Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 578: 124-134, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32521352

RESUMEN

Pollution of tetracyclines (TCs) in swine wastewater has been a critical concern worldwide. Notably, multiple anions (e.g. PO43-, NO3-) coexist in the actual environments, which could significantly influence the TCs removal. In the current study, MgAl layered double oxide (MgAl-LDO) was adopted for investigating the TC removal performance with/without PO43- or NO3-. In all systems, the adsorption performance exhibited two different approaches between low and high TC concentrations. In the single system, pseudo-second-order and the Freundlich model fitted well to the equilibrium adsorption data when TC concentration was below 125 mg·L-1, while the pseudo-first-order and the linear model could describe the removal process at high TC concentration (>125 mg·L-1). The maximum adsorption capacity was 83.56 mg·g-1. In the co-existing system, the adsorption capacity was slightly enhanced when TC concentration below 150 mg·L-1 however was inhibited at high concentration (>150 mg·L-1). Combined with the characterization analyses, the interaction mechanism at low concentration was primarily surface adsorption on reconstructed LDH from LDO in the TC-alone system. It is worth mention that both PO43- and NO3- facilitated the formation of LDH via rehydration of LDO which enhanced surface adsorption in the co-existing system. At high TC concentration, the formation of tetracycline-metal complexes played a dominant role in TC removal in the single system, whereas diminished complexation in the binary system led to the decreased TC removal. This study provides a theoretical and practical guidance for MgAl-LDO on the efficient remediation of actual tetracyclines wastewater.


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Adsorción , Animales , Cinética , Nitratos , Fosfatos , Porcinos , Tetraciclinas
2.
J Colloid Interface Sci ; 562: 578-588, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-31787251

RESUMEN

Here, a novel Mg/Al-layered double oxide (MgAl-LDO) with a flower-like architecture was synthesized through facile green co-precipitation and calcination methods for phosphate separation and recycle from wastewater. The as-prepared MgAl-LDO demonstrated high specific surface area of 200.17 m2/g based on its 3D hierarchical flower-like structure. The phosphate adsorption was well conformed to Pseudo-second-order kinetic model and Langmuir model, suggesting a homogeneous monolayer chemisorption with a maximum adsorption capability of 103.61 mg P/g. The existence of Cl-, NO3- ions did not interfere with phosphate adsorption, while high concentration SO42- and CO32- affected the phosphate adsorption. In addition, adsorption mechanism analysis revealed that high-efficiency phosphate capture by MgAl-LDO was mainly due to the electrostatic adsorption, surface inner-sphere complexation, ligand exchange and precipitation combined process. Remarkably, the phosphate adsorbed MgAl-LDO (P-LDO) can be employed as synergistic flame retardant to improve the flame retardancy of paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA