10 µg m-3, and 84.15-97.47 µg m-3. The concentrations of air pollutants (except O3) showed a decreasing trend. The highest concentrations were in winter, and in Wujiaqu, Shihezi, Changji, Urumqi, and Turpan, the concentrations of particulate matter exceeded the NAAQS Grade II during winter. The west wind and the spread of local pollutants both substantially impacted the high concentrations. According to the analysis of the backward trajectory in winter, the air masses were mainly from eastern Kazakhstan and local emission sources, and PM10 in the airflow had a more significant impact on Turpan; the rest of the cities were more affected by PM2.5. Potential sources included Urumqi-Changj-Shihezi, Turpan, the northern Bayingol Mongolian Autonomous Prefecture, and eastern Kazakhstan. Consequently, the emphasis on improving air quality should be on reducing local emissions, strengthening regional cooperation, and researching transboundary transport of air pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ciudades , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Estaciones del Año , China
12.
Sci Total Environ ; 872: 162131, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36773898

RESUMEN

For regulatory purposes, air pollution has been reduced to management of air quality control regions (AQCR), by inventorying pollution sources and identifying the receptors significantly affected. However, beyond being source-dependent, particulate matter can be physically and chemically altered by factors and elements of climate during transport, as they act as local environmental constraints, indirectly modulating the adverse effects of particles on the environment and human health. This case study, at an industrial site in a Brazilian coastal city - Joinville, combines different methodologies to integrate atmospheric dynamics in a strategic risk assessment approach whereby the influence of different wind regimes on environmental and health risks of exposure to PM2.5-bound elements, are analysed. Although Joinville AQCR has been prone to stagnation/recirculation events, distinctly different horizontal wind circulation patterns indicate two airsheds within the region. The two sampling sites mirrored these two conditions and as a result we report different PM2.5 mass concentrations, chemical profiles, geo-accumulation, and ecological and human health risks. In addition, feedback mechanisms between the airsheds seem to aggravate the air quality and its effects even under good ventilation conditions. Recognizably, the risks associated with Co, Pb, Cu, Ni, Mn, and Zn loadings were extremely high for the environment as well as being the main contributors to elevated non-carcinogenic risks. Meanwhile, higher carcinogenic risks occurred during stagnation/recirculation conditions, with Cr as the major threat. These results highlight the importance of integrating local airshed characteristics into the risk assessment of PM2.5-bound elements since they can aggravate air pollution leading to different risks at a granular scale. This new approach to risk assessment can be employed in any city's longer-term development plan since it provides public authorities with a strategic perspective on incorporating environmental constraints into urban growth planning and development zoning regulations.

13.
J Environ Radioact ; 259-260: 107122, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36696867

RESUMEN

An analysis of the concentration of 7Be in aerosol samples collected in one of the most polluted areas in Europe (Katowice and Krakow in southern Poland) indicated seasonal variability, with a maximum in the summer months. The average concentrations of 7Be were 4616.1 µBq m-3 in Katowice and 3259.4 µBq m-3 in Krakow, respectively, and they are among the highest values recorded in Poland in the studied period (1998-2016). These cities are also characterised by Poland's highest concentrations of 210Pb (547.8 µBq m-3 and 513.2 µBq m-3). The highest radioactive concentrations of 210Pb were observed in the winter and autumn, since in the case of these industrial areas, the combustion processes related to heating in the cold season of the year are an additional source of this isotope, next to its natural origin. The airborne particulate matter concentrations at both locations correlate with the concentrations of 210Pb. The average values of PM10 concentrations (71.1 µg m-3 in Krakow to 45.0 µg m-3 in Katowice), were 2-3 times higher than the average ones recorded in northern Poland. It has been proven that air temperature is the key parameter affecting the transport of isotopes, especially in the warm season of the year, when its increase causes increased thermal convection, leading to intense vertical mixing and exchange in the troposphere. Analyses using the machine learning method allowed for an indication of the correlation between relative humidity and atmospheric precipitation, as well as higher wind speed and concentrations of 7Be which is inversely proportional. Geographical factors (the latitude of the station and the land elevation) have no impact on near-surface concentrations of 7Be in Poland.


Asunto(s)
Contaminantes Radiactivos del Aire , Berilio , Radioisótopos de Plomo , Material Particulado , Monitoreo de Radiación , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Plomo/análisis , Material Particulado/análisis , Polonia , Estaciones del Año
14.
J Environ Sci (China) ; 126: 506-516, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36503777

RESUMEN

Deterioration of surface ozone (O3) pollution in Northern China over the past few years received much attention. For many cities, it is still under debate whether the trend of surface O3 variation is driven by meteorology or the change in precursors emissions. In this work, a time series decomposition method (Seasonal-Trend decomposition procedure based on Loess (STL)) and random forest (RF) algorithm were utilized to quantify the meteorological impacts on the recorded O3 trend and identify the key meteorological factors affecting O3 pollution in Tianjin, the biggest coastal port city in Northern China. After "removing" the meteorological fluctuations from the observed O3 time series, we found that variation of O3 in Tianjin was largely driven by the changes in precursors emissions. The meteorology was unfavorable for O3 pollution in period of 2015-2016, and turned out to be favorable during 2017-2021. Specifically, meteorology contributed 9.3 µg/m3 O3 (13%) in 2019, together with the increase in precursors emissions, making 2019 to be the worst year of O3 pollution since 2015. Since then, the favorable effects of meteorology on O3 pollution tended to be weaker. Temperature was the most important factor affecting O3 level, followed by air humidity in O3 pollution season. In the midday of summer days, O3 pollution frequently exceeded the standard level (>160 µg/m3) at a combined condition with relative humidity in 40%-50% and temperature > 31°C. Both the temperature and the dryness of the atmosphere need to be subtly considered for summer O3 forecasting.


Asunto(s)
Conceptos Meteorológicos , Meteorología , Humedad , Atmósfera , Ciudades
15.
Sci Total Environ ; 859(Pt 1): 160172, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36395856

RESUMEN

Unexpected outbreak of the 2019 novel coronavirus (COVID-19) has profoundly altered the way of human life and production activity, which posed visible impacts on PM2.5 and its chemical species. The abruptly emergency reduction in human activities provided an opportunity to explore the synergetic impacts of multi-factors on shaping PM2.5 pollution. Here, we conducted two comprehensive observation measurements of PM2.5 and its chemical species from 1 January to 16 February in Beijing 2020 and the same lunar date in 2021, to investigate temporal variations and reveal the driving factors of haze before and after Chinese New Year (CNY). Results show that mean PM2.5 concentrations during the whole observation were 63.83 and 66.86 µg/m3 in 2020 and 2021, respectively. Higher secondary inorganic species were observed after CNY, and K+, Cl- showed three prominent peaks which associated closely with fireworks burnings from suburb Beijing and surroundings, verifying that they could be used as two representative tracers of fireworks. Further, we explored the impacts of meteorological conditions, regional transportation as well as chemical reactions on PM2.5. We found that unfavorable meteorological conditions accounted for 11.0 % and 16.9 % of PM2.5 during CNY holidays in 2020 and 2021, respectively. Regional transport from southwest and southeast (south) played an important role on PM2.5 during the two observation periods. Higher ratio of NO3-/SO42- were observed under high OX and low RH conditions, suggesting the major pathway of NO3- and SO42- formation could be photochemical process and aqueous-phase reaction. Additionally, nocturnal chemistry facilitated the formation of secondary components of both inorganic and organic. This study promotes understandings of PM2.5 pollution in winter under the influence of COVID-19 pandemic and provides a well reference for haze and PM2.5 control in future.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Humanos , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Pueblos del Este de Asia , Pandemias , COVID-19/epidemiología , Aerosoles y Gotitas Respiratorias , Estaciones del Año , Beijing/epidemiología , China/epidemiología
16.
Mol Ecol ; 32(4): 951-969, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461661

RESUMEN

While ecologists agree that habitat loss has a substantial negative effect on biodiversity it is still very much a matter of debate whether habitat fragmentation has a lesser effect and whether this effect is positive or negative for biodiversity. Here, we assess the relative influence of tropical forest loss and fragmentation on the prevalence of vector-borne blood parasites of the genera Plasmodium and Haemoproteus in six forest bird species. We also determine whether habitat loss and fragmentation are associated with a rise or fall in prevalence. We sample more than 4000 individual birds from 58 forest sites in Guadeloupe and Martinique. Considering 34 host-parasite combinations independently and a fine characterization of the amount and spatial configuration of habitat, we use partial least square regressions to disentangle the relative effects of forest loss, forest fragmentation, landscape heterogeneity, and local weather conditions on spatial variability of parasite prevalence. Then we test for the magnitude and the sign of the effect of each environmental descriptor. Strikingly, we show that forest fragmentation explains twice as much of the variance in prevalence as habitat loss or landscape heterogeneity. In addition, habitat fragmentation leads to an overall rise in prevalence in Guadeloupe, but its effect is variable in Martinique. Both habitat loss and landscape heterogeneity exhibit taxon-specific effects. Our results suggest that habitat loss and fragmentation may have contrasting effects between tropical and temperate regions and that inter-specific interactions may not respond in the same way as more commonly used biodiversity metrics such as abundance and diversity.


Asunto(s)
Ecosistema , Interacciones Huésped-Parásitos , Animales , Bosques , Biodiversidad , Aves/parasitología
17.
Environ Sci Pollut Res Int ; 30(1): 532-546, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35900627

RESUMEN

Mosquitoes are the underlying cause of various public health and economic problems. In this study, patterns of mosquito occurrence were analyzed based on landscape and meteorological factors in the metropolitan city of Seoul. We evaluated the influence of environmental factors on mosquito occurrence through the interpretation of prediction models with a machine learning algorithm. Through hierarchical cluster analysis, the study areas were classified into waterside and non-waterside areas, according to the landscape patterns. The mosquito occurrence was higher in the waterside area, and mosquito abundance was negatively affected by rainfall at the waterside. The mosquito occurrence was predicted in each cluster area based on the landscape and cumulative meteorological variables using a random forest algorithm. Both models exhibited good performance (both accuracy and AUROC > 0.8) in predicting the level of mosquito occurrence. The embedded relationship between the mosquito occurrence and the environmental factors in the models was explained using the Shapley additive explanation method. According to the variable importance and the partial dependence plots for each model, the waterside area was more influenced by the meteorological and land cover variables than the non-waterside area. Therefore, mosquito control strategies should consider the effects of landscape and meteorological conditions, including the temperature, rainfall, and the landscape heterogeneity. The present findings can contribute to the development of mosquito forecasting systems in metropolitan cities for the promotion of public health.


Asunto(s)
Aprendizaje Automático , Conceptos Meteorológicos , Animales , Seúl , Ciudades , República de Corea
18.
Sci Total Environ ; 855: 158900, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36155828

RESUMEN

BACKGROUND: In Spain, two synoptic-scale conditions influence heat wave formation. The first involves advection of warm and dry air masses carrying dust of Saharan origin (North African Dust (NAF) = 1). The second entails anticyclonic stagnation with high insolation and stability (NAF) = 0). Some studies show that the meteorological origin of these heat waves may affect their impact on morbidity and mortality. OBJECTIVE: To determine whether the impact of heat waves on health outcomes in Madrid (Spain) during 2013-2018 varied by synoptic-scale condition. METHODOLOGY: Outcome data consist of daily mortality and daily hospital emergency admissions (morbidity) for natural, circulatory, and respiratory causes. Predictors include daily maximum and minimum temperatures and daily mean concentrations of NO2, PM10, PM2.5, NO2, and O3. Analyses adjust for insolation, relative humidity, and wind speed. Generalized linear models were performed with Poisson link between the variables controlling for trend, seasonality, and auto-regression in the series. Relative Risks (RR) and Attributable Risks (AR) were determined. The RRs for mortality attributable to high temperatures were similar regardless of NAF status. For hospital admissions, however, the RRs for hot days with NAF = 0 are higher than for days with NAF = 1. We also found that atmospheric pollutants worsen morbidity and mortality, especially PM10 concentrations when NAF = 1 and O3 concentrations when NAF = 0. RESULTS: The effect of heat waves on morbidity and mortality depends on the synoptic situation. The impact is greater under anticyclonic stagnation conditions than under Saharan dust advection. Further, the health impact of pollutants such as PM10 and O3 varies according to the synoptic situation. CONCLUSIONS: Based on these findings, we strongly recommend prevention plans to include data on the meteorological situation originating the heat wave, on a synoptic-scale, as well as comprehensive preventive measures against the compounding effect of high temperatures and pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminación del Aire/análisis , España/epidemiología , Calor , Dióxido de Nitrógeno/análisis , Polvo/análisis , Morbilidad , Contaminantes Ambientales/análisis , Contaminantes Atmosféricos/análisis
19.
J Fungi (Basel) ; 10(1)2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276018

