Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Therm Sci ; 137: 534-538, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32021553

RESUMEN

NASA is designing an unmanned submarine to explore the depths of the hydrocarbon-rich seas on Saturn's moon Titan. Data from Cassini indicates that the Titan north polar environment sustains stable seas of variable concentrations of ethane, methane, and nitrogen, with a surface temperature near 93 K. The submarine must operate autonomously, study atmosphere/sea exchange, interact with the seabed, hover at the surface or any depth within the sea, and be capable of tolerating variable hydrocarbon compositions. Currently, the main thermal design concern is the effect of effervescence on submarine operation, which affects the ballast system, science instruments, and propellers. Twelve effervescence measurements on various liquid methane-ethane compositions with dissolved gaseous nitrogen are thus presented from 1.5 bar to 4.5 bar at temperatures from 92 K to 96 K to simulate the conditions of the seas. After conducting effervescence measurements, two freezing point depression measurements were conducted. The freezing liquid line was depressed more than 15 K below the triple point temperatures of pure ethane (90.4 K) and pure methane (90.7 K). Experimental effervescence measurements will be used to compare directly with effervescence modeling to determine if changes are required in the design of the thermal management system as well as the propellers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA