RESUMEN
INTRODUCTION AND OBJECTIVES: Hepatic proteome and gut microbiota alterations are known in alcohol-associated hepatitis (AAH). Current animal models sparsely mimic human AAH. We aimed to develop an murine model that closely resembled human AAH. MATERIALS AND METHODS: Male C57BL/6N mice were pair-fed control/incremental ethanol Lieber-DeCarli diets and thioacetamide (TAA) for 12-weeks to induce AAH. Hepatic proteome was analyzed using LC-MS/MS. Gut-bacteria was determined using 16s-rRNA sequencing. RESULTS: Mice exposed to EtOH+TAA displayed higher expression of liver triglycerides (1.5-fold, p = 0.001), pro-inflammatory (IL6, 1.5-fold, p = 0.002 and TNFα, 1.7-fold, p = 0.01), fibrotic (TGF-ß, 2.7-fold, p = 0.01 and Col1α1, 2-fold, p = 0.01) and oxidative markers (GSH and SOD (-1.5 fold, p = 0.004 & 0.005 respectively)) as compared to EtOH alone. Histology of EtOH+TAA liver displayed pericellular liver fibrosis, increased steatosis, and neutrophil infiltration, which resembled human AAH. In the 12wk EtOH+TAA group, Desulfobacteria, Campylobacteria, and Patescibacteria increased by 2-fold (p = 0.02). Pathway combined score (CS, log10) in EtOH+TAA treatment showed upregulated hepatic ethanol oxidation (CS=1.93), fatty acid biosynthesis (CS=2.48), necrosis (CS=1.59), collagen formation (CS=1.28) and hypoxia (CS=0.68) and downregulated fatty acid beta-oxidation (CS=2.37), PPAR signaling (CS=1.35) fatty acid degradation (CS=2.35), bile acid metabolism (CS=1.87), and oxidative phosphorylation (CS=1.50), as observed in human disease. CONCLUSIONS: Using an ethanol-thioacetamide combination in mice results in a faster establishment of AAH with fibrosis than previously known models. Differential protein expression strongly correlates with pathways found altered in human AAH, thus making the model mimic human disease better than other known models., respectively. Thioacetamide (TAA) was administered to enhance liver fibrosis and mimic human AAH.
RESUMEN
Malnutrition is a complicated illness that affects people worldwide and is linked to higher death rates, a heightened vulnerability to infections, and delayed cognitive development. Experimental models have been constructed to comprehend the mechanisms associated with hunger. In this regard, the current study used two different types of food aiming to validate a murine model of malnutrition based on dietary restriction. The study was conducted with fifty-six Swiss male mice (eight-week-old) divided into eight groups (n=7 each) and fed the following experimental diets (10 weeks): Standard Diet (ST) ad libitum; ST 20% dietary restriction; ST 40% dietary restriction; ST 60% dietary restriction; AIN93-M diet ad libitum; AIN93-M 20% dietary restriction; AIN93-M 40% dietary restriction; AIN93-M 60% dietary restriction. Body, biochemical, and histological parameters were measured, and the restriction effects on genes related to oxidative stress (GPX1 and GPX4) in epididymal adipose tissue were evaluated. The results obtained showed that 20%, 40%, and 60% of dietary restrictions were able to reduce body weight when compared to controls, highlighting the accentuated weight loss in animals with 60% restrictions, especially those fed with AIN-93 M, which showed physical changes such as whitish skin and dull coat, voracious eating, and hunched posture. The present animal model also showed biochemical changes with hypoalbuminemia, as well as histological epididymal adipose tissue modulation. The presence of increased oxidative stress was observed when evaluating the GPX4 gene. Given the results, 60% food restriction using the AIN93-M diet was the best protocol for inducing malnutrition.
RESUMEN
BACKGROUND: Graft-versus-host disease (GVHD) is a major complication after allogeneic hematopoietic stem cell transplantation. OBJECTIVE: To elucidate the role of Toll-like receptor 4 (TLR4), the major receptor for bacterial lipopolysaccharide, in the development of GVHD, we constructed a GVHD model in TLR4 knockout (TLR4-/-) mice and monitored the cell chimerism. METHODS: In this study, we used polymerase chain reaction to identify whether TLR4 knockout (TLR4-/-) mice were established. Before transplantation, we pretreated mice with irradiation so as to obtain an appropriate irradiation dose. Flow cytometry was applied to measure the chimerism status, the distributions of antigen-presenting cells (APCs), and T-cells in TLR4+/+ and TLR4-/- recipient mice. RESULTS: The general condition of TLR4-/- recipients was better than that of TLR4+/+ recipients, and the TLR4-/- recipient mice showed less severe GVHD manifestations than the TLR4+/+ recipient mice. Most of the APCs and T-cells in the host mouse spleen were derived from donor cells, and CD4+ T-cells, including memory T-cells, were in the majority in host mice. CONCLUSION: In general, our data show that TLR4 deletion attenuated GVHD development, which suggests that TLR4 could be used as a novel target and therapeutic paradigm in GVHD therapies.
ANTECEDENTES: La enfermedad de injerto contra huésped (EICH) es una complicación importante después del trasplante alogénico de células madre hematopoyéticas. OBJETIVOS: Para dilucidar el papel de TLR4, el principal receptor de LPS bacteriano, en el desarrollo de GVHD, construimos un modelo de GVHD en ratones knockout para TLR4 (TLR4-/-) y monitoreamos el quimerismo celular. MÉTODOS: En este estudio, usamos PCR para identificar si se establecieron ratones knockout para TLR4 (TLR4-/-). Antes del trasplante, pretratamos a los ratones con irradiación para obtener la dosis de irradiación adecuada. Se aplicó citometría de flujo para medir el estado de quimerismo, las distribuciones de APC y células T en ratones receptores TLR4+/+ y TLR4-/-. RESULTADOS: El estado general de los receptores de TLR4-/- fue mejor que el de los receptores de TLR4+/+, y los ratones receptores de TLR4-/- mostraron manifestaciones de GVHD menos graves que los ratones receptores de TLR4+/+. La mayoría de las APC y las células T en el bazo del ratón huésped se derivaron de las células del donante, y las células T CD4+, incluidas las células T de memoria, se encontraban en su mayoría en los ratones huéspedes. CONCLUSIÓN: En general, nuestros datos muestran que la eliminación de TLR4 atenuó el desarrollo de GVHD, lo que sugiere que TLR4 podría usarse como un nuevo objetivo y paradigma terapéutico en las terapias de GVHD.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Ratones , Animales , Receptor Toll-Like 4/genética , Ratones Noqueados , Quimerismo , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad AgudaRESUMEN
This study evaluated the neuroprotective effects of the Africanized bee venom (BV) and its mechanisms of action after 6-hydroxydopamine-(6-OHDA)-induced lesion in a mice model. Prior to BV treatment, mice received intrastriatal microinjections of 6-OHDA (no induced dopaminergic neuronal death) or ascorbate saline (as a control). BV was administered subcutaneously at different dosages (0.01, 0.05 or 0.1 mg·Kg-1) once every two days over a period of 3 weeks. The open field test was carried out, together with the immunohistochemical and histopathological analysis. The chemical composition of BV was also assessed, identifying the highest concentrations of apamin, phospholipase A2 and melittin. In the behavioral evaluation, the BV (0.1 mg·Kg-1) counteracted the 6-OHDA-induced decrease in crossings and rearing. 6-OHDA caused loss of dopaminergic cell bodies in the substantia nigra pars compacta and fibers in striatum (STR). Mice that received 0.01 mg·Kg-1 showed significant increase in the mean survival of dopaminergic cell bodies. Increased astrocytic infiltration occurred in the STR of 6-OHDA injected mice, differently from those of the groups treated with BV. The results suggested that Africanized BV has neuroprotective activity in an animal model of Parkinson's disease.
RESUMEN
Patients diagnosed with acute lymphoblastic leukemia (ALL) bearing t(4;11)/MLL-AF4 have aggressive clinical features, poor prognosis and there is an urgent need for new therapies to improve outcomes. Panobinostat (LBH589) has been identified as a potential therapeutic agent for ALL with t(4;11) and studies suggest that the antineoplastic effects are associated with reduced MLL-AF4 fusion protein and reduced expression of HOX genes. Here, we evaluated the in vitro effects of the combination of LBH589 with methotrexate (MTX) or 6-mercaptopurine (6MP) by cell proliferation assays and Calcusyn software in ALL cell line (RS4;11); the in vivo effects of LBH589 in xenotransplanted NOD-scid IL2Rgammanull mice measuring human lymphoblasts by flow cytometry; and the expression of HOX genes by qPCR after treatment in an adult model of ALL with t(4;11). LBH589 combination with MTX or 6MP did not promote synergistic effects in RS4;11 cell line. LBH589 treatment leads to increased overall survival and reduction of blasts in xenotransplanted mice but caused no significant changes in HOXA7, HOXA9, HOXA10, and MEIS1 expression. The LBH589, alone, showed promising antineoplastic effects in vivo and may represent a potential agent for chemotherapy in ALL patients with t(4;11).
Asunto(s)
Mercaptopurina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Animales , Humanos , Mercaptopurina/farmacología , Metotrexato/farmacología , Ratones , Ratones Endogámicos NOD , Panobinostat/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genéticaRESUMEN
Arboviruses (an acronym for "arthropod-borne virus"), such as dengue, yellow fever, Zika, and Chikungunya, are important human pathogens transmitted by mosquitoes. These viruses impose a growing burden on public health. Despite laboratory mice having been used for decades for understanding the basic biological phenomena of these viruses, it was only recently that researchers started to develop immunocompromised animals to study the pathogenesis of arboviruses and their transmission in a way that parallels natural cycles. Here, we show that the AG129 mouse (IFN α/ß/γ R-/-) is a suitable and comprehensive vertebrate model for studying the mosquito vector competence for the major arboviruses of medical importance, namely the dengue virus (DENV), yellow fever virus (YFV), Zika virus (ZIKV), Mayaro virus (MAYV), and Chikungunya virus (CHIKV). We found that, after intraperitoneal injection, AG129 mice developed a transient viremia lasting several days, peaking on day two or three post infection, for all five arboviruses tested in this study. Furthermore, we found that the observed viremia was ample enough to infect Aedes aegypti during a blood meal from the AG129 infected mice. Finally, we demonstrated that infected mosquitoes could transmit each of the tested arboviruses back to naïve AG129 mice, completing a full transmission cycle of these vector-borne viruses. Together, our data show that A129 mice are a simple and comprehensive vertebrate model for studies of vector competence, as well as investigations into other aspects of mosquito biology that can affect virus-host interactions.
RESUMEN
BACKGROUND: Sporotrichosis is a subcutaneous mycosis with worldwide distribution and caused by seven pathogenic species of Sporothrix genus: S. schenckii sensu stricto, S. brasiliensis, S. globosa and S. luriei (clinical clade), and the species S. mexicana, S. pallida and S. chilensis (environmental clade). Isolates of the same species of Sporothrix may have different pathogenicities; however, few isolates of this fungus have been studied. Thus, the aim of this work was to analyze the clinical and anatomopathological changes in immunocompetent and immunosuppressed BALB/c mice infected with clinical and environmental isolates of seven different species of Sporothrix, from both clades. One human clinical isolate of S. schenckii sensu stricto, S. brasiliensis, S. globosa, S. luriei, S. mexicana and S. chilensis species and one environmental isolate of S. pallida were inoculated subcutaneously in immunocompetent mice and the same isolates of S. brasiliensis and S.schenckii sensu stricto were inoculated in immunossupressed mice. Clinical manifestations as external lesions, apathy, and alopecia were observed. At 21, 35, and 49 days after fungal inoculation, four mice from each group were weighed, euthanized and necropsied for evaluation of splenic index, recovery of fungal cells, macroscopic and histopathological analysis of livers, lungs, kidneys, and hearts. The survival assessment was observed for 50 days following inoculation. Our results demonstrated that, clinical S. schenckii isolate, followed by clinical S. mexicana, and environmental S. pallida isolates, the last two, species grouped in the environmental clade, were capable of inducing greater anatomopathological changes in mice, which was reflected in the severity of the clinical signs of these animals. Thus, we reinforce the hypothesis that the pathogenicity of Sporothrix is not only related to the species of this fungus, but also shows variation between different isolates of the same species.
RESUMEN
The lprG-p55 operon of Mycobacterium tuberculosis, M. bovis and M. avium strain D4ER has been identified as a virulence factor involved in the transport of toxic compounds. LprG is a lipoprotein that modulates the host immune response against mycobacteria, whereas P55 is an efflux pump that provides resistance to several drugs. In the present study we search for, and characterize, lprg and p55, putative virulence genes in Mycobacterium avium subsp. paratuberculosis (MAP) to generate a live-attenuated strain of MAP that may be useful in the future as live-attenuated vaccine. For this purpose, we generated and evaluated two mutants of MAP strain K10: one mutant lacking the lprG gene (ΔlprG) and the other lacking both genes lprG and p55 (ΔlprG-p55). None of the mutant strains showed altered susceptibility to first-line and second-line antituberculosis drugs or ethidium bromide, only the double mutant had two-fold increase in clarithromycin susceptibility compared with the wild-type strain. The deletion of lprG and of lprG-p55 reduced the replication of MAP in bovine macrophages; however, only the mutant in lprG-p55 grew faster in liquid media and showed reduced viability in macrophages and in a mouse model. Considering that the deletion of both genes lprG-p55, but not that of lprG alone, showed a reduced replication in vivo, we can speculate that p55 contributes to the survival of MAP in this animal model.
Asunto(s)
Proteínas Bacterianas/genética , Eliminación de Gen , Proteínas de Transporte de Membrana/genética , Mycobacterium avium subsp. paratuberculosis/genética , Mycobacterium avium subsp. paratuberculosis/patogenicidad , Factores de Virulencia/genética , Animales , Proteínas Bacterianas/metabolismo , Bovinos , Femenino , Macrófagos/microbiología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Operón , Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
PURPOSE: The application of nanosecond pulsed electric fields (nsPEFs) could be an effective therapeutic strategy for peritoneal metastasis (PM) from colorectal cancer (CRC). The aim of this study was to evaluate in vitro the sensitivity of CT-26 CRC cells to nsPEFs in combination with chemotherapeutic agents, and to observe the subsequent in vivo histologic response. METHODS: In vitro cellular assays were performed to assess the effects of exposure to 1, 10, 100, 500 and 1000 10 ns pulses in a cuvette or bi-electrode system at 10 and 200 Hz. nsPEF treatment was applied alone or in combination with oxaliplatin and mitomycin. Cell death was detected by flow cytometry, and permeabilization and intracellular calcium levels by fluorescent confocal microscopy after treatment. A mouse model of PM was used to investigate the effects of in vivo exposure to pulses delivered using a bi-electrode system; morphological changes in mitochondria were assessed by electron microscopy. Fibrosis was measured by multiphoton microscopy, while the histological response (HR; hematoxylin-eosin-safran stain), proliferation (KI67, DAPI), and expression of immunological factors (CD3, CD4, CD8) were evaluated by classic histology. RESULTS: 10 ns PEFs exerted a dose-dependent effect on CT-26 cells in vitro and in vivo, by inducing cell death and altering mitochondrial morphology after plasma membrane permeabilization. In vivo results indicated a specific CD8+ T cell immune response, together with a strong HR according to the Peritoneal Regression Grading Score (PRGS). CONCLUSIONS: The effects of nsPEFs on CT-26 were confirmed in a mouse model of CRC with PM.
Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Muerte Celular , Terapia por Estimulación Eléctrica/métodos , Mitomicina/uso terapéutico , Oxaliplatino/uso terapéutico , Neoplasias Peritoneales/patología , Neoplasias Peritoneales/terapia , Linfocitos T Citotóxicos , Animales , Neoplasias Colorrectales/patología , Terapia Combinada , Modelos Animales de Enfermedad , Inmunocompetencia , Ratones , Neoplasias Peritoneales/secundario , Factores de Tiempo , Resultado del TratamientoRESUMEN
PURPOSE: Fibrillin-1 and -2 are major components of tissue microfibrils that compose the ciliary zonule and cornea. While mutations in human fibrillin-1 lead to ectopia lentis, a major manifestation of Marfan syndrome (MFS), in mice fibrillin-2 can compensate for reduced/lack of fibrillin-1 and maintain the integrity of ocular structures. Here we examine the consequences of a heterozygous dominant-negative mutation in the Fbn1 gene in the ocular system of the mgΔlpn mouse model for MFS. METHODS: Eyes from mgΔlpn and wild-type mice at 3 and 6 months of age were analyzed by histology. The ciliary zonule was analyzed by scanning electron microscopy (SEM) and immunofluorescence. RESULTS: Mutant mice presented a significantly larger distance of the ciliary body to the lens at 3 and 6 months of age when compared to wild-type, and ectopia lentis. Immunofluorescence and SEM corroborated those findings in MFS mice, revealing a disorganized mesh of microfibrils on the floor of the ciliary body. Moreover, mutant mice also had a larger volume of the anterior chamber, possibly due to excess aqueous humor. Finally, losartan treatment had limited efficacy in improving ocular phenotypes. CONCLUSIONS: In contrast with null or hypomorphic mutations, expression of a dominant-negative form of fibrillin-1 leads to disruption of microfibrils in the zonule of mice. This in turn causes lens dislocation and enlargement of the anterior chamber. Therefore, heterozygous mgΔlpn mice recapitulate the major ocular phenotypes of MFS and can be instrumental in understanding the development of the disease.
Asunto(s)
Modelos Animales de Enfermedad , Fibrilina-1/genética , Síndrome de Marfan/genética , Mutación/genética , Animales , Cuerpo Ciliar/metabolismo , Cuerpo Ciliar/ultraestructura , Desplazamiento del Cristalino/genética , Proteínas de la Matriz Extracelular/metabolismo , Cristalino/metabolismo , Cristalino/ultraestructura , Ligamentos/ultraestructura , Masculino , Síndrome de Marfan/patología , Ratones , Ratones Endogámicos C57BL , Microfibrillas/ultraestructura , Proteínas de Microfilamentos/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , FenotipoRESUMEN
Bovine herpesvirus-1 (BoHV-1) uses many mechanisms to elude the immune system; one of them is spreading intracellularly, even in the presence of specific antiviral antibodies. Cytotoxic T lymphocytes (CTLs) are necessary to eliminate the virus. The main preventive strategy is vaccination based on inactivated virus. These vaccines are poor inducers of cellular immune responses, and complicate serological diagnosis and determination of the real prevalence of infection. DNA vaccines are a good option because of the capacity of Differentiating Infected from Vaccinated Animals-(DIVA vaccine)-and may be the best way to induce cytotoxic responses. Although this type of vaccines leads to only weak "in vivo" expression and poor immune responses, incorporation of molecular and/or chemical adjuvants can improve the latter, both in magnitude and in direction. In this study, we have investigated the specific immune responses elicited in mice by DNA vaccines based on the BoHV-1 glycoprotein D (pCIgD) with and without two different adjuvants: a plasmid encoding for murine CD40L (pCD40L) or Montanide™ 1113101PR (101). Mice vaccinated with pCIgD+CD40L, pCIgD+101, and pCIgD+CD40L+101 developed significantly higher specific antibody titers against BoHV-1 than the pCIgD group (p < 0.01). The animals vaccinated with pCgD+pCD40L+101 raised significantly higher levels of IgG2a and IgG2b (p < 0.01 and p < 0.001, respectively) than mice vaccinated with pCIgD alone. On the contrary, when the activity of CTL against cells infected with BoHV-1 was measured, the vaccine pCgD+pCD40L+101 induced significantly higher levels of cytotoxicity activity (p < 0.001) than pCIgD alone. A significant increase in the CD4+ populations in the group receiving pCIgD+CD40L+101 in comparison with the pCIgD group was observed and, also, interferon gamma, interleukin (IL)-6, and IL-17A levels were higher. Considering the results obtained from this study for humoral and cellular responses in mice, the inclusion of pCD40L and 101 as adjuvants in a BoHV-1 DNA vaccine for cattle is highly recommendable.
Asunto(s)
Herpesvirus Bovino 1 , Vacunas de ADN , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales , Ligando de CD40/genética , Bovinos , Herpesvirus Bovino 1/genética , RatonesRESUMEN
Neurotrophic factors are relevant regulators of the neurogenic process at different levels. In particular, the brain-derived neurotrophic factor, BDNF, is highly expressed in the hippocampus (HC) of rodents and participates in the control of neuronal proliferation, and survival in the dentate gyrus (DG). Likewise, serotonin is also involved in the regulation of neurogenesis, though its role is apparently more complex. Indeed, both enhancement of serotonin neurotransmission as well as serotonin depletion, paradoxically increase neuronal survival in the HC of mice. In this study, we analyzed the protein expression of the BDNF isoforms, i.e., pro- and mature-BDNF, and their respective receptors p75 and TrkB, in the HC of mice chronically treated with para-chloro-phenyl-alanine (PCPA), an inhibitor of serotonin synthesis. The same analysis was conducted in hyposerotonergic mice with concomitant administration of the 5-HT1 A receptor agonist, 8-Hydroxy-2-(di-n- propylamino) tetralin (8-OH-DPAT). Increased expression of p75 receptor with decreased expression of pro-BDNF was observed after chronic PCPA. Seven-day treatment with 8-OH-DPAT reestablished the expression of pro-BDNF modified by PCPA, and induced an increase in the expression of p75 receptor. It has been demonstrated that PCPA-treated mice have higher number of immature neurons in the HC. Given that immature neurons participate in the pattern separation process, the object pattern separation test was conducted. A better performance of hyposerotonergic mice was not confirmed in this assay. Altogether, our results show that molecules in the BDNF signaling pathway are differentially expressed under diverse configurations of the serotonergic system, allowing for fine-tuning of the neurogenic process.
RESUMEN
The efforts for the development and testing of vaccines against Trypanosoma cruzi infection have increased during the past years. We have designed a TcVac series of vaccines composed of T. cruzi derived, GPI-anchored membrane antigens. The TcVac vaccines have been shown to elicit humoral and cellular mediated immune responses and provide significant (but not complete) control of experimental infection in mice and dogs. Herein, we aimed to test two immunization protocols for the delivery of DNA-prime/DNA-boost vaccine (TcVac1) composed of TcG2 and TcG4 antigens in a BALB/c mouse model. Mice were immunized with TcVac1 through intradermal/electroporation (IDE) or intramuscular (IM) routes, challenged with T. cruzi, and evaluated during acute phase of infection. The humoral immune response was evaluated through the assessment of anti-TcG2 and anti-TcG4 IgG subtypes by using an ELISA. Cellular immune response was assessed through a lymphocyte proliferation assay. Finally, clinical and morphopathological aspects were evaluated for all experimental animals. Our results demonstrated that when comparing TcVac1 IDE delivery vs IM delivery, the former induced significantly higher level of antigen-specific antibody response (IgG2aâ¯+â¯IgG2bâ¯>â¯IgG1) and lymphocyte proliferation, which expanded in response to challenge infection. Histological evaluation after challenge infection showed infiltration of inflammatory cells (macrophages and lymphocytes) in the heart and skeletal tissue of all infected mice. However, the largest increase in inflammatory infiltrate was observed in TcVac1_IDE/Tc mice when compared with TcVac1_IM/Tc or non-vaccinated/infected mice. The extent of tissue inflammatory infiltrate was directly associated with the control of tissue amastigote nests in vaccinated/infected (vs. non-vaccinated/infected) mice. Our results suggest that IDE delivery improves the protective efficacy of TcVac1 vaccine against T. cruzi infection in mice when compared with IM delivery of the vaccine.
Asunto(s)
Enfermedad de Chagas/prevención & control , Electroporación/métodos , Vacunas Antiprotozoos/administración & dosificación , Vacunación/métodos , Animales , Anticuerpos Antiprotozoarios/sangre , Antígenos de Protozoos/inmunología , Linfocitos T CD8-positivos/inmunología , Enfermedad de Chagas/inmunología , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Inmunidad Celular , Inmunización Secundaria , Inmunoglobulina G/sangre , Activación de Linfocitos , Ratones , Ratones Endogámicos BALB C , Vacunas Antiprotozoos/inmunología , Absorción Cutánea , Trypanosoma cruzi/inmunología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/inmunologíaRESUMEN
Wound healing involves the integration of biological and molecular events and, in case of chronic wounds, the use of drugs can be associated to side effects. Therefore, there is a search for alternatives therapeutics that encompass minimal toxicity. The use of natural compounds is an attractive approach for treating inflammatory disorders, wounds and burns. In this context, thymol has antimicrobial, antioxidant and antiseptic properties and is a promising compound in wound healing and inflammation management. However, essential oils and their constituents such as thymol present high volatility and can also easily decompose, thereby the encapsulation of these compounds into nanoparticles may be an efficient approach to modulate the release of the active ingredient, to increase the physical stability and to eventually reduce the toxicity. The aims of this work were to encapsulate thymol in nanostructured lipid carriers (NLCs) composed of natural lipids and assess its in vivo anti-inflammatory and antipsoriatic activity. The carrier containing thymol was produced by sonication method and showed 107.7 (±3.8) nm of size, zeta potential of -11.6 (±2.9) mV and entrapment efficiency of 89.1 (±4.2)%. Thymol-NLCs were incorporated into a gel and the final formulation presented rheological characteristics and pH suitable for topic application. In addition, the gel containing thymol-NLCs was tested in vivo on two different mouse models of skin inflammation, showing anti-inflammatory activity. Finally, this formulation was tested in an imiquimod-induced psoriasis mouse model and showed improved healing, compared to negative control. Therefore, thymol-NLCs is an interesting formulation for future treatment of inflammatory skin diseases.
Asunto(s)
Antiinflamatorios/administración & dosificación , Antiinflamatorios/uso terapéutico , Lípidos/química , Nanopartículas/química , Timol/administración & dosificación , Timol/uso terapéutico , Administración Tópica , Aminoquinolinas/efectos adversos , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Betametasona/administración & dosificación , Betametasona/farmacología , Betametasona/uso terapéutico , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Composición de Medicamentos , Liberación de Fármacos , Oído/patología , Edema/inducido químicamente , Edema/tratamiento farmacológico , Edema/patología , Humanos , Imiquimod , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/patología , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Ratones Endogámicos BALB C , Tamaño de la Partícula , Permeabilidad , Psoriasis/inducido químicamente , Psoriasis/tratamiento farmacológico , Reología , Piel/efectos de los fármacos , Sus scrofa , Timol/farmacologíaRESUMEN
Vaccinia virus (VACV) is the etiological agent of bovine vaccinia (BV), an emerging zoonosis that has been associated with economic losses and social effects. Despite increasing reports of BV outbreaks in Brazil, little is known about the biological interactions of Brazilian VACV (VACV-BR) isolates during coinfections; furthermore, there are no tools for the diagnosis of these coinfections. In this study, a tool to co-detect two variants of VACV was developed to provide new information regarding the pathogenesis, virulence profile, and viral spread during coinfection with VACV-BR isolates. To test the quantitative polymerase chain reactions (qPCR) tool, groups of BALB/c mice were intranasally monoinfected with Pelotas virus 1-Group II (PV1-GII) and Pelotas virus 2-Group I (PV2-GI), or were coinfected with PV1-GII and PV2-GI. Clinical signs of the mice were evaluated and the viral load in lung and spleen were detected using simultaneous polymerase chain reactions (PCR) targeting the A56R (hemagglutinin) gene of VACV. The results showed that qPCR for the quantification of viral load in coinfection was efficient and highly sensitive. Coinfected mice presented more severe disease and a higher frequency of VACV detection in lung and spleen, when compared to monoinfected groups. This study is the first description of PV1 and PV2 pathogenicity during coinfection in mice, and provides a new method to detect VACV-BR coinfections.