RESUMEN

A three-year survey was conducted to estimate the incidence of grapevine trunk diseases (GTDs) in Greece and identify fungi associated with the disease complex. In total, 310 vineyards in different geographical regions in northern, central, and southern Greece were surveyed, and 533 fungal strains were isolated from diseased vines. Morphological, physiological and molecular (5.8S rRNA gene-ITS sequencing) analyses revealed that isolates belonged to 35 distinct fungal genera, including well-known (e.g., Botryosphaeria sp., Diaporthe spp., Eutypa sp., Diplodia sp., Fomitiporia sp., Phaeoacremonium spp., Phaeomoniella sp.) and lesser-known (e.g., Neosetophoma sp., Seimatosporium sp., Didymosphaeria sp., Kalmusia sp.) grapevine wood inhabitants. The GTDs-inducing population structure differed significantly among the discrete geographical zones. Phaeomoniella chlamydospora (26.62%, n = 70), Diaporthe spp. (18.25%, n = 48) and F. mediterranea (10.27%, n = 27) were the most prevalent in Heraklion, whereas D. seriata, Alternaria spp., P. chlamydospora and Fusarium spp. were predominant in Nemea (central Greece). In Amyntaio and Kavala (northern Greece), D. seriata was the most frequently isolated species (>50% frequency). Multi-genes (rDNA-ITS, LSU, tef1-α, tub2, act) sequencing of selected isolates, followed by pathogenicity tests, revealed that Neosetophoma italica, Seimatosporium vitis, Didymosphaeria variabile and Kalmusia variispora caused wood infection, with the former being the most virulent. To the best of our knowledge, this is the first report of N. italica associated with GTDs worldwide. This is also the first record of K. variispora, S. vitis and D. variabile associated with wood infection of grapevine in Greece. The potential associations of disease indices with vine age, cultivar, GTD-associated population structure and the prevailing meteorological conditions in different viticultural zones in Greece are presented and discussed.

20.
Environ Monit Assess ; 194(12): 910, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36253557

RESUMEN

This study applied two data mining tasks: clustering and association rules to a dataset of pollutants in the state of São Paulo. The clustering task was applied to temporal patterns and geospatial distributions of pollutants, and the association rules were used to identify prevailing meteorological conditions when there were high concentrations of pollutants from 2017 to 2019. The results indicated good adequacy of the cluster, indicating different pollution levels per group, with a silhouette coefficient from 0.26 to 0.72. In the spatial evaluation, the groups severely polluted were located in the metropolitan region, on the coast and, some inland cities, by industrial, vehicular, burning, agriculture, and other emissions. The cluster identified a strong presence of O3 and PM2.5 in 65% and 72% of the monitored stations in several areas of the state. As for the distance between the sources of pollution, the groups of PM10 and NO2 were geographically distant, while PM2.5, CO, SO2, and O3 were closer, suggesting a spatial relationship of exposure. Seasonality was similar between groups, with significantly higher concentrations in winter, except for O3, for which higher concentrations occurred in summer. Meteorological conditions contributed to critical episodes of pollution (support and confidence greater than 80%), with low temperature and humidity, low rainfall, and milder wind associated with increased pollutants. In conclusion, investigating spatial representativeness allows revealing spatial and temporal patterns of pollutants and unfavorable meteorological conditions to diffusion. Thus, ideal and effective measures can be taken to avoid critical periods of exposure based on the behavior of pollutants in different regions and related climate changes.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Brasil , China , Ciudades , Monitoreo del Ambiente/métodos , Dióxido de Nitrógeno/análisis , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...