Asunto(s)
Enfermedades de los Bovinos/diagnóstico , Coinfección/veterinaria , Reacción en Cadena de la Polimerasa , Virus Vaccinia/fisiología , Vaccinia/veterinaria , Animales , Brasil , Bovinos , Enfermedades de los Bovinos/virología , Coinfección/diagnóstico , Coinfección/virología , Hemaglutininas Virales/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Vaccinia/diagnóstico , Vaccinia/virología , Virus Vaccinia/clasificación , Virus Vaccinia/genética , Virus Vaccinia/patogenicidad , Carga Viral , VirulenciaRESUMEN
Epidemiological studies have shown that pollution derived from industrial and vehicular transportation induces adverse health effects causing broad ambient respiratory diseases. Therefore, air pollution should be taken into account when microbial diseases are evaluated. Environmental mycobacteria (EM) are opportunist pathogens that can affect a variety of immune compromised patients, which impacts significantly on human morbidity and mortality. The aim of this study was to evaluate the effect of residual oil fly ash (ROFA) pre-exposure on the pulmonary response after challenge with opportunistic mycobacteria by means of an acute short-term in vivo experimental animal model. We exposed BALB/c mice to ROFA and observed a significant reduction on bacterial clearance at 24 h post infection. To study the basis of this impaired response four groups of animals were instilled with (a) saline solution (Control), (b) ROFA (1 mg kg(-1) BW), (c) ROFA and EM-infected (Mycobacterium phlei, 8 × 10(6) CFU), and (d) EM-infected. Animals were sacrificed 24 h postinfection and biomarkers of lung injury and proinflammatory madiators were examined in the bronchoalveolar lavage. Our results indicate that ROFA was able to produce an acute pulmonary injury characterized by an increase in bronchoalveolar polymorphonuclear (PMN) cells influx and a rise in O2 (-) generation. Exposure to ROFA before M. phlei infection reduced total cell number and caused a significant decline in PMN cells recruitment (p < 0.05), O2 (-) generation, TNFα (p < 0.001), and IL-6 (p < 0.001) levels. Hence, our results suggest that, in this animal model, the acute short-term pre-exposure to ROFA reduces early lung response to EM infection.
Asunto(s)
Contaminantes Atmosféricos/toxicidad , Ceniza del Carbón/toxicidad , Inmunidad Innata/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Infecciones por Mycobacterium/inmunología , Animales , Líquido del Lavado Bronquioalveolar/citología , Recuento de Células , Interleucina-6/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Infecciones por Mycobacterium/patología , Mycobacterium phlei , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
The 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced edema model in mice determined the anti-inflammatory activities in vivo of argentatins A, B and D, the main cycloartenol-type triterpenes present in Parthenium argentatum. Our results showed that argentatin B (ED50=1.5×10(-4)mmol/ear) and argentatin A (ED50=2.8×10(-4)mmol/ear) were more potent anti-inflammatory agents than indomethacin (ED50=4.5×10(-4)mmol/ear), the reference drug. Based on these findings, we decided to evaluate 13 derivatives of argentatins A and B. All the derivatives showed anti-inflammatory activity in the TPA-induced edema model in mice. The most active compound was 25-nor-cycloart-3, 16-dione-17-en-24-oic acid, obtained from argentatin A (ED50=1.4×10(-4)mmol/ear). Argentatin B was assayed as inhibitor of COX-2 activity one of the key enzymes involved in the TPA assay. The results showed that argentatin B at 15µM doses inhibited 77% COX-2 activity. Docking studies suggest that argentatin B interacts with Arg 120, a key residue for COX-2 activity